Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 28 (1937)

Heft: 10

Artikel: Ueber einige Integralreliefs für die nomographische, bzw.

nomographisch-graphische Berechnung der Freileitungen vom

Standpunkt der Festigkeit aus

Autor: Fischer, Alexander

DOI: https://doi.org/10.5169/seals-1059843

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

vom Boden aus, eventuell mit einem Feldstecher, erfolgen kann.

Eine Umdrehung des grossen Zeigers entspricht 1 Million Schwingungen, eine Umdrehung der kleinen Zeiger 10 bzw. 100 Millionen. Diese Ziffer-

Fig. 6. Schwingungszähler, auf Leitungsseil montiert.

blatteinteilung hat sich für diese Versuche als zweckmässig erwiesen. Eine Nullstellvorrichtung für die Zeiger ist absichtlich nicht eingebaut, da sie nicht unbedingt erforderlich ist und, sogar bei sorgfältigster Ausführung, Anlass zu Fehlern geben kann.

Versuche mit künstlich erzeugten Schwingungen im Frequenzbereich von 4 bis 100/s haben bewiesen, dass der Zähler einwandfrei arbeitet. Die obere Empfindlichkeitsgrenze ist infolge des zwangsläufigen Schaltmechanismus nur von der Festigkeit bzw. der Abnützung des Materials abhängig. Daher sind alle hoch beanspruchten Teile, wie Leiste, Schwinge samt Zapfen, Sperrad u. a. aus gehärtetem Stahl hergestellt. Die Versuche im praktischen Betrieb dauern noch nicht lange genug, um mit Bestimmtheit Angaben über die mittlere Lebensdauer dieser Instrumente machen zu können. Auf alle Fälle sind sie in dieser Hinsicht den Recordern weit überlegen.

Mit Hilfe dieser Instrumente lässt sich in einfacher Weise feststellen, ob ein Seil Schwingungen ausführt, deren Intensität als gefährlich betrachtet wird, und ob die angebrachte Dämpfungsvorrichtung den gewünschten Erfolg hat. Auf Grund der Erfahrung wird man trachten, zu gewissen Normen zu gelangen über zulässige Schwingungsanzahl für eine bestimmte Beobachtungszeit unter Berücksichtigung der klimatischen Verhältnisse und der Jahreszeit.

Ueber einige Integralreliefs für die nomographische, bzw. nomographischgraphische Berechnung der Freileitungen vom Standpunkt der Festigkeit aus.¹)

Von Alexander Fischer, Prag.

518.3:621.315.056.

Als Ergänzung zu der im Bull. SEV 1936, Nr. 7, erschienenen gleichbenannten Arbeit wird ein viertes Integralrelief hergeleitet und schematisch entworfen, das die Ermittlung von Durchhang und Beanspruchung auf reinnomographische Weise, d. h. ohne irgendwelche Nebenrechnungen ermöglicht. Comme supplément à l'étude parue sous le même titre dans le Bull. ASE 1936, No. 7, l'auteur déduit et esquisse un quatrième relief d'intégrale qui permet de déterminer la flèche et la tension d'une manière purement nomographique, c'est-à-dire, sans aucun calcul accessoire.

In der vor einem Jahre unter dieser Ueberschrift erschienenen Arbeit²) habe ich drei Integralreliefs hergeleitet und schematisch entworfen, die die nomographisch-graphische Berechnung des «verhältnismässigen Durchhanges φ » einer Leitung mit gleichhohen Befestigungspunkten ermöglichen sollen. Ich habe hierbei eine «méthode mixte» angewendet, d. h. die Durchführung der wesentlichen Berechnungen den Nomogrammen zugewiesen, während ich für Nebenrechnungen die Benützung des Rechenschiebers empfohlen habe. Ist dieser Vorgang zwar in praktischer Hinsicht durchaus zulässig, da die angeführten Verfahren wohl am einfachsten und genauesten zum Ziele führen, so dürfte dennoch die Frage nach der in nomographischer Hinsicht besten, d. h. mit einem Mindestmass von nicht nomographischen Rechenschritten auskommenden Lösung, nicht ohne Reiz sein, die in der bereits genannten, während der Drucklegung erschienenen Arbeit von V. Hruska-V. Kelbich in den Vordergrund gestellt worden ist. Ich möchte nun

2) Bull. SEV 1936, Nr. 7.

in Kürze zeigen, dass es in der Tat möglich ist, unter Heranziehung der beiden bereits verwendeten Prinzipien, d. i. desjenigen der «Fluchtlinien» und desjenigen der «Doppelkotenpunkte» sowie der Benutzung eines weiteren, anscheinend neuen Gedankens bei der Vertafelung simultaner Funktionsbeziehungen, ein viertes Integralrelief herzuleiten, das ohne irgendwelche Nebenrechnung — und möglicherweise mit einem Mindestmass von «Fluchten» («Ablesegeraden») — nicht nur den verhältnismässigen, sondern gleich den tatsächlichen Durchhang und die Beanspruchung gleichzeitig und auf einfachste Weise ergibt.

1. Herleitung des Integralreliefs.

Die Berechnung von Durchhang und Spannung beruht auf folgendem System simultaner Funktionsbeziehungen:

$$t_i = rac{16}{6} rac{10^{-4}}{lpha} \, arphi_i^2 - rac{1,25}{E \, lpha} \, rac{\gamma_i}{arphi_i} + \, c, \hspace{0.5cm} ext{(I)}$$

$$\varphi_i = \frac{f_i}{a}, \tag{II}$$

¹⁾ Bei der Redaktion eingelangt am 14. April 1936.

$$\sigma_i = \frac{a}{80} \cdot \frac{\gamma_i}{\varphi_i} \tag{III}$$

(Bezüglich der Zeichenerklärung vgl. die ursprüngliche Arbeit!)

Dieses System kann auf folgende Form gebracht werden, wobei K = ac:

$$\frac{A_i}{\varphi_i^2} + B \frac{\gamma_i}{\varphi_i^3} = 1, \qquad (Ia)$$

$$A_i = \frac{3}{8} 10^4 (\alpha t_i - K),$$
 (Ib)

$$B = \frac{3,75}{8} \ 10^4 \, a \, E^{-1}, \tag{Ic}$$

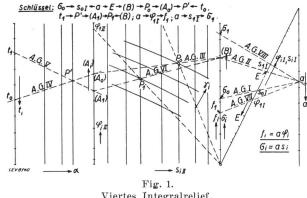
$$\varphi_i = \frac{f_i}{a}$$
, (II)

$$s_i = rac{1}{80} \cdot rac{\gamma_i}{arphi_i},$$
 (IIIa)

$$s_i = \frac{\sigma_i}{a}$$
. (IIIb)

Hierbei kann s_i gemäss (IIIb) in Analogie zu φ_i als «verhältnismässige Spannung» bezeichnet werden.

a) Vertafelung des Systems (Ia) und (Ib).


Die ertafelung von (Ib) erfolgt wie beim «Zweiten Integralrelief», diejenige von (Ia) hingegen ebenfalls durch eine Fluchtlinientafel mit zwei parallelen Trägern für A_i und B und einem Netz von «Doppelkotenpunkten $(\gamma_i, \ \varphi_i)$ », wobei zusammengehörige Werte von $A_i, \gamma_i, \ \varphi_i$ und B auf der «Ablesegeraden» liegen.

β) Vertafelung des Systems (Ia), (Ib) und (IIIa).

Unter Anwendung des obenerwähnten Gedankens kann nun die Funktionsbeziehung (IIIa) zwischen den drei Veränderlichen s_i , γ_i , φ_i durch eine «Netztafel» im Doppelkotenpunktnetz (γ_i, φ_i) der ebengenannten Fluchtlinientafel dargestellt werden. Es ergibt sich also — theoretisch — eine dritte Kurvenschar für si, so dass die Tafel nunmehr «Dreikotenpunkte» besitzt. Wie die nähere Berechnung jedoch zeigt, ist die si-Schar eine Parallelenschar zur A_i - bzw. B-Leiter, die φ_i -Schar ein Strahlenbüschel durch den Nullpunkt 0 der B-Leiter, die γ_i -Schar allein ist eine Kurvenschar. In durchaus bekannter Weise kann jedoch die φ_i -Schar durch eine auf dem A_i -Träger angebrachte φ_i -Leiter ersetzt werden, so dass bloss der jeweils in Betracht kommende Strahl des Büschels eingezeichnet werden muss.

γ) Vertafelung des restlichen Systems (Ic), (II) und (IIIb).

Jede Funktionsbeziehung desselben wird durch eine sogenannte «Z-Tafel» dargestellt und die drei Tafeln hierfür übereinandergelagert ³). Die so entstandene Tafel zeigt schematisch Fig. 1.

Viertes Integralrelief.

2. Benützung des Integralreliefs.

Es sei gegeben: a, E, α ; σ_0 , γ_0 , t_0 . Dann sind folgende Schritte erforderlich.

- 1. Schritt: Aus σ_0 und a ergibt «Ablesegerade I» («A.G. I») in der rechten Teiltafel die Grösse s_{ol} , für die das entsprechende s_{oll} der Mitteltafel aufzusuchen ist und mit γ_0 den Doppelkotenpunkt P_0 (γ_0 , s_0) oder auch Dreikotenpunkt P_0 (γ_0 , s_0 , φ_0) festlegt.
- 2. Schritt: Aus a und E ergibt «A.G. II» den Punkt B, der zu vermerken ist.
- 3. Schritt: Die durch B und P_0 bestimmte «A.G. III» ergibt A_0 .
- 4. Schritt: A_0 und t_0 legen «A.G. IV» fest, die auf der Geraden α (der linken Teiltafel) den Punkt P' ergibt.
- 5. Schritt: P' und t_1 bestimmen «A.G. V», die auf der A_i Leiter den Punkt A_1 ausschneidet.
- (Der 4. und 5. Schritt entsprechen also dem 2. und 3. Schritt beim «zweiten Integralrelief»!)
- 6. Schritt: Durch A_1 und B wird «A.G. VI» festgelegt. Ihr Schnittpunkt P_1 mit der γ_1 -Kurve ergibt in dessen zweiter und dritter Kote φ_{1II} und s_{1II} .
- 7. und 8. Schritt: Aus φ_{1II} und s_{1II} folgt mit Hilfe der rechten Teiltafel («A.G. VII» und «A.G. VIII») unter Benutzung der entsprechenden Leiternpunkte φ_{1I} und s_{1I} der *Durchhang* f_1 und die *Spannung* σ_1 , womit die Aufgabe gelöst ist.

(Ein zwischen den ersten und zweiten Schritt einzuschaltender ergäbe ganz entsprechend $f_0!$)

3. Anmerkungen.

- α) Wie früher ist die Leiter für A_i «Zapfenlinie»; das gleiche gilt für die B-Leiter. Beide können daher unbeziffert bleiben.
- β) Wie schon erwähnt, besitzt die Tafel für s_i und φ_i je ein «überzähliges System», d. h. diese Veränderlichen treten zweimal auf, das eine Mal als Punktleitern (Zeiger I), das andere theoretisch als Kurvenscharen (Zeiger II). Wie er-

³⁾ Die Herleitung dieser «Z-Tafel» findet sich z. B. auch in den in der ursprünglichen Arbeit angegebenen Einführungen in die Nomographie und ist — unabhängig von allgemeinen Verfahren — schon auf ganz elementare Weise möglich.

sichtlich, ist aber dieser Umstand im vorliegenden Falle wohl belanglos.

 $\gamma)$ Die Einführung von $\varphi_i\!=\!\gamma_i/(80\,s_i)$ in Funktionsbeziehung (I) ergäbe eine Funktionsbeziehung, für die ohne weiteres neue Integralreliefs nach Art der in der genannten Arbeit gegebenen entworfen werden könnten. An Stelle von φ_i träte entsprechend s_i als Veränderliche.

- δ) Weitere elektrotechnische Anwendungen des oben benützten Gedankens finden sich in meinen Arbeiten $^4)$ $^5).$
- ⁴⁾ Ueber eine Anwendung der Nomographie auf die Berechnung der Spannungsänderung eines Transformators. Bull. SEV 1933, Nr. 20.
- ⁵⁾ Ueber eine Anwendung der Nomographie auf die Berechnung der windschiefen Kettenfahrleitung in Kurven (nach *J. Pasching*). Elektrische Bahnen 1934, H. 3.

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

Schallvorgänge mit kontinuierlichem Frequenzspektrum.

534.844.1

Bei der Messung der Nachhallzeiten von Räumen mit reinen Tönen zeigt sich ein schwebungsartiger Intensitätsabfall des Messtones, welcher die Genauigkeit stark beeinträchtigt. Dieser schwebungsartige Verlauf wird durch das Abklingen der Raumeigenschwingungen verursacht und man verwendet darum Heultöne, deren Frequenz in einer Breite von z. B. 100 Hz rasch schwankt, um möglichst viele Eigentöne des Raumes anzustossen. Weil der Heulton aber kein kontinuierliches, sondern ein Linienspektrum darstellt, gelingt es nicht, die Schwebungen ganz zu unterdrücken. Es wurde nun versucht 1), einen Schall mit kontinuierlichem Spektrum zu erzeugen durch Verstärkung folgender Zufallserscheinungen:

a) des radioaktiven Zerfallvorganges; bei Füllung der Geigerschen Kammer mit Argon von 970 mBar erhält man ein Spektrum nach Kurve a, Fig. 1;

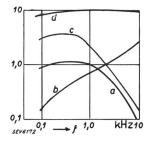


Fig. 1.

- a Spektrum des Geräusches der radioaktiven Strahlung.
- b Frequenzspektrum des Geräusches beim Barkhausen-Effekt.
- c Frequenzspektrum des Geräusches beim Mikrophonranschen.
- d Spektrum des Schrot-Effektes.
- b) des Barkhauseneffektes; man lässt nach Brion eine kleine Eisenscheibe in starkem Magnetfeld rotieren, senkrecht dazu sind zwei Spulen angebracht, so dass jede Ummagnetisierung eines Elementarmagneten einen Stromimpuls ergibt, der dem Verstärker zugeführt wird. Spektrum nach Kurve b, Fig. 1;
 - c) des Kohlemikrophonrauschens, Kurve c, Fig. 1;
- d) des Schrot-Effektes, also der durch die einzelnen Elektronen bewirkte Schwankung des Stromes in einer Verstärkerröhre, Kurve d, Fig. 1.

Die Aufnahme dieser Spektren erfolgte nach der Suchtonmethode von Grützmacher 2). Nur der Schrot-Effekt ergibt über den akustischen Frequenzbereich eine gleichmässige Lautstärke; allerdings ist sie doch ziemlich starken zeitlichen Schwankungen unterworfen und dies bewirkt, dass die Nachhallmessung mit einem kontinuierlichen Frequenzband von ca. 100 Hz Breite nicht genauer wird als mit dem Heultonverfahren. — Die Arbeit enthält eine mathematische Untersuchung solcher durch statische Impulse erzeugter Spektren; es zeigt sich, dass die Form des Einzelimpulses das Spektrum bestimmt. Desgleichen wird die zeitliche Schwankung der Intensität für ein Frequenzband $f_2 - f_1$ untersucht und angenähert proportional $1/\sqrt{f_2 - f_1}$ gefunden. K. E. M.

Kleine Mitteilungen.

621.396.71.029.6(45)

Ein italienischer Kurzwellen-Rundfunksender. Die Ente Italiano Audizioni Radiofoniche hat der zum Bell-Standard-Konzern gehörenden Firma «Fabbrica Apparecchiature per Comunicazioni Elettriche» in Mailand den Auftrag für einen 100-kW-Kurzwellen-Rundfunksender erteilt, der mit Hilfe von speziellen Richtantennen einen zuverlässigen Kurzwellen-Rundfunkbetrieb über die ganze Welt ergeben wird. Die Station wird in Rom aufgestellt und im nächsten Jahr in Berieb kommen. Es wird eine der leistungsfähigsten und ökonomischsten Stationen werden, weil neben der Klasse B-Endstufenmodulation auch neue Spezialstromkreise für die Leistungsverstärker verwendet werden, die einen bis jetzt noch nicht erreichten Wirkungsgrad des Kurzwellensenders ergeben.

Das Hörerpublikum hat in letzter Zeit mehr und mehr Interesse an Kurzwellensendungen und verlangt bereits eine Empfangsqualität, die wenigstens ebenso gut ist wie die des Mittelwellenempfangs. Infolgedessen bewegt sich auch die Entwicklung der Kurzwellensender in einer sich steigernden Leistungsabgabe und einer verbesserten Qualität. Die Qualität dieser neuen Kurzwellenstation soll besser werden als die der modernsten Mittelwellenstationen. Um den wechselnden atmosphärischen Bedingungen Rechnung zu tragen, muss bei Kurzwellenbetrieb von Zeit zu Zeit die Wellenlänge gewechselt werden. Dieser Wechsel kann bei diesem Sender in wenigen Minuten ausgeführt werden, da die Stromkreise der Leistungsverstärker auf einem Drehgestell montiert sind.

2) M. Grützmacher, Z. techn. Physik, Bd. 8 (1927), S. 506.

Miscellanea.

In memoriam.

Hans Tischhauser †. Am Abend des 9. April hatte der Schreibende bei der Erklärung des Oszillographen im Rahmen der technischen Gesellschaft scherzweise den Ausspruch getan, dass die Kurve von Hans Tischhausers Werk eine korrekte, wohlausgeglichene Sinuskurve darstelle. Niemand konnte ahnen, dass der Freund und Kollege infolge Herzlähmung seit einer Stunde leblos, nach einem Erholungsritt, an einem Feldweg lag und sein überreiches Leben im Dienste der Allgemeinheit abgeschlossen hatte.

Aus einer Stickerfamilie in Wartau stammend, geboren 1882, erlernte der aufgeweckte Knabe zuerst den Beruf seines Vaters. Durch die Fürsprache seines Pfarrers wurde ihm die Möglichkeit geschaffen, nach der Konfirmation die Lehrwerkstätte der mechanischen Abteilung und anschliessend daran die Schule für Elektrotechniker am Technikum in Biel zu besuchen. Als 20jähriger konnte Hans Tischhauser seine erste theoretische Ausbildung mit dem Diplom abschliessen.

Es galt nun, die erworbenen theoretischen Kenntnisse auf dem Gebiete der Praxis zu erproben und zu erweitern.

(Fortsetzung auf Seite 208.)

¹) Heinz Thiede, Schallvorgänge mit kontinuierlichem Frequenzspektrum, Elektr. Nachr. Techn. Bd. 13 (1936), Heft 3.