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Beitrag zur Berechnung der dynamischen Stabilitiit
von Synchronmaschinen.

Von W. Wanger, Baden.

Ueber das synchrone, synchronisierende, asynchrone und
dimpfende Drehmoment wihrend Pendelungen und andern
mechanischen Ausgleichsvorgingen von Synchronmaschinen
herrschen noch vielfach sehr unklare Vorstellungen. In der
vorliegenden Arbeit wird versucht, diese Begriffe klarzu-
legen, indem die verschiedenen Drehmomente (bzw. die zu-
gehorigen Wirkleistungen) berechnet werden. Die mecha-
nischen Ausgleichsvorginge werden fiir den Fall untersucht,
wo eine Synchronmaschine konstant erregt und belastet und
an ein Netz mit konstanter Spannung angeschlossen ist. Da-
bei wird der Statorwiderstand und die Sittigung vernach-
lissigi und in der Haupt- und Queraxe des Rotors nur je
eine Wicklung angenommen. Die Differentialgleichungen
werden fiir den allgemeinen Fall moglichst weitgehend ge-
lést und die Berechnungen fiir harmonische Schwingungen
kleiner Amplitude ausfiihrlich durchgefiihrt. Schliesslich
wird noch die Berechnung mit Hilfe der «Pendelungsrealk-
tanzeny unter der Annahme einer konstanten innern Span-
nung der Synchronmaschine durchgefithrt und mit der ge-
nauen Berechnung verglichen.

1. Einleitung.

Parallel geschaltete Synchronmaschinen, gleich-
giiltig, ob Motoren oder Generatoren, sind im sta-
tionidren Betrieb an eine bestimmte gegenseitige
Lage der Polrdder gebunden. Ebenso stellt sich bei
einer Synchronmaschine, die an ein starkes Netz
angeschlossen ist, ein ganz bestimmter Winkel zwi-

schen dem Polrad und dem Vektor der Klemmen-
xqlq

U Xh 1y
Fig. 1.
. f Vektordiagramm {fiir einen
’ & Synchronmotor im stationi-
ren Lauf, unter Vernach-
lissigung des Statorwider-
4 standes.
L7
SEV5928
Iy

spannung ein. Wird durch irgendeine dussere Ur-
sache der Winkel veriindert (jedoch nicht zu viel
verdndert!), so dndert sich sofort das Drehmoment
der Synchronmaschine derart, dass der Rotor wie
durch Federkraft wieder gegen die urspriingliche
Lage zuriickgezogen wird.

621.3.016.35 : 621.313.32

L’idée qu’on se fait du couple synchrone, du couple syn-
chronisant, du couple asynchrone et du couple amortisseur
relatifs aux oscillations pendulaires et aux autres phénomeénes
mécaniques lransitoires des machines synchrones est souvcnt
encore trés confuse. L’auteur cherche & définir clairement
ces notions et, pour ce faire, calcule la valeur de ces diffé-
rents couples ou, ce qui revient au méme, la valeur des puis-
sances actives qui leur correspondent. Il étudie ensuite les
phénoménes mécaniques transitoires dans le cas d’un alter-
nateur synchrone a excitation et débit constants branché sur
un réseau a tension invariable. Il néglige a cet effet la résis-
tance ohmique de Uenroulement du stator ainsi que la satu-
ration et Wadmet au’un seul enroulement dans chacun des
axes direct et transvcrsal du rotor. L’intégration des équa-
tions différentielles pour le cas général est poussée aussi a
fond que possible et la solution relative aux oscillations har-
moniques de faible amplitude est donnée en détail. L’auteur
procéde ensuite @ un second calcul en partant de la notion
des «réactances pendulairesy basée sur Uexistence dans les
machines synchrones d’'une certaine tension interne invariable,
et compare les résultats obtenus avec ceux du calcul exact.

Das Drehmoment oder die Wirkleistung, die bei
einem bestimmten Winkel entwickelt werden, kon-
nen leicht aus dem Vektordiagramm (Fig. 1) abge-
leitet werden. Bei Vernachldssigung des Wirkwider-
standes der Statorwicklung gegeniiber den Reaktan-
zen lautet die Gleichung fiir die Wirkleistung?):

UE,

Xp

P

St=

ind 4o ) sin@d) )
- SIn _————) 81n
2\ x, X
Darin bedeuten:
P, die stationdre Wirkleistung,
U die Klemmenspannung,
Ey die Leerlaufspannung,
x, die synchrone Reaktanz fiir die Hauptaxe,

x, die synchrone Reaktanz fiir die Queraxe,
¢ den Polradwinkel = Winkel zwischen U und Eo.

Bei Generatorbetrieb eilt die Leerlaufspannung
der Klemmenspannung vor, bei Motorbetrieb eilt
sie ihr nach; die Formel fiir Py lautet aber fiir
beide Fille gleich.

Maschinen mit Volltrommelrotoren, sog. Turbo-
maschinen, haben in Haupt- und Queraxe die
gleiche synchrone Reaktanz, so dass das letzte Glied

1) S. z. B. Gl. (20a) bei Ollendorff und Pecters: Schwin-
aungsstabilitit parallel arbeitender Synchronmaschinen. Wiss.
Veroff. a. d. Siemens-Konzern V. Bd., 1. H., S. 11.
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in Gl. (1) verschwindet und sich die Formel ver-
einfacht zu

p,— Uk

., sin 9
Xy

(1a)

In Fig. 2 ist die stationidre Wirkleistung fiir zwei
verschiedene Maschinen in Funktion des Polrad-
winkels aufgetragen. In beiden Fillen [Gl. (1) und
(la)] ist beim Polradwinkel null auch die Wirk-
leistung null. Sie wichst mit zunehmendem Polrad-
winkel (alle andern Grossen als konstant vorausge-
setzt) bis zu einem Maximum und nimmt dann wie-
der ab. Dieses Maximum ist die sog. statische Grenz-
leistung. Die erwihnte Federwirkung reicht nur
bis zu diesem Grenzwert. Wird die Maschine star-
ker belastet, als der Grenzleistung entspricht, so
fallt sie aussertritt.

Bei plotzlichen Belastungsidnderungen kann sich
der Polradwinkel infolge der Massentrigheit des
Rotors nicht plotzlich von einem Wert auf einen
andern verindern. Wenn in Fig. 3 der stationiire
Polradwinkel vor der Belastungsinderung ¢,, nach
dieser ¢}, ist, so ist fiir die Verdrehung des Polrades
von i}, bis ¢, eine gewisse Zeit notig. Wegen der
Massentrigheit schiesst dann das Polrad iiber die
neue Gleichgewichtslage hinaus bis zu einem Punkt,
der in der Figur mit P, bezeichnet ist. Nach der
einfachsten Theorie bestimmt man diesen Umkehr-
punkt, indem man die fiir stationdre Zustinde gil-
tigce Drehmomentkurve der Synchronmaschine in

2

— By

— 4 350°
0] 90° 180° 270° 0°

SEVS929

Fig. 2.
Wirkleistung eines Synchronmotors in Funktion des Polrad-
winkels bei stationirem Lauf, unter Vernachlissigung des
Statorwiderstandes.

1 Volltrommelrotor.
2 Ausgeprigte Pole.

Funktion des Polradwinkels aufzeichnet und die
obere horizontal schraffierte Fliache in Fig. 3 gleich
der untern, vertikal schraffierten Fliche macht,
welche nimlich die Bremsarbeit darstellt, die am
Rotor zwischen dem Winkel ¢, und 9, geleistet
wird; die obere Fliche stellt die Beschleunigungs-
arbeit dar, die nach dem Energiesatz gleich der
Bremsarbeit sein muss, da ja der Rotor im Umkehr-
punkt wieder die synchrone Winkelgeschwindigkeit
erreicht ?).

2) Eine ausfiihrlichere Darstellung dieser Vorginge findet
man in einem Aufsatz, der in den Brown-Boveri-Mitt. vor-
aussichtlich im April d. J. erscheinen wird.

Auf diese Art kénnen auch die Rotorschwingun-
gen beim Abschalten von parallelen Leitungen
oder bei Kurzschliissen untersucht werden. Insbe-
sondere lasst sich so feststellen, ob der Rotor ausser-
tritt fillt oder nicht. Diese Methode setzt aber vor-
aus, dass wihrend den Rotorschwingungen das Dreh-
moment der Synchronmaschine in Funktion des
Polradwinkels gleich sei wie bei stationidren Zustén-
den. Obschon man eigentlich schon lange weiss,
dass dies nicht zutrifft, ist die beschriebene Me-
thode auch heute noch sehr verbreitet.

¥
4
(l
— 360°
0 160° 270° ‘00

SEV 5930

Fig. 3.
Bestimmung der Ueberschwingung des Polrades eines Syn-
chronmotors, dessen Belastungsmoment plotzlich von M, auf
M, gesteigert wird.

Hiufig begegnet man dabei der Auffassung, man
konne den Unterschied zwischen stationiiren Zu-
stinden und Ausgleichsvorgingen dadurch beriick-
sichtigen, dass man neben dem stationdren Dreh-
moment noch ein sog. «asynchrones Moment» ein-
fithrt. Zur Unterscheidung nennt man das statio-
nire Drehmoment auch «synchrones Moment». Man
stellt sich also vor, dass einerseits wihrend des Aus-
gleichsvorganges zu jedem Wert des Polradwinkels
ein bestimmtes Drehmoment wie beim stationiiren
Lauf gehort (synchrones Moment) und dass ander-
seits infolge voriibergehender Abweichung von der
synchronen Winkelgeschwindigkeit auf &dhnliche
Art wie in einer Asynchronmaschine ein weiteres
Drehmoment erzeugt wird (asynchrones Moment).
In der vorliegenden Arbeit wird gezeigt, dass diese
Auffassung im allgemeinen Fall nicht richiig ist.

Andere Autoren wollen den Unterschied des
Drehmomentes bei stationdren und Ausgleichsvor-
gingen dadurch beriicksichtigen, dass sie an Stelle
der synchronen Reaktanz x;, in Gl. (la) die Kurz-
schlussreaktanz x/ einsetzen. Tatsdchlich verhilt
sich ja eine Synchronmaschine bei plsizlichen
Stroménderungen (z. B. bei Kurzschliissen) so, als
ob ihre Reaktanz x; wire und nicht x,. Bei Pen-
delungen benétigt aber die Verdrehung von einer
Rotorlage in eine andere immerhin so viel Zeit, dass
fur die Aushildung des Stromes und des Drehmo-
mentes nicht die gleichen Gesetze gelten wie bei
plotzlichen Strominderungen. Aber selbst bei aus-
serordentlich raschen Verdrehungen kann nicht ein-
fach in Gl. (la) x, durch x}, ersetzt werden. Die
Abhidngigkeit vom Polradwinkel lidsst sich niamlich
auch bei Turbomaschinen nicht mehr durch eine
einfache Sinusfunktion darstellen, sondern ist we-
sentlich komplizierter. Diese Zusammenhinge wer-
den in der vorliegenden Arbeit ebenfalls geklirt.
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Dabei wird auch die Frage untersucht, ob bei Ein-
fihrung einer korrigierten Reaktanz in Gl. (1) und
(la) das asynchrone Moment trotzdem noch zu be-
riicksichtigen ist oder nicht.

2. Differentialgleichungen des Statorstromes
bei mechanischen Ausgleichsvorgingen.

Die einzig sichere Methode zur Berechnung der
wihrend Ausgleichsvorgingen auftretenden Dreh-
momente besteht darin, dass man die Differential-
gleichungen fiir die Stréome in den Stator- und Ro-
torkreisen aufstellt und 16st. Mit Hilfe dieser Strome
ldsst sich dann das totale Drehmoment (bei Gene-
ratoren Belastungsdrehmoment, bei Motoren An-
triebsdrehmoment) berechnen. Auf eine Untertei-
lung des Drehmomentes in ein synchrones und asyn-
chrones Drehmoment wird also bei der Berechnung
bewusst verzichtet. Erst am Schluss soll untersucht
werden, ob eine solche Aufteilung iiberhaupt mdg-
lich und zweckmadssig ist.

Bei der folgenden Rechnung beschrinken wir
uns auf den Fall einer Synchronmaschine an einem
sehr starken Netz, d. h. an einer konstanten Klem-
menspannung. Sind zwischen der Maschine und
dem Ort mit konstanter Spannung noch Reaktan-
zen (z. B. Transformatoren oder Leitungen) einge-
schaltet, so sind die Statorreaktanzen einfach um
diese Vorschaltreaktanzen zu vergrossern. Der Wirk-
widerstand der Statorwicklung wird neben den
Reaktanzen vernachlissigt; die Sdttigung wird eben-
falls vernachlissigt. Die Rechnung wird fiir eine
Maschine mit ausgepriagten Polen durchgefiihrt;
die Endformeln gelten natiirlich auch fiir eine
Turbomaschine, die als Spezialfall der Maschine
mit ausgeprigten Polen aufzufassen ist (x,=—=x,).
Es wird vorausgesetzt, dass der Rotor in der Haupt-
und Queraxe nur je eine Wicklung habe; in der
Hauptaxe ist es die Erregerwicklung, in der Quer-
axe eine Dimpferwicklung. Die Gleichstromglieder
in den Statorwicklungen und die Wechselstrom-
glieder in den Rotorwicklungen, die bei ploizlichen
Strominderungen vorkommen, werden nicht be-
riicksichtigt. Da sie sehr rasch abklingen, kommen
sie bei Verdnderungen des Polradwinkels, die nicht
so ausserordentlich rasch vor sich gehen konnen,
kaum zur Ausbildung.

Ausser den nach Gl. (1) im 1. Abschnitt aufge-
filhrten Bezeichnungen werden noch die folgenden
benotigt:

I Statorstrom,
I, = I sin v Komponente in Hauptaxe ; Effektivwerte.
I, = I cos v Komponente in Queraxe

p Phasenverschiebung zwischen Ey und 1.
i, Rotorstrom in der Hauptaxenwick-
lung (Erregerwicklung), abziiglich
stationdrer Erregerstrom I,
i, Rotorstrom in der Queraxenwicklung
i, und i,sind die infolge der Rotorverdrehung induzierten
zusiitzlichen Stréme in den Rotorwicklungen.
L, L, Eigeninduktivititen der Statorwicklung fiir die Haupt-
resp. Queraxe, pro Phase.
l,, 1, Eigeninduktivititen der Rotorwicklungen.
m Phasenzahl im Stator.

Momentanwerte.

M,, M, Gegeninduktivititen Rotor — Stator.
m_.. m ; —
- My, EMQ Gegeninduktivititen Stator — Rotor.

Diese Gegeninduktivititen sind die Maximalwerte, die
bei koaxialer Lage des Statordrehfeldes mit einer Rotor-
wicklung vorkommen.

r, 1, ohmsche Widerstinde der Rotorwicklungen.

Das Vektordiagramm fir eine bestimmte Rotor-
lage (Winkel ) ist in Fig. 4 dargestellt. Die sta-

tionire Leerlaufspannung £, — oM, % ist diejenige

Grisse, die vom stationiren Erregerstrom I, in der
Statorwicklung induziert wird. Der zusitzliche Ro-

iq
quT/rf

Fig. 4.

Zeitliches Vektordiagramm

fiir einen Synchronmotor
withrend Pendelungen oder
andern mechanischen Aus-

gleichsvorgingen.

SEVS931

Iy
torstrom i, induziert einen gleichphasigen Span-

nungsabfall von der Grosse wM,—— _é, die Kompo-

nente [, einen solchen von der Grisse wl, I, In
der Richtung senkrecht auf £, werden die Span-

nungsabfille wM q% und oL, I, induziert; dagegen

kommt dort keine Spannung vor, die der Leerlauf-
spannung entspricht; denn die Queraxenwicklung
des Rotors fiihrt ja keinen stationdren Dauerstrom.
Alle diese innern Spannungsabfille zusammen sind
gleich der Klemmenspannung U.

Aus dem Vektordiagramm kann man direkt die
Gleichungen ablesen:

Ucosy = E, -'f—(,L)M +O)le h

@)

Usind = wM, + oL, I,

V

Fiir die beiden Rotorwicklungen gelten die Glei-
chungen:
ri, b - dlh + dIh ]/2 = 0

@)

m

r i, 41 + th ]/2:

7 dt
Leitet man die erste Gl. (2) nach ¢ ab, so kann man

di
aus ibr und der ersten Gl. (3) B eliminieren. Aus

de
der so erhaltenen Gleichung und der ersten Gl. (2)
lidsst sich dann noch i, eliminieren. Auf analoge

Art kann man ﬂund i, aus den zweiten Gl. (2)

de
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und (3) eliminieren. Man erhilt so, wenn man noch
die Streukoeffizienten

™ oz ™ ez
o, =1 2 .0, = 1 2.7 4
s =Ty V%= ——LT (4)
einfiihrt, die Gleichungen:
I, o, L, dI
rh dt d
— )
_ Ucos®9—E, | a,l, dt (U cos )
- w Lh T, w Olz L/l
(3)
o, 1, dI,
Iq + L d¢ d
: ——(U sin?)
_ Usind n o, l, dt

wlL, Ty 0o, L,
Nun ist aber

oL, = x, = synchrone Reaktanz fiir die Hauptaxe,
wlL,= x,=synchrone Reaktanz fiir die Queraxe,

woy, Ly = x; — Kurzschlussreaktanz fiir die Haupt-
axe,
64 Ly ==« — Kurzschlussreaktanz fiir die Quer-
axe,
0,1
e ; — Kurzschlusszeitkonstante der Rotor-
Ta Hauptaxenwicklung,
o, ;
14 = T; = Kurzschlusszeitkonstante der Rotor-

q Queraxenwicklung.

Mit diesen Abkiirzungen lassen sich die Gl. (5)
schreiben:

d
dI, _ Ucosd—E, 3 (Ueos?)
Ill + Th dt x T h _x,*
13 h (6)
U sin 0)
dI, U sin ) (
I+qut %, +T 7x‘; o

Sind U und E, konstant, so sind die rechten Sei-
ten dieser beiden Gleichungen nur Funktionen von
do

) undE
des Statorstromes eine eigene lineare Differential-
gleichung erster Ordnung mit konstanten Koeffi-
zienten, wobei das Storungsglied eine Funktion des
Polradwinkels und seiner zeitlichen Ableitung ist.

. Wir haben also fiir jede Komponente

Will man nun die Bewegung des Polrades bei
einem Ausgleichsvorgang, z. B. bei einer plétzlichen
Belastungsinderung, berechnen, so muss man von
der bekannten Differentialgleichung fiir die Polrad-
bewegung ausgehen:

6 d29
?—(F: Mm—M (7)

6 das Trigheitsmoment.
p die Polpaarzahl.

M, das Lastmoment an der Antriehswelle, vermehrt um das
den Verlusten entsprechende Drehmoment. M, wird als
konstant vorausgesetazt.

M das Antriechsmoment entsprechend der zugefithrten eiek-
trischen Wirkleistung.

Das Antriebsmoment M lisst sich aus Klemmen-
spannung, Polradwinkel und den beiden Kompo-
nenten des Statorstromes berechnen. Diese beiden
Komponenten kann man dann mit Hilfe der G1. (6)
eliminieren, so dass man schliesslich eine Differen-
tialgleichung erhilt, die ausser ¢ nur konstante
Grossen enthilt. Diese Gleichung ist aber so kom-
pliziert, dass eine Losung in geschlossener Form fiir
den allgemeinen Fall unmoglich erscheint. Wir
verzichten daher hier auf die Aufstellung dieser
Gleichung ?) und begniigen uns zunichst damit, die
Statorstrome und das Drehmoment M zu berechnen.
wenn der zeitliche Verlauf von ¢ bekannt ist.

Vorher sollen noch zwei Spezialfille untersucht
werden. Bei sehr grossem Widerstand r;, der Rotor-
wicklung wird T, & 0 und die erste Gl. (6) verein-
facht sich zu

(6a)

Das ist die Gleichung, wie man sie direkt aus dem
Vektordiagramm Fig. 1 fiir stationidre Zustinde ab-
lesen kann. Bei sehr grossem Rotorwiderstand ist
also der Statorstrom auch wihrend Ausgleichsvor-
gingen bei jedem Wert des Polradwinkels gleich
gross wie im stationdren Zustand.

Im andern Extremfall, wo r, ausserordentlich
klein ist, wird T, R oo, und die erste Gl. (6) verein-
facht sich zu

de — de
4(U cos )

X},

dl, d (U cos?
X,
oder AI, = (6b)
Die Aenderung des Statorstromes bei einer Aende-
rung des Polradwinkels berechnet sich also, wie
wenn als innere Reaktanz der Maschine nur die
Kurzschlussreaktanz xj, vorhanden wire.

Analoge Formeln gelten natiirlich fiir die Quer-
axe.

3. Berechnung der Strome und Drehmomente
bei bekanntem zeitlichen Verlauf
des Polradwinkels.

Wir kehren wieder zum allgemeinen Fall zuruck.
Wenn der zeitliche Verlauf von ¢ als bekannt vor-
ausgesetzt wird, ldsst sich jede der Gl. (6) auf die
Form bringen

dI 1

@ tr=r0

wo ¢ (1) die durch T;, bzw. T} dividierte rechte
3) Diese Gleichung wurde u. a. von Th. Bédefeld aufge-

stellt und fiirr Schwingungen kleiner Amplitude unter ge-
wissen Niherungsannahmen geldst. Siehe E.u. M. 1930, S. 689.
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Seite der urspriinglichen Gl. (6) bedeutet. Die obige
Differentialgleichung wird durch folgende Losung
befriedigt:

¢

£ t 12
I e e—?ng'rp(t) dte +I,.¢ T
0

Dabei ist I, der stationidre Wert von I zur Zeit t = 0,
d. h. vor Beginn des Ausgleichsvorganges. Fiihrt
man die Werte von ¢ (¢) in diese Gleichung ein,
so findet man nach einigen Umformungen

t

t t
I, = qus,f?,,_ﬂ)+ e gg Ty <1,— »l)-d(Ucos )
xlx i xlz x/l
t { t
E = Usin ) g & \ eTd (i,—i> -d (U sin )
xq xq q

(8)

Diese Gleichungen fiir die Komponenten der Sta-
torstrome wurden auf eine solche Form gebracht,
dass das erste Glied den stationdren Wert beim
Winkel # darstellt [vgl. Gl. (6a)]. Dazu kommt

noch der Integralausdruck.

Die Gl. (8) haben eine sehr einfache physika-
lische Bedeutung. Bei einer Veridnderung des Pol-
radwinkels um dY &dndern sich die Stromkompo-
nenten I, und I, so, wie wenn die innern Reaktan-
zen der Maschine x; und x; wiiren. Infolgedessen
ergeben sich Abweichungen zwischen den wirk-
lichen Werten der Stromkomponenten und den sta-
tiondren Werten beim gleichen Winkel. Diese Ab-
weichungen klingen gemiiss einer Exponentialfunk-
tion mit der Zeitkonstanten T, bzw. T, wieder ab.

Dieses Gesetz soll nur fiir die erste Gl. (8) ge-
zeigt werden. Die Aenderung des stationdren Wer-
tes von I, bei einer Winkeldnderung dd betrigt

{vel. GL. (6a)]:
IT. = d (U cos 9) )

Xp

Bei einem Ausgleichsvorgang muss also, wenn =x
statt x, massgebend ist, die Aenderung von I, be-
tragen:

d (Ucos?d)
X
Davon bleibt nun aber bloss dI,_, [Gl. (9)] dauernd

bestehen, wihrend die Differenz

dl, = (9a)

1 1
dIil_dI/lst: (;}7 — —x—‘h) ‘d(UCOSﬁ) (9b)
mit der Zeitkonstanten T3, abklingt. Wenn die be-
trachtete Winkelidnderung di zur Zeit u ausgefiihrt
wurde, so ist der Ausdruck von Gl. (9b) bis zur
Zeit t auf den Wert

{:‘—T—7 (l—l) -d (Ucosd,) (9¢)

’
h h

(la),

abgeklungen. Es wird hier 9, geschrieben, um an-
zudeuten, dass der Wert zur Zeit u einzusetzen ist.

Auf diese Art kann man jede Aenderung von I,
zu irgendeiner Zeit u zerlegen in einen Anteil, der
dauernd bestehen bleibt und dem stationiiren Wert
von I, entspricht, und in einen Anteil, der bis zur
Zeit t auf den Wert von Gl (9¢) abgeklungen ist.
Um [, zur Zeit t zu bestimmen, muss man diese
Aenderungen von u— 0 bis ¢ summieren. Die Sum-
mation des ersten Anteils liefert einfach den statio-
niren Wert, wihrend die Summation des zweiten
Anteils durch das Integral des Ausdrucks (9¢) dar-
gestellt wird. Somit ist zur Zeit ¢

t

((—Z2/1 1
+\8 Th (ﬁ—}—h)-d(Ucosz?u)
(9d)

__ Ucos—E,

Xy

I,
=0
S
Da der Faktor ¢ 7' unter dem Integralzeichen fiir
die Integration iiber u eine Komstante bedeutet,
kann er vor das Integralzeichen herausgenommen
werden, und dann stimmt Gl. (9d) mit der ersten
Gl. (8) iiberein. Damit ist also gezeigt, dass die
Gl. (8) tatsichlich nichts anderes darstellen als das
erwihnte, einfache physikalische Gesetz.

Die Wirkleistung der Synchronmaschine ist
nach dem Vektordiagramm Fig. 4.
P=1U cos (y + 1)

=1,U cos ¢ —I,U sin ¥ (10)

Setzt man Gl. (8) hier ein, so erhilt man nach eini-
gen Umformungen

2
P = [;EO sind -+ % (i-—l> sin (2 )

h xq Xy

1 ¥ —t Lo
2{<?——)cos Dee T SeTq' cosid 0}
9 Xy
[V}

t

11 ~erk =
+ U2{<_ﬁ’_. >sin19- s T gsTh’ sim?df)}

X5 Xy,

Diese Gleichung stellt die Leistung pro Phase dar,
wenn man fiir K, und U die Phasenspannungen ein-
setzt. Setzt man hiefiir die verketteten Spannungen
ein, so gilt Gl. (11), wie tibrigens auch GI. (1) und
bei der Dreiphasenmaschine fiir die totale
Leistung. Die Gleichungen fiir die Komponenten
des Statorstromes sind dagegen in der angegebenen
Form nur richtig, wenn E; und U die Phasenspan-
nungen bedeuten.

Das Drehmoment M der Synchronmaschine be-
stimmt sich, indem man GIl. (11) durch die mecha-
nische Winkelgeschwindigkeit w,, dividiert. Dabei
soll vorausgesetzt werden, dass wihrend den unter-
suchten Ausgleichsvorgingen die tatsichliche Win-
kelgeschwindigkeit nur wenig von der synchronen
abweicht, so dass man ohne wesentlichen Fehler
durch einen konstanten Wert der Winkelgeschwin-
digkeit dividieren kann. Die gleiche Voraussetzung
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hat man iibrigens stillschweigend schon bei der
Aufstellung der Gl. (2) gemacht. Die Gleichung fiir
das Drehmoment soll hier nicht eigens angeschrie-
ben werden. Auch im folgenden werden nur Glei-
chungen fiir die Leistung angegeben, woraus sich
das Drehmoment jederzeit durch Division mit w,,
ergibt.

Die erste Zeile von Gl. (11) stimmt mit Gl. (1)
itberein und stellt somit die stationire, synchrone
Leistung beim Polradwinkel ¢ dar. Dazu kommt
nun aber bei Ausgleichsvorgingen noch eine zusitz-
liche Leistung. Interessant ist, dass diese nur vom
Quadrat der Klemmenspannung und nicht von der
Leerlaufspannung E, abhdngt.

Gl. (8) fiir die Strome und Gl. (11) fiir die Wirk-
leistung enthalten Zeitintegrale, in denen der Pol-
radwinkel ) vorkommt. Diese Integrale kénnen na-
tiirlich nur ausgerechnet werden, wenn ¢ als Funk-
tion der Zeit gegeben ist. Aber auch dann lassen
sich die Integrale in geschlossener Form nur fiir
wenige, einfache Funktionen losen.

Der einfachste Fall ist der stationire Zustand.
Hierbei sind alle Integrale null, so dass die Gl. (8)
und (11) in die bekannten stationiren Gleichungen
[vgl. Gl. (6a) und (1)] iibergehen.

Ein weiterer einfacher Fall ist der, wo, ausgehend
von einem stationidren Zustand, beim Polradwinkel
9, der Rotor plotzlich in den Winkel ¢} verdreht
wird. Praktisch ist das natiirlich nicht genau mog-
lich; jedoch gibt diese Rechnung Aufschluss dar-
iber, was bei rascher Verdrehung im Extremfall
passiert. Da

t t
el'=¢e T"=1

ist, werden die Integrale von t—0 bis ¢t zu Inte-
gralen von 9 = ¢, bis ¢, und man findet leicht

L = Ucosd—E, e U<1, ——1—>(cos ¥ — cosd),)
o O (12)
Usin ¢ 1 1 . .
I, =— , + U (;,’,—x_q) (sin ¥ - sin?),)
UE, . Uuz/1 1Y) .
P = x, sin 19—+— 7 (xq — .—x‘;) sin (2 19)
4 U? { <i — }> cos Y (sin ) —sin ¥),) (13)
X, Xy 0
1 1) . \
+ (;;’ = ?’z) sin ) (cos ¥, — cos ¥) f

Die Gleichungen enthalten einzelne Summanden,
die gegeneinander gestrichen werden kénnten. Sie
wurden aber absichtlich in dieser Form angegeben,
um die Aufteilung in stationdre Werte und Zusatz-
glieder zu zeigen. Die Gleichungen fiir die Strome
sind physikalisch noch etwas klarer, wenn man sie
so anschreibt, dass der stationire Wert fiir den Aus-
gangswinkel ¢, statt fiir den Endwinkel ¢ darin vor-
kommt. Es ist dann

XXVIIIL Jahrgang 1937
1, — Ucos?), — E, " Ucos? — Ucos ),
L o (122)
7 — Usind), + Usin{ — Usin 9,
? Xy %

Die beiden Stromkomponenten verindern sich also
bei der Verdrehung so, als ob die Maschine nur die
Kurzschlussreaktanzen x; und x; enthielte. — Eine
dhnlich einfache Gleichung firr die Leistung exi-
stiert nicht.

Ein dritter Fall, bei dem die Integrale von Gl. (8)
und (11) in geschlossener Form berechnet werden
konnen, sind Rotorschwingungen kleiner Amplitude
um eine Gleichgewichtslage. Dieser Fall wird im
folgenden Abschnitt behandelt.

Wenn jedoch der Polradwinkel eine kompli-
ziertere Funktion der Zeit ist, oder wenn er gar nicht
von vornherein als Funktion der Zeit bekannt ist,
so lassen sich die Integrale der Gl. (8) und (11)
nicht mehr in geschlossener Form l6sen. In diesem
Fall kann die Rechnung mit Hilfe einer Schritt-fiir-
Schritt-Methode durchgefithrt werden, wenn man
das physikalische Gesetz beachtet, das als Erklarung
der Gl. (8) angegeben wurde. Fiir kleine Zeitinter-
valle (etwa 0,05 s) werden die Verédnderungen von
I, und I, berechnet und aneinandergereiht. Nach-
dem I, und I, bekannt sind, kann man mittels G1.
(10) die Wirkleistung und weiter das Drehmoment
M berechnen. Daraus findet man mit Hilfe der Be-
wegungsgleichung (7) die Aenderung des Polrad-
winkels ¢ fiir die einzelnen Zeitintervalle.

Die Schritt-fiir-Schritt-Methode wurde hauptsich-
lich von den Amerikanern ausgebaut*). Diese Me-
thode erfordert leider sehr viel Rechenarbeit und
diirfte sich daher kaum in die Praxis einfiihren.
Man wird sich wohl eher mit gewissen Anniherun-
gen und Vernachlidssigungen abfinden, wenn man
dafiir innert niitzlicher Frist zum Ziel kommt. Eine
solche Niherungsmethode ist z. B. die Rechnung
mit den Pendelungsreaktanzen, die im 5. Abschnitt
entwickelt wird 7).

4. Berechnung der Drehmomente
fiir Rotor-Schwingungen kleiner Amplitude.

Es wurde schon eingangs erwihnt, dass der Ro-
tor einer Synchronmaschine, der aus der Gleichge-
wichtslage herausgedreht wurde, wie durch Feder-
kraft wieder gegen die Gleichgewichtslage zuriick-
gezogen wird. Wir haben auch gesehen, dass diese
Federkraft ausgeiibt wird durch das sog. synchrone
Moment M, d. i. das Drehmoment der Synchron-
maschine, das der elektrischen Wirkleistung ent-
spricht. Wenn in Fig. 5 das mechanische Belastungs-
moment M, betrigt, so befindet sich die Gleichge-
wichtslage beim Winkel ¢,. Bei grosseren Winkeln

4) S. z. B. F. R. Longley: The Calculation of Alternator
Swing Curves. The Step-by-Step Method. Trans. AIEE, July
1930, p. 1129.

5) Vgl. den in Fussnote 2 erwihnten Aufsatz. Ein Bericht,
in dem die Brauchbarkeit dieser Methode an Hand vieler
Messungen untersucht wird, wird demnéchst an anderer Stelle
erscheinen.
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uiberwiegt das Antriebsmoment M des untersuchten
Synchronmotors; der Rotor wird daher beschleu-
nigt, der Nacheilwinkel wird verkleinert; das resul-
tierende Drehmoment ist also tatsdchlich gegen die
Gleichgewichtslage hin gerichtet.

5?* ™
/(—\ Fig. 5.
i
r—“ Synchrones Moment M eines
E Mm Synchronmotors in Funktion
£ ) des Polradwinkels .
0 sevseaz : —f
Bei kleinen Auslenkungen aus der Gleichge-

wichtslage kann man die Kurve fiir M mit geniigen-
der Genauigkeit durch ihre Tangente beim Win-
kel ¢, ersetzen. Unter dieser Voraussetzung wird
das resultierende Drehmoment bei einer Auslen-
kung ¢ aus der Gleichgewichtslage

Mres = ﬂ) 6
dd /g,

Genau dieselbe Gleichung gilt auch fiir eine Feder
mit der Federkonstanten (Drehmoment fiir Aus-

lenkung 1)
dM
M, = (d'ﬁ)ﬁo

Das synchrone Moment wirkt also wie eine Feder
mit der Federkonstanten M,. Diese Grosse M, be-
zeichnet man in der Literatur als synchronisieren-
des Moment. Es soll wie in den vorigen Abschnit-
ten mit den Wirkleistungen statt mit den Dreh-
momenten gerechnet und die synchronisierende Lei-
stung P, eingefithrt werden durch die Definitions-

(14)

(15)

gleichung:
dp
= |——+ 1
e-lar), o
Dann ist natiirlich analog zu Gl. (14)
dP
P, = 0 = P9 4
( dd )190 (1 a)

Wire bei Schwingungen um eine Gleichgewichtslage
die Wirkleistung bei jedem Wert von ¢ gleich wie
im stationdren Lauf bei jenem Winkel, so wire die
stationdre Leistungskurve fiir die Federkraft mass-
gebend und man hitte in GL. (15a) fiir P die sta-
tionidre Leistung einzusetzen. Fiir diese «stationire»
synchronisierende Leistung findet man durch Ab-
leitung von GI. (1)

1 1
cos ), + U? (xq — xh) cos (29,) (16)

L

s
t
s Xp

Fiir Turbomaschinen gilt im speziellen
P UE,

§
t
y X

cos ¥,

(16a)

Nach dem, was man in den vorigen Abschnitten
iiber die Wirkleistung bei Ausgleichsvorgéngen ge-

sehen hat, ist zu erwarten, dass auch bei kleinen
Schwingungen nicht die stationire Leistung mass-
gebend ist. Um den wirklichen Wert der Leistung
zu berechnen, muss man in der allgemeinen Lei-
stungsgleichung (11) fiir ¥ die der Schwingung ent-
sprechende Zeitfunktion einsetzen. Wir beschrin-

ken uns dabei auf rein harmonische Schwingungen,
die durch die Gleichung

0 =—0,, sin(»t) (17)
dargestellt werden konnen. Wenn man in GIl. (11)
fiir

=>4, + ¢

einsetzt und dann alle trigonometrischen Funktio-
nen von ¢ in Potenzreihen entwickelt, wovon man
nur je das erste Glied beriicksichtigt (kleine
Schwingungen!), so lassen sich die Integrale von
Gl. (11) in geschlossener Form lésen, und man fin-
det iir die totale Wirkleistung den Ausdruck:

Ue ;
P = Ui Osin ), + —- (i—i> sin (2 9,)
Xq X
{ O¢cos ¥, +U2(— l) cos (2 190)}6 sin (vt)
xq X,
{ ( > cos2d,
o, 1
1+’V2 T‘;Z
1n?2
+ U2 (i, — l) sinJ, ] d,, sin (v t) (18)
X X 1 1
Rabvy 1 ve T2
[ge(l _ 1Y) __cos®d,
+ l U x"l xq Tr + 1
Tr
-+ U? (_1_,__1_) sin? J, i }6 cos (v t)
SRR R
T;

Die beiden ersten Zeilen von Gl. (18) stellen die
stationdre Leistung dar, die folgenden die bei
der Schwingung auftretende zusitzliche Leistung.
Die erste Zeile allein gibt die stationdre Leistung
fiir die Gleichgewichtslage 3, an und liefert keinen
Beitrag zur synchronisierenden Leistung. Die zweite,
dritte und vierte Zeile sind proportional der Aus-
lenkung [GL. (17)], die beiden letzten Zeilen sind
proportional der relativen Winkelgeschwindigkeit ®)

do

i = v0,, cos (vt)

(19)

Diese Feststellung ldsst vermuten, dass die zweite,
dritte und vierte Zeile die Federkraft darstellen,
die beiden letzten Zeilen die Dampfung. Tatsich-

6) -g?ist die Abweichung der Winkelgeschwindigkeit von

der synchronen und soll kurz als relative Winkelgeschwin-
digkeit bezeichnet werden.
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lich, wenn man fiir das Drehmoment den allgemei-
nen Ansatz macht

M= M, Mo+D -,

(20)
wo Mg die Federkonstante und D die Diampfungs-
konstante bedeuten, so findet man mit Gi. (17)
und (19)

M = M,

w—+ M0, sin (vt) -+ D v9,, cos (vt) (20a)

Der Faktor von sin (yt)ist also wirklich der Feder-
konstanten und der Faktor von cos (vt) der Damp-
fungskonstanten proportional.

Wiihrend M, (das Moment pro Einheit der Win-
kelauslenkung) die Dimension eines Drehmomen-
tes hat, trifft dies fir D (das Moment pro Einheit
der relativen Winkelgeschwindigkeit) nicht zu. Es
ist daher zweckmaissiger, die Grosse

M, — vD (20b)

zu verwenden, die die Dimension eines Dreh-
momentes hat. M, ist das maximale ddmpfende
Moment bei einer Schwingung von der Amplitude
1, in Analogie zu M, welches das maximale Feder-
moment bei einer Schwingung von der Amplitude
1 ist.

Rechnet man mit den Leistungen statt mit den
Drehmomenten, so gilt
P = P,+ P, J,sin (vt) -+ P, 9, cos (vt) (20c¢)
P, ist die stationdire Leistung bei der Gleichge-
wichtslage ¥, P; die dem Federmoment entspre-
chende maximale Leistung, P; die maximale damp-
fende Leistung, beide bei einer Schwingung von
der Amplitude 1. P wird «synchronisierende Lei-
stung» genannt, P; soll kurz «Dampfungsleistung»
genannt werden. Man sieht sofort, dass P gleich
den Klammerausdriicken der 2., 3. und 4. Zeile, P,

gleich dem Klammerausdruck der beiden letzten
Zeilen von Gl. (18) ist:

P, = UE, cos ¥, + U? (i ——i) cos (2 9,)
X q Xn
4+ U2 (1__1_) __cos? ';0
X, Xy 1
o 1)
- Uz< 1,_1) sin* '910__
Xh Xn
e
2
P, = U2 (%_%) il iﬂl
q LV
vdat vT,
(22)

Die erste Zeile von Gl. (21) stimmt mit Gl. (16)
iitberein und stellt daher die stationire synchroni-
sierende Leistung dar. Die wirkliche synchronisie-
rende Leistung bei der Schwingung ist aber grosser
um den Betrag der 2. und 3. Zeile von Gl. (21). Die
Federkonstante ist grosser, die Eigenschwingungs-
zahl also ebenfalls griosser als wenn die stationire
Leistungskurve gelten wiirde. Ausserdem wird eine
Dimpfungsleistung nach Gl (22) entwickelt.

Hier, beim Problem der kleinen Schwingungen,
ist eine Aufteilung in synchronisierende Leistung
und Diampfungsleistung zwanglos moglich, und
zwar mit Riicksicht der Phasenlage der einzelnen
Leistungsanteile in bezug auf die Winkelschwin-
gung. Bei komplizierteren Bewegungen, die z. B.
nach grosseren Belastungsinderungen vorkommen,
ist dagegen eine Aufteilung in synchronisierende
Leistung und Dampfungsleistung oder in synchrone
und asynchrone Leistung schlechterdings unmog-
lich, oder sie wire vollstindig willkiirlich. Nur
wenn die Bewegung eine ganz einfache Gesetzmiis-
sigkeit aufweist (wie z.B. bei harmonischen
Schwingungen) ist eine eindeutige Zerlegung der
resultierenden Leistung in eine der Winkelauslen-
kung und eine der Winkelgeschwindigkeit propor-
tionale Komponente maoglich.

Auch die Art, wie die Leistung erzeugt wird, gibt
bei komplizierteren Bewegungen keine Anhalts-
punkte fur eine Zerlegung in synchrone und asyn-
chrone Leistung. Wir haben gesehen, dass bei Win-
kelinderungen Strome in den Rotorwicklungen in-
duziert werden und dass infolge der Riickwirkung
dieser Stréme auch die Strome in den Statorwick-
lungen und weiter die Wirkleistung anders werden
als beim gleichen Winkel im stationdren Betrieb.
Man kann aber diese Erscheinung nicht zergliedern
in eine synchrone und eine asynchrone Erscheinung.
Wihrend eines Ausgleichsvorgangs ist i. a. weder die
synchrone Leistung gleich der Leistung im synchron-
stationdren Lauf beim gleichen (konstanten) Win-
kel, noch ist die asynchrone Leistung gleich der
Leistung im asynchron-stationidren Lauf beim glei-
chen (konstanten) Schlupf. Beim Ausgleichsvor-
gang fliessen die synchronen und asynchronen Vor-
ginge ineinander und konnen nur als einheitliches
Ganzes betrachtet werden.

Um nochmals auf die kleinen Schwingungen zu-
riickzukommen, sei erwihnt, dass Doherty und
Nickle 7) ebenfalls die synchronisierende Leistung
und die Dampfungsleistung bei kleinen Schwingun-
gen berechnet haben, allerdings auf eine wesent-
lich andere Art als es in der vorliegenden Arbeit
geschehen ist. Die Endformeln von Doherty und
Nickle lassen sich so umformen, dass sie mit
Gl. (21) und (22) iibereinstimmen. Es ist aber in-
teressant, dass jene Endformeln eine dusserst kom-
plizierte und uniibersichtliche Form aufweisen.
Beispielsweise lautet das-Glied, das der zweiten

7)Synchronous Machines. III. Torque-Angle Characte-
ristics Under Transient Conditions. Trans. AIEE, Febr. 1927,
p: ds
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Zeile von Gl. (21) entspricht, bei Doherty und
Nickle #)

UZ cos?
Xq
{(x;, —a)(c-cosa — d-sina) — b(c-sina + dcosa)}
Vb + (o — a2 {d* + (x, — 0

Dabei bedeuten a, b, ¢, d Ausdriicke von der Form

,VmedZ (xmd_ dea )
R+ v (Xma—+ Xiga)®

und die Grosse a ist zu berechnen aus der Gleichung

bd 4 (x,— a) (x,—c)
d(x— &) — b(x,— 0

Aehnlich komplizierte Glieder, die aber sonderba-
rerweise keine Analogie im Aufbau zeigen, ent-
sprechen der letzten Zeile von Gl. (21) und den
beiden Zeilen von Gl. (22). Man beachte dem-
gegeniiber den einfachen Aufbau der 2. und 3. Zeile
von Gl. (21) und der Gl (22) mit den ganz analog
aufgebauten Ausdriicken fiir Haupt- und Queraxe!

a —

ctga =

5. Die «Pendelungsreaktanzens
fiir Rotor-Schwingungen kleiner Amplitude.

In der Einleitung wurde erwihnt, dass gewisse
Autoren empfehlen, bei Ausgleichsvorgingen mit
den Kurzschlussreaktanzen statt mit den synchro-
nen Reaktanzen zu rechnen. Es wurde aber darauf
aufmerksam gemacht, dass die blosse Ersetzung der
Reaktanzen in den stationdren Leistungsformeln
nicht richtig ist. Man miisste die induzierte EMK,
d. h. die hinter der Kurzschlussreaktanz liegende
Spannung, als konstant annehmen und dann die
Leistungsformeln neu ableiten. Wie man gesehen
hat, bleibt aber auch die induzierte EMK nicht ge-
nau konstant. Dagegen kann man niherungsweise
annehmen, dass ein Spannungsvektor, der irgend-

X I
U it Fig. 6.
.
£
E Ep Zeitliches Vektordiagramm
h
fiir einen Synchronmotor
s
£ 9  wiithrend Pendelungen oder
andern mechanischen Awus-
gleichsvorgiingen, unter An-
Ld nahme einer konstanten in-
v .
\ nern Spannung E*.
SEV 5933
.

wo zwischen der induzierten EMK und der Leer-
laufspannung liegt, wihrend des Ausgleichsvorgan-
ges konstant bleibt.

Im folgenden wird unter dieser Annahme die
Wirkleistung der Synchronmaschine berechnet. Die

8) Einzelne Buchstaben der Formel sind geindert, um
den Vergleich mit unsern Formeln zu erleichtern.

Ableitung gilt nicht nur fiir kleine Schwingungen,
sondern auch fiir beliebige Ausgleichsvorginge. Erst
das Schlussresultat soll dann auf kleine Schwingun-
gen angewendet werden.

Der innere Spannungsvektor, der wihrend den
Ausgleichsvorgiingen konstant bleiben soll, ist in
Fig. 6 mit E* bezeichnet und hat die Komponenten
E,* und E*. Zwischen E¥* und der Klemmenspan-
nung U liegen die Reaktanzen x,* und x,%, die
Pendelungsreaktanzen genannt seien und die da-
durch definiert sind, dass die Spannungsabfille
zwischen U und E* fiir die beiden Axenrichtungen
x* Iy baw. x,* -1, betragen. Fiir die Stromkompo-
nenten gelten daher die Gleichungen

Ucost —E,
I/z = x* l
: (23)
U sind— E, [
I, =—- "
Xq

Setzt man diese Werte in Gl. (10) ein, so findet man
fiir die Wirkleistung

P = Ulf”sinﬂ— Ul}"cos D)
o % (24)
—+ U2<1 1)sin(219
2 \x x )

Diese Formel ist aufgebaut wie Gl. (1) fiir die
stationdre Leistung, nur treten an Stelle der syn-
chronen Reaktanzen die Pendelungsreaktanzen und
an Stelle von E, E;*. Ausserdem kommt noch ein
Glied mit cos ¢ vor, das in der stationiren Leistungs-
gleichung fehlt, weil dort in der Queraxe keine
Erregung vorhanden ist. E.* und E;* spielen in
Gl. (24) die Rolle der Leerlaufspannung, die aber
in diesem Fall auch eine Komponente in der Quer-
axe hat. Wenn man E,* und E,/* als konstant an-
nimmt, so macht man damit die Annahme, dass in
der Rotorwicklung der Haupt- und Queraxe Strome
fliessen, die wihrend des Ausgleichsvorganges kon-
stant bleiben und die in der Statorwicklung die
«Leerlaufs-Spannungen E;* und E,* induzieren.

Meistens ist es praktischer, fiir die Leistung eine
Formel zu haben, in der E,* und E,* nicht vorkom-
men. Man kann diese beiden Grossen tatsiichlich
eliminieren, wenn x,* und x,* bekannt sind. Wenn
beim Winkel ¢}, ein stationdrer Zustand vorhanden
ist, so liest man aus dem Vektordiagramm ?) die
Beziehungen ab:

E, = Ucosd,—x, (UCOS;(}O—EO)
h

e (1— xl‘) U cos 9, + ﬁE0
Xn

Xn

(25)

E, =

q

Usind, — x; 000 _ <1 —’_‘i)Usinao
Xy Xy

9) Man denke sich in Fig. 6 ¥ statt & geschrieben, nehme
an, dass dieses Diagramm einen stationiren Zustand darstelle,
und beriicksichtige noch das Diagramm Fig. 1, das fiir den
gleichen Winkel Jo gelten soll.
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Setzt man dies in Gl. (24) ein, so wird

2
P = Lot sin ) -~ v (i—l) sin (2 )
X 2 \x, X,
= I ( N ) (cos¥), — cos ) sind (26)
Xy X5
1 1 . .
+ U2 (—* s ) (sin J—sin 9,) cos d
Xq Xq

Die erste Zeile dieser Formel stimmt mit Gl. (1)
iiberein und stellt somit die stationdre Wirkleistung
dar. Die 2. und 3. Zeile zeigt die Vergrosserung der
Wirkleistung beim Ausgleichsvorgang. GIl. (26) gilt
fiir irgendeinen Ausgleichsvorgang, unter der Vor-
aussetzung, dass er von einem stationiiren Zustand
beim Winkel 9, ausgegangen ist und dass die hin-
ter den Reaktanzen x,* und x,* liegende innere
Spannung wihrend des Ausgleichsvorganges kon-
stant bleibt. Unter der zweiten Voraussetzung gilt
die Gleichung insbhesondere auch fiir kleine Schwin-
gungen, deren Gleichgewichtslage bei 9, liegt.
Fiir kleine Schwingungen interessiert auch die
synchronisierende Leistung, die man gemiss Gl

(15a) durch Ableitung von Gl. (26) erhilt:

UE, 1
P — LY [a— 8(2
L . cos,+ U <xq xh) cos (29,) @7

+ U? (i—1> cos2y) —{—U2(

Xq Xq

1
sin2 9,
x;l Xh

Die erste Zeile, die mit Gl. (16) iibereinstimmt,
stellt die stationidre synchronisierende Leistung dar;
die zweite Zeile zeigt die Vergrisserung der syn-
chronisierenden Leistung bei konstanter innerer
Spannung E*.

Die Annahme, dass fiir den Verlauf der Leistung
wihrend Polradschwingungen eine Reaktanz mass-
gebend sel, die zwischen der synchronen und der
Kurzschlussreaktanz liegt, wurde wohl zum ersten
Male von Putman 1?) gemacht. Spiter wurde die
Theorie von Riidenberg 1) weiter ausgebaut. Die
Formeln von Riidenberg sind auf eine ganz andere
Form gebracht als unsere Formeln und eignen sich
daher nicht fiir den Vergleich. Die Formel von
Putman fiir die synchronisierende Leistung lautet
(mit unsern Bezeichnungen):

P, = UF, cos ), + U? ( ! 1*) cos (27,)
Xn q X
-+ U? ( 1* L )0052 0,
Xn Xk

Diese Gleichung lisst sich leicht so umformen, dass
sie mit unserer Gl. (27) iibereinstimmt; nur fehlt
das dritte Glied dieser Gleichung, weil Putman
vorausgesetzt hat, dass in der Rotorqueraxe die
synchrone Reaktanz massgebend sei, d. h. x,* = x,.

10) Trans. AIEE, Sept. 1926, p. 1116.
11} Wiss. Veroff. a. d. Siemens-Konzern, X. Bd., 3. H. (1931),
S. 41, und Conf.intern. des grands réseaux 1933/I, rapp. 117.

Im iibrigen wird die Formel von Putman durch
unsere Rechnung vollstindig bestitigt.

Sonderbarerweise behauptet Liwschiiz 12), dass
die Formel von Puiman falsch sei. Er stellt fest,
dass ein Glied in jener Formel bei raschen Schwin-
gungen negativ und relativ gross werde und dass
kein Glied mit sin* ¢, vorkomme. Das stimmt aller-
dings; deswegen ist aber die Formel nicht falsch.
Man kann sie ja durch einfache trigonometrische
Umformung in die physikalisch durchsichtigere
Gl. (27) iiberfithren. In dieser Gleichung wird kein
Glied, das die Pendelungsreaktanz enthilt, negativ,
und das Glied mit sin? ¢, fehlt nicht mehr.

Bei der Ableitung der Gl. (26) und (27) wurde
die Frage noch offen gelassen, wie gross die Pen-
delungsreaktanzen x,* und x,* sind. Es wurde nur
vorausgesetzt, dass solche Pendelungsreaktanzen exi-
stieren, hinter denen eine wihrend des Ausgleichs-
vorgangs konstante innere Spannung E* liegt (vgl.
Fig. 6). Wenn diese Voraussetzung rlchtlg ist, s0
kann man durch passende Wahl von x,* und x,*
erreichen, dass die Gl. (26) und (27) mit den Gl
(18) resp. (21) iibereinstimmen, die durch Losung
der Differentialgleichungen berechnet wurde.

Man sieht nun leicht, dass man Gl. (27) fiir die
synchronisierende Leistung mit Gl. (21) zur voll-
stindigen Uebereinstimmung bringen kann, wenn
man x,* und x,* so wihlt, dass

1 1y 2T 11
x5, x;,)_l—i—v?T,’,2 X, X l

(I_L)_LT&F_(L 1)
%, &I 1-+2TE\x, g

ist. Dagegen enthilt Gl. (18) fiir die Wirkleistung
noch ein Glied, das der Winkelgeschwindigkeit
proportional ist, wihrend in Gl. (26) kein solches
vorkommt. Bei der Rechnung mit den Pendelungs-
reaktanzen findet man also keine Didmpfungslei-
stung, obschon bei kleinen Schwingungen tatsich-
lich eine solche vorkommt [Gl. (22)].

Das zeigt, dass die Rechnung mit den Pende-
lungsreaktanzen nur eine Niherung ist. Tatsich-
lich gibt es auch bei kleinen Schwingungen (wie
bei andern Ausgleichsvorgingen) keine innere
Spannung, die genau konstant bleibt. Rechnet man
trotzdem mit einer solchen, so ergibt sich die Lei-
stung als eindeutige Funktion des Polradwinkels &
oder der Auslenkung § [Gl. (26)], was nichts an-
deres bedeutet, als dass keine Dimpfung vorhanden
sei. Wihrend man mit der Annahme einer konstan-
ten innern Spannung E* die synchronisierende Lei-
stung richtig berechnen kann, indem man fir x,*
und x,* die Werte nach Gl. (28) einsetzt, so lisst
sich die Dampfungsleistung auf Grund dieser An-
nahme iiberhaupt nicht berechnen.

(28)

In Analogie zur «zusitzlichen» synchronisieren-
den Leistung in der zweiten Zeile von Gl. (27) soll

12)  Wiss. Veroff. a. d. Siemens-Konzern, XII. Bd., 2. H.,
S. 20.
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die Dimpfungsleistung bei kleinen Schwingungen
noch in der Form

P, =U?2K,cos? 9, + U2 K, sin2d, (29)

angeschrieben werden. Damit diese Formel mit der
frither abgeleiteten Gl. (22) iibereinstimmt, muss

v Ty, 1 1
Ky— - ~""* (= __ =
1+05 \x

v T 1

f= g @; J
sein. Die Gl. (30) fiir die Dimpfungskoeffizienten
K; und K, sind ganz dhnlich aufgebaut wie die
Gl. (28) fir die Pendelungsadmittanzen. Mit den
Gl. (27) bis (30) kann man nun die synchronisie-
rende Leistung und die Dampfungsleistung fiir
kleine Schwingungen vollstindig richtig berechnen,
obschon die Annahme, unter der Gl. (27) abgelei-
tet wurde, nicht genau zutrifft.

Um iiber die Grosse der Pendelungsadmittanzen
und Dé@mpfungskoeffizienten eine Vorstellung zu
geben, sind die Briiche in den Gl. (28) und (30)
in Fig. 7 als Funktion von »T" aufgezeichnet. Tat-
sichlich sind sie nur abhingig von diesem Produkt,
nicht von y und 7" einzeln. Wie Kurve 1 zeigt, sind
die Briiche von Gl (28) gleich null fiur sehr kleine
Werte dieses Produktes, d.h. fir sehr langsame
Rotorschwingungen oder sehr kleine Zeitkonstan-
ten der Rotorwicklungen und nihern sich dem Wert
1 fiir sehr grosse Werte des Produktes, d. h. fiir
sehr rasche Schwingungen oder sehr grosse Zeitkon-
stanten der Rotorwicklungen. Im ersten Fall sind
gemiss Gl. (28) die Pendelungsreaktanzen gleich
den synchronen Reaktanzen, im zweiten Fall gleich
den Kurzschlussreaktanzen.  Fiir alle praktisch

1,0

(30)

1 _L—1T]
L
05
/ ~_2
—
~_ |
0 sevsose t “ —GT) ¢
Fig. 7.
, o
e
1+v(;,,T) in Funktion von »7".
1+@Ty

moglichen Werte von »T" liegen also die Pende-
lungsreaktanzen zwischen diesen Extremwerten
drin.

Kurve 2 von Fig. 7 stellt die Briiche von GI. (30)
dar. Auch diese Werte sind null fiir »T" = 0. Sie
steigen aber mit wachsendem »T" nicht dauernd an,
sondern erreichen ihr Maximum ven 0,5 bei »1"
= 1 und fallen nachher wieder gegen null ab. Setzt
man fiir T" den vor Gl. (6) angegebenen Wert

ol
r

T =

ein, so findet man fiir die Stelle, wo der Maximal-
wert der Dampfungsleistung liegt, die Gleichung
vo'll=r.

Nun stimmt die Frequenz der im Rotor induzierten
Strome mit der Schwingungsfrequenz itberein. Folg-
lich stellt v-o-l die fiir die induzierten Strome
massgebende Kurzschlussreaktanz der Rotorwick-
lung dar. Die Dimpfungsleistung ist also bei der-
jenigen Schwingungszahl am grissten, wo die Kurz-
schlussreaktanz der Rotorwicklung gleich ihrem
Wirkwiderstand ist. Fiir alle andern Werte der
Schwingungszahl oder des Rotorwiderstandes ist sie
kleiner. Das ist eine aus der Theorie der Asyn-
chronmaschine sehr gut bekannte Beziehung.

Q,
. ! P — FotPy Fig. 8.
\
/(\)/ P Verlauf der Wirkleistung
- % ¢ eines Synchronmotors bei
. kleinen Schwingungen um
die Gleichgewichtslage, in
£ Funktion der Winkel-
/’_—/Pz p—— auslenkung.
SEVS03S

Interessant ist noch, bei kleinen Schwingungen
den Verlauf der totalen Wirkleistung in Funktion
der Winkelauslenkung o zu verfolgen. Nach GL
(20c), die eine gekiirzte Darstellung von Gl (18)
ist, setzt sich die Wirkleistung bei der Schwingung
zusammen aus einem konstanten Wert P, aus einem
der Winkelauslenkung

0 = Oy sin (vt)

proportionalen Wert (in Fig. 8 mit P, bezeichnet)
und aus einem der Winkelgeschwindigkeit propor-
tionalen Wert (in Fig. 8 mit P, bezeichnet). Die
Darstellung von P, und P, in Fig. 8 ist ohne weite-
res einleuchtend. Weiter ldsst sich zeigen, dass P,
durch eine Ellipse dargestellt wird, wenn man diese
Grosse in Funktion von § auftrigt. Die Summation
der 3 Leistungen ergibt wieder eine Ellipse, deren
Axen in Fig. 8 gestrichelt angegeben sind. Bei der
Rotorschwingung lduft der Punkt, der die totale
Wirkleistung darstellt, auf dieser Ellipse herum.
Interessant ist, dass die Hauptaxe der Ellipse nicht
genau mit der Geraden zusammenfillt, die die Lei-
stung P, + P, darstellt.

Zum Schluss soll noch untersucht werden, wie
sich die synchronisierende und die Dampfungslei-
stung dndern, wenn der Rotor einer gegebenen Ma-
schine (T” = konst.) bei verschiedenen Werten von
D¢ d. h. bei verschieden grosser Wirkbelastung,
Schwingungen ausfithrt. Dabei soll vorausgesetzt
werden, dass Erregung und Klemmenspannung kon-
stant sind und auch die Frequenz der Rotorschwin-
gung an allen Stellen gleich gross sei (v = konst.).
Unter dieser Voraussetzung sind in Gl. (27) und
(29) alle Gréssen ausser i}, konstant.

Als Beispiel wurde in Fig. 9 die synchronisie-
rende Leistung fiir eine Maschine mit ausgeprigten
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Polen und Dampferwicklung aufgetragen. Die Pen-
delungsreaktanzen wurden gemessen und dann die
Kurven nach Gl. (27) berechnet. Die stationire
synchronisierende Leistung (erste Zeile von Gl. 27)
hat ihr Maximum bei ¢, =0 und fillt bei Turbo-
maschinen bei #, = 90°, bei ausgeprigten Polen be-
reits bei kleinerem ¢}, auf null ab, Die zusitzliche
synchronisierende Leistung setzt sich aus einem
Glied mit cos® ¢, und einem mit sin? ¢, zusammen.
Bei ¢, — 0 kommt nur das erste dieser Glieder, das
lediglich von den Verhiltnissen in der Rotorquer-

KW,

—

1.
Qv
w\

100 \

J SEV 5936 30° 60°
Fig. 9.
Synchronisierende Leistung einer Synchronmaschine mit aus-
geprigten Polen und Diampferwicklung, bei verschiedenen
Werten des stationiiren Polradwinkels ¢.
1 Stationidre synchronisierende Leistung.
2 Zusiétzliche » »
3 Totale » »

—f, 90

axe abhidngt, zur Geltung, wdhrend das zweite
Glied, das lediglich von den Verhiltnissen in der
Rotorhauptaxe abhingt, erst bei grossern Werten
von ), wirksam wird und sein Maximum bei 9, =
90° hat. Da die Zeitkonstante der Rotorwicklung
in der Hauptaxe (Erregerwicklung!) immer viel
grosser ist als die Zeitkonstante fiir die Queraxe,
ist das Maximum des zweiten Gliedes praktisch im-
mer grosser als das des ersten Gliedes. Nur wenn
bei einer Turbomaschine in der Rotorqueraxe eine
ebenso starke Wicklung wie die Erregerwicklung
angebracht wiirde, wire die zusitzliche synchroni-
sierende Leistung bei allen Werten von ¢, gleich
gross. Bei allen normalen Maschinen ist aber die
totale synchronisierende Leistung (Kurve 3) bei
9,=0, d. h. bei Leerlauf, verhiltnismissig wenig
grosser als der stationdre Wert (Kurve 1). Erst bei
ziemlich grossen Werten von ¢, wird der Unter-
schied betrichtlich.

Die Gl. (29) fir die Dimpfungsleistung ist ganz
analog aufgebaut wie die zweite Zeile von Gl. (27).
Die Diampfungsleistung wird also durch eine #dhn-
liche Kurve wie Kurve 2 von Fig. 9 dargestellt. Hier
wire es eher als bei der zusdtzlichen synchronisie-
renden Leistung moglich, dass das Maximum nicht
bei 9,==90° liegt. Denn, wie die Kurve 2 von
Fig. 7 zeigt, kann zu einer grossern Zeitkonstanten
u. U. eine kleinere Dampfungsleistung gehoren. In
der Regel ist aber doch die Dimpfungsleistung bei

%, =0 am geringsten. Gl (29) erkldrt auch die
bekannte Tatsache, dass lamellierte Rotoren ohne
Dampferwicklung im Leerlauf praktisch gar keine
Schwingungsddmpfung besitzen; denn der Damp-
fungskoeffizient K, der Queraxe ist in diesem Fall
natiirlich sehr klein. Bei grisseren Werten von 9,
kann dagegen eine solche Maschine trotzdem genii-
gende Diampfung haben, weil dann das zweite Glied
von Gl (29), das die Dimpfung durch die Haupt-
axenwicklung darstellt, zur Wirkung kommt.

6. Zusammenfassung und Schlussfolgerungen.

Im stationiren Betrieb einer Synchronmaschine
mit konstanter Erregung und Klemmenspannung
stellt sich bei jeder Belastung ein ganz bestimmter
Polradwinkel (Winkel zwischen den Vektoren der
Klemmenspannung und Leerlaufspannung) ein.
Umgekehrt ist das der elektrischen Wirkleistung
entsprechende Drehmoment, das sog. synchrone Mo-
ment, eine eindeutige Funktion des Polradwinkels.

Wihrend Pendelungen und andern mechanischen
Ausgleichsvorgingen werden in den Rotorwicklun-
gen (Erregerwicklung, Dampferwicklung, massives
Eisen) zusitzliche Strome induziert. Daher ist das
der elektrischen Wirkleistung entsprechende Dreh-
moment nicht gleich wie im stationdren Betrieh
beim gleichen Polradwinkel.

Da bei solchen mechanischen Ausgleichsvorgin-
gen voriihergehend Abweichungen von der synchro-
nen Winkelgeschwindigkeit vorkommen, liegt die
Vermutung nahe, dass die ganze Abweichung des
Drehmomentes vom stationdren Wert nur durch
den asynchronen Lauf verursacht werde. In diesem
Fall miisste sich das totale Drehmoment in jedem
Augenblick zusammensetzen aus dem stationdren
synchronen Moment beim jeweiligen Polradwinkel
und dem sog. asynchronen Moment, d. h. demjeni-
gen Drehmoment, das die Maschine im stationdr-
asynchronen Lauf beim gleichen Schlupf entwickeln
wiirde. Diese Vermutung ist aber unrichtig. Inshe-
sondere kann das Drehmoment wihrend Ausgleichs-
vorgingen auch in einem Augenblick, wo die Win-
kelgeschwindigkeit genau synchron ist, vom statio-
niaren Wert des synchronen Momentes abweichen.

Bei Ausgleichsvorgingen kann man also im all-
gemeinen das totale Drehmoment nicht aus dem
synchronen und asynchronen zusammensetzen. Das
Drehmoment lidsst sich nur als Ganzes berechnen,
und eine Aufteilung in synchrones und asynchrones
Moment wire vollstindig willkiirlich. Lediglich in
ganz speziellen, einfachen Fillen ist eine eindeutige
Aufteilung moglich. Z.B. lidsst sich bei Rotor-
schwingungen kleiner Amplitude das totale Dreh-
moment aufteilen in eine Komponente, die der
Winkelauslenkung proportional ist, und eine, die
der relativen Winkelgeschwindigkeit proportio-
nal ist. In diesem Falle ist es berechtigt,
die eine Komponente als synchrones, die an-
dere als asynchrones Moment zu bezeichnen.
Die Ableitung der ersten Komponente nach dem
Polradwinkel ist das Drehmoment pro Winkelaus-
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lenkung 1 und stellt somit das Richtmoment des
schwingenden Polrades dar. Sie kann auch inter-
pretiert werden als maximales «Federy-Moment bei
einer Schwingung von der Amplitude 1. Sie wird
synchronisierendes Moment genannt. Der Koeffi-
zient der zweiten Komponente, d. h. das maximale
ddmpfende Drehmoment bei einer Schwingung von
der Amplitude 1, soll kurz Dimpfungsmoment ge-
nannt werden.

Das synchronisierende Moment ist grosser als bei
stationdrem Betrieb, d. h. grésser als die Ableitung
des stationdren synchronen Momentes nach dem
Polradwinkel. Die zusitzlichen Stréme in den Ro-
torwicklungen erzeugen also nicht nur ein Didmp-
fungsmoment, sondern sie vergrossern ausserdem
das synchronisierende Moment. Aus diesem Grunde
wird die Eigenschwingungszahl des Rotors grésser
als man aus der stationidren Drehmomentkurve be-
rechnet. Die Vergrosserung kann aber unter Um-
stinden nur sehr gering sein, je nach der Art der
Rotorkonstruktion. — Das synchronisierende und
das Dampfungsmoment sind Begriffe, die nur im
Zusammenhang mit kleinen Rotorschwingungen
einen Sinn haben, aber bei andern mechanischen
Ausgleichsvorgingen nicht verwendet werden
kénnen.

Weit verbreitet ist die Meinung, dass man bei
Ausgleichsvorgingen einfach statt der synchronen
Reaktanz die Kurzschlussreaktanz in die Gleichung
fir das stationdre synchrone Moment einsetzen
konne. Man setzt dabei voraus, dass wahrend me-
chanischen Ausgleichsvorgingen die Luftspaltspan-
nung (induzierte EMK) konstant bleibe. Nun ist
aber die Luftspaltspannung bei weitem nicht kon-
stant, und selbst wenn sie konstant wire, wiirde die
blosse Ersetzung der synchronen Reaktanz durch
die Kurzschlussreaktanz nicht den richtigen Wert
fiir das Drehmoment ergeben.

Im Gegensatz zu dieser sehr rohen und unge-
nauen Niherung scheint es dagegen in vielen Fail-
len zweckmaissig, einen innern Spannungsvektor, der
zwischen der Luftspaltspannung und der Leerlauf-
spannung liegt, als konstant anzunehmen und auf
dieser Grundlage das Drehmoment zu berechnen.
Selbstverstindlich ist auch diese Annahme nur eine
Niherung, aber sie wird den wirklichen Verhiltnis-
sen schon viel besser gerecht. Man findet auf diese
Art eine Formel, die die sog. Pendelungsreaktan-
zen enthilt, das sind Reaktanzen, die zwischen den
synchronen und den Kurzschlussreaktanzen liegen..

Bei Annahme einer konstanten innern Spannung
ergibt sich das Drehmoment als eindeutige Funktion
des Polradwinkels. Alle Rotorschwingungen wiren
daher mnach dieser Theorie vollkommen unge-

démpft; denn eine Dimpfung kann ja nur dadurch
zustande kommen, dass das Drehmoment beim glei-
chen Winkel fiir entgegengesetzte Bewegungsrich-
tungen verschiedene Werte hat. Man kann also mit
der Annahme einer konstanten innern Spannung
das Ddmpfungsmoment, das bei Rotorschwingun-
gen tatsichlich vorhanden ist, nicht berechnen. Das
zeigt, dass diese Annahme, wie bereits erwihnt, nur
eine Niherung ist. Dagegen kann man mit dieser
Annahme, sofern man passende Werte fiir die Pen-
delungsreaktanzen einsetzt, das synchronisierende
Moment vollstindig genau berechnen. Die Methode
der konstanten innern Spannung kann also in all
den Fillen verwendet werden, wo die Dampfung
eine untergeordnete Rolle spielt.

Unter der Bedingung ldsst sich diese Methode
nicht nur bei kleinen harmonischen Schwingungen
des Rotors verwenden, sondern auch bei andern me-
chanischen Ausgleichsvorgingen. Wenn man z. B.
untersuchen will, ob Synchronmaschinen bei einer
plotzlichen Lastinderung, beim Ahschalten von Lei-
tungen oder bei Kurzschliissen aussertritt fallen,
so geniigt es meistens, den maximalen Ausschlag der
ersten Rotorschwingung, die durch diese Vorginge
angestossen wird, zu bestimmen. Fiir die Grisse des
ersten Ausschlages ist nun die Déampfung von ganz
untergeordneter Bedeutung. Also kann man die er-
wihnte Methode mit Vorteil anwenden. Man be-
rechnet damit natiirlich nicht genau den richtigen
Verlauf des Drehmomentes, kann aber trotzdem die
erste Ueberschwingung richtig abschitzen und da-
mit beurteilen, ob die Maschine aussertritt fillt oder
nicht. Das Drehmoment, das man nach der obigen
Methode berechnet, ist das totale Drehmoment
(wenn auch nur angenihert richtig) ; ein asynchro-
nes Moment ist also nicht mehr zu berticksichtigen.
Man kann somit das totale Drehmoment in Funk-
tion des Polradwinkels berechnen und dann die
einfache Methode des Flichenvergleiches wie in
Fig. 3 verwenden.

Man wird sich fragen, warum hier diese Nihe-
rungsmethode empfohlen wird. Der Grund liegt
darin, dass die Differentialgleichungen fiir die Pol-
radbewegung nach Belastungsinderungen, Kurz-
schliissen usw. nicht in geschlossener Form geldst
werden kénnen. Man miisste also eine Schritt-fiir-
Schritt-Methode verwenden. Diese ist aber ausser-
ordentlich zeitraubend und trotzdem nicht sehr
genau.

Voraussetzung fiir die Anwendbarkeit jener Ni-
herungsrechnung ist allerdings, dass man die mass-
gebenden Pendelungsreaktanzen fiir die verschie-
denen Maschinentypen kennt. Am zweckmissigsten
ist eine experimentelle Bestimmung.
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