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Mittwoch, 2. September ]_936

Der Verlauf von Strom und Spannung lings einer Uebertragungsleitung.

Von Ernst Peter, Ziirich-Oerlikon.

Die Grundgleichungen fiir die Berechnung von Strom und
Spannung bei Uebertragungsleitungen enthalten bekanntlich
hyperbolische Funktionen komplexer Argumente. Wihrend
sich diese Funktionen bei reellen Argumenten durch zwei
einfache Kurven darstellen lassen, die der junge Ingenieur
bei seinem Studium kennen lernt, liegen die Verhiiltnisse bei
komplexen Argumenten scheinbar derart kompliziert, dass
die meisten Ingenieure dariiber sehr wenig orientiert sind.
Fiir die Berechnung von kiirzeren Leitungen kann man diese
Funktionen in Reihen entwickeln und sich mit den ersien
zwei bis drei Gliedern begniigen. Der Verfasser behandelt
eine Durstellung, mit welcher man einen iiberruschend klaren
Ueberblick iiber diese Funktionen gewinnt, und zwar fiir
Argumente, deren reelle und imaginire Komponenten in be-
liebigen positiven und negativen Grenzen variieren konnen.
Dadurch ist man bei Leitungsberechnungen sowohl hinsicht-
lich der Leitungslinge als auch der Frequenz des Wechsel-
stromes an keine Grenzen gebunden. Es kann daher auch der
Schwachstromtechniker die gleiche Methode miihelos zum
Studium der Uebertragung von Sprechstromen (Tonfrequenz)
anwenden. An Stelle umstindlicher Berechnungen tritt das
einfache Ablesen aus einem Diagramm.

A. Ableitung der Grundgleichungen.

Sind bei einer Uebertragungsleitung Spannung
und Strom an einem bestimmten Punkt in ihrer vek-
toriellen Grosse (d. h. absoluter Betrag und Phasen-
verschiebungswinkel) gegeben, so kann man Strom
und Spannung fiir jeden beliebigen Leitungspunkt
berechnen, wenn die Leitungskonstanten bekannt
sind.

Es bedeute:

s die Leitungsldnge in km;
w =2 af die Kreisfrequenz;
z=r + jx=r + jwl den Impedanz-Vektor

Ohm pro Phase und pro km;
y=g+tjb=g+ joc den Admittanz-Vektor in

Siemens pro Phase und pro km;

U, den Vektor der Sternspannung an dem gegebe-
nen Punkt;

I, den Vektor des Stromes an dem gegebenen Punkt;

U den Vektor der Sternspannung an dem gesuchten
Punkt;

I den Vektor des Stromes an dem gesuchten 'unkt.

in

Der gegebene Punkt, der als Nullpunkt bezeich-
net werden soll, liege irgendwo auf der Leitung und
diese sei nach beiden Seiten bheliebig weit fortge-

621.315.051

Les équations fondamentales pour le calcul du courant
et de la tension dans les lignes de transmission contiennent
des fonctions hyperboliques a arguments complexes. Lorsque
les arguments sont réels, ces fonctions peuvent se représenter
par deux courbes simples que le jeune ingénieur apprend a
connaitre au cours de ses études. Par contre, lorsque les
arguments sont complexes, la situation parait si compliquée
que la plupart des ingénieurs en savent trés peu. Pour cal-
culer des lignes courtes, on peut développer ces fonctions
en séries et se limiter aux deux ou trois premiers termes.
L’auteur expose une méthode qui apporie une élonnante
clarté dans ces fonctions, et cela pour des arguments dont les
termes réels et imaginaires peuvent varier entre n’importe
quelles limites positives et négatives. De la sorte, le calcul
des lignes n’est plus lié a aucune limite, tant au point de vue
de la longueur des lignes que de la fréquence du courant
alternatif. Le technicien & courant faible peut donc sans
autre utiliser cette méthode pour létude de la transmission
des courants a fréquence musicale. Les calculs compliqués
sont remplacés par la simple lecture d’'un diagramme.

fiilhrt. Wie bei allen Problemen mit vektoriellen
Spannungs- und Stromdiagrammen muss man lings
der Leitung eine positive Bezugsrichtung wihlen
und die Entfernung s von dem gegebenen Null-
punkt in der Bezugsrichtung positiv, entgegen der
Bezugsrichtung negativ bezeichnen. Auch in der
Richtung quer zur Leitung muss man eine positive
Bezugsrichtung wihlen, und zwar sei sie posiliv in
der Richtung von der Erde (oder eventuell von
einem Nulleiter) nach einem Phasenleiter. In der
Zeichnungsebene, in welcher die rotierenden Vek-
toren dargestellt werden, sei die positive reelle Axe
horizontal nach rechts und die positiv imaginire
Axe vertikal nach oben gerichtet. Die Strom- und
Spannungs-Vektoren sollen zeitlich im Gegenuhr-
zeigersinn rotieren und werden derart aufgetragen,
dass sie mit der positiv reellen Axe einen spitzen
Winkel einschliessen, wenn sie zur Zeit t=— 0 in der
Bezugsrichtung einen positiven Wert haben.

Unter diesen Voraussetzungen gelten dann fol-
gende Differentialgleichungen:

dU dI
> Pl — Iz = = — Uy 1)
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Durch nochmalige Differenziation erhilt man

a2 U dI
7 iy Pl A
d21 dU @
T Y g = A
Die allgemeine Losung fiir U lautet
U=K, &V + K,e=V" 3)

Hieraus findet man

1d0_ ., Y ol Y V=
—?—(ﬂ_l__KI]/ZE +K2Vz8 (4)

Ist fiir s=—=0, U=U, und I =1, so kann man die
Integrationskonstanten berechnen und findet

U =

1 z\ .5, 1 8\ il
5 )
I = ©)
1/ /§ v 1 CAPEN =
- IO_UO] L)+, 0+U0]/; p

Fasst man in den Gleichungen (5) je die Glieder
mit U, und I, zusammen, so erhilt man:

U = U, Gos sVﬁ-Id/? Gin s Jyz
B — o ©®
1 = Io Cos s]/yz — UO_I/%@iH s]/yz

Wenn man die Wahl der Bezugsrichtung konsequent
durchfiihrt, so gelten diese Gleichungen unter allen Umstiin-
den, ob nun Ip und Us die gegebenen Werte am Anfang der
Leitung (Generatorenwerte), I und U die gesuchten Werte
am Ende der Leitung (Verbraucherwerte) darstellen oder ob
das Umgekehrte der Fall ist. Dies steht im Gegensatz zu den
Ausfithrungen mehrerer anderer Autoren, welche die Lei-
tungsldnge einfach als eine positive Grésse annehmen und
dann das Gleichungssystem (6) nach Ip und Uo auflésen, wo-
durch sowohl Up und U als auch Iy und I ihre Pléize ver-
tauschen, wihrend die mit dem &in behafteten Glieder ihr
Vorzeichen wechseln. Dieser Vorzeichenwechsel erscheint fiir
die Zwecke dieses Artikels ungeeignet. Durch Einfithrung
der Bezugsrichtungen!) gelingt es, ihn zu vermeiden; ebenso
wird das Auflésen des Systems (6) nach Uo und Io iiber-
fliissig.

Der notige Richtungswechsel der zweiten Glieder der bei-
den Gleichungen vollzieht sich automatisch, ohne dass am
Vorzeichen etwas zu iindern ist, da die beiden &in-Vektoren
beim Einsetzen einer negativen Leitungslinge sich um 180
drehen, wiithrend die beiden (§p3-Vektoren ihre Richtungen
beibehalten. Da die Wahl der positiven Bezugsrichtung will-
kiirlich erfolgt ist, so kann sie jederzeit wieder gedndert wer-
den, wenn man nicht gern mit negativen Leitungsidngen
rechnet. Dann sind aber beide Stromvektoren um 180° zu
verdrehen, wihrend die beiden Spannungsvektoren ihre Rich-
tung beibehalten.

1) Siehe A. von Brunn: «Die Bedeutung des Bezugssinnes
in Vektordiagrammen», Bull. SEV 1922, S. 385, 449, und A.
von Brunn: «Neue Methoden zur graphischen Bestimmung
von Wechselstrom-Ortskurven», Bull. SEV 1929, S. 65.

Die Ueberlegungen sind besonders wichtig bei Leitungen
mit wechselnder Energiefluss-Richtung, bei welchen die Be-
griffe «Anfang» und «Ende» ihre Bedeutung verlieren.

Die Wirkleistung soll dann positiv sein, wenn sie in der
Bezugsrichtung fliesst, Strom und Spannungsvektor bilden
dann einen spitzen Winkel. Bei einem Wechsel der Bezugs-
richtung wird dieser Winkel stumpf, da der Stromvektor um
180° verdreht wird, wihrend der Spannungsvektor unver-
iandert bleibt. Die frither positive Leistung wird dadurch
negativ.

Die meisten Autoren verwenden die Gleichungen
(6) mit hyperbolischen Funktionen. Da jedoch in
den technischen Handbiichern fiir Kreisfunktionen
ausfithrlichere Formelsammlungen zur Verfiigung
stehen, welche ohne weiteres auch fiir komplexe
Argumente gelten, sollen die Gleichungen (6) auf
Kreisfunktionen umgeformt werden. Dies ist um so
eher berechtigt, als bei verlustlosen Leitungen oder
bei sehr hohen Frequenzen ohnehin Kreisfunktio-
nen mit reellen Argumenten auftreten. Es gelten
die Beziehungen

gin jx=jGinx Gin jx=jsinx
cos jx =C08x Co3 jx=—cosx (7)
tg jx=jITgx Tg jx=jtgx

Wenn man diese Beziehungen in Gl. (6) einsetzt, so
ergibt sich

U= U, cos js]/;—}—loj]/_:jsinjs]/ﬁ

I = I, cos js]/ﬁ—i—UOjl/%sinjs]/yz

Auch diese beiden Gl. (8) gelten in allen Fillen

ohne Vorzeichenwechsel.

(8)

Die Summe einer cos- und einer sin-Funktion
kann man wie bei jeder Wellenhewegung auch hier
mit den komplexen Argumenten in eine einzige
Kreisfunktion verwandeln nach folgendem Ansatz:

U= A4 cos (js)yz-+ea)) = A cosa (9)

wobel ¢ = «, + js]/yiz' ist; A und ¢, sind jetzt die
zu bestimmenden Integrationskonstanten.

Aus Gl. (9) erhdlt man
U=A (cos , cos js |}/ yz—sin a, sin js]/_viz)

Aus Gl. (8) erhilt man

” z
v, . Wy o
U= 4 (IOCOS]SVyZ—{—iAff sin ]s1/yz)

Da beide Gleichungen identisch sind, wird

iz

A

UO
cos Qy = —

A

Quadriert und addiert ergibt sich

sin oy, =

B — J3—

2 in2 = P
cos? ¢, -+ sin? o, = YE =1
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Hieraus A = V Uz — I? ;— (10)
Damit ergibt sich endgiiltig
z
L1 E
U, ) J OV y
(0]} ao e sin (Zo =
]/U?,—I?,z U2 -133 (11)
o/
t = —j0]/=
g a() J UO—I//}’
Aehnlich erhilt man
I=B cos (js)yz + ,) =B cos (12)
wobei =g, + js}/yz ist
B = ]/Is— - (13)
z
i Y
I, z
cos fi, = — sin 3, =
/
|/ 18- vt ]/ - Ust (4
z
_: U /y
tg By = J Io ]/ P
A ? ©
v e i
3 E'i ':5’ ’;{_' T «}\‘l "“.;_
&, bt o
"‘b r\" 2k
T ral2 )
A
1=0.8
G - F
?\ X% 5
T=0 =
T=-180
b - —_
T-159 ,:2 2150
0 T=A x N
""62 tajt6 A X%
'\ F ‘9.‘ »\f\“ %’ 5”
. d‘:\‘ 8 1’1

cmimear

Zwischen den Gréssen A, B, «,, j, bestehen die Be-
ziehungen

tg o, tgﬂo = —1 (15)

Yy
Hieraus o, — f, = £ 90".
Die Gl. (9) und (12) kénnen jetzt noch etwas

vereinfacht werden. Unter Zuhilfenahme der Gl
(9) bis (14) ergibt sich

U=Acosa=cosa]/U§—I§z= 00050(16)
y cos a,
B _ : Zi_ cosﬂ*
I =Bcosp3 = coSﬂ]/Io U3 e I, cos 3,

patlf

B. Das Hilfs-Cosinus-Diagramm.

Die Formel (11) kann noch etwas umgeformt
werden.

1 1
cos o, = — = 17
I3z V1+ tg?a,
Uly
Die Gl. (11) und (17) sind ziemlich kompliziert

und es wiirde daher fiir den praktischen Betriebs-
mann zu umstindlich sein, den cos @, jedesmal nach
diesen Formeln zu berechnen. Es wurde daher in
dem Hilfs-Cosinus-Diagramm nach Fig. 1 die Be-
ziehungen zwischen den Vektoren cos «, und

Ly
U "y
graphisch dargestellt.

Angenommen, der Vektor jtg e, habe den abso-
luten Betrag t und den Richtungswinkel . Fiir kon-
stante Werte von 7 und variable Werte von ¢ erhilt
man Kurven, die in Fig. 1 mit 7=0°, 1 =6",
t=12" ... usw. angeschrieben sind.

Fiir konstantes ¢ und variables 7 dagegen ergeben
sich Kurven, die mit t = 0,8, t =1, t = 1,25...
usw. angeschrieben sind.

Jtg a,

Fig. 1.

N

Das Hilfs-Cosinus-Diagramm.

1 z i
A J/E _ 4 it
U]/; t-e

oder j tg 8 =%]/;i: toed T

Dann zeigt dieses Diagramm den Cosinus
als Funktion des Tangens, d. h. als Funk-
tion von ¢ und 7. Der Richtungswinkel r
ist in Intervalle von 6 Grad eingcteilt: fiir
den absoluten Betrag t wurden folgende
Werte angenommen:
t =01—012 — 0,16 — 0,2 — 0,25 — 0,316
— 04 — 0,5 — 0,625 — 08 — 0,9 — 1 —
1,11 —1,25 — 1,6 — 2 — 25 — 3,16 —

’ 4—5—62—8—10
Q9

\e Es sei entweder j tg o

<y

=0
T=+180

X,

+=08

Die ersten Werte liegen in der Niihe der
Punkte +1 und —1 und kénnen in der Ver-
kleinerung nicht mehr genau abgelesen
werden.,

Mit Hilfe des Diagrammes nach Fig. 1 findet man
daher zu einem beliebigen Wertepaar (z, v) leicht
den zugehiorigen Vektor cos «, (bzw. seine Spitze)
als den Schnittpunkt der beiden entsprechenden
Kurven «f — konstant» und «r = konstants.

Fiir eine bestimmte gegebene Leitung ist der

Ausdruck ]/i
¥y

weise will man die Spannung U, an einem Verbrau-
cher-Punkt der Leitung konstant halten. Dann ist

von dem Ausdruck Ii 2 der Strom I, die ein-
U, y

eine konstante Grosse. Normaler-

zige Variable und das Diagramm Fig. 1 stellt den
cos «, als Funktion des Stromvektors dar. Wenn
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der Wert I,=—=U,

Y als Normalstrom bezeich-
z

net wird, dann bedeuten die in Fig. 1 eingelragenen
Werte «t— konstanty einfach ein Vielfaches des Nor-
malstromes.

Das Hilfs-Cosinus-Diagramm kann aber auch in
gleicher Weise fiir den cos f, benutzt werden. Die-
ser ist dann eine Funktion von jtg f,= %V,y‘ 5
L z
also bei konstanter Spannung ebenfalls eine Funk-
tion des Strom-Vektors I,, Nur muss man jetzt des-
sen reziproken Wert nehmen. Aus diesem Grunde
wurde das System der Kurven «t=konslanty in
Fig. 1 derart gewihlt, dass zu jeder Kurve «z == kon-

stant» auch die Kurve des reziproken Wertes von t
vorhanden ist.

C. Das Cosinusdiagramm.

Das eigentliche Cosinus-Diagramm stellt die Be-
ziehungen dar zwischen dem Argument-Vektor o

Wird dagegen p konstant gelassen und ¢ variiert,
so erhilt man eine Hyperbel mit den Halbaxen
cos p und sin p. Der halbe Brennpunktabstand wird

7/(cos p)2 + (sin p)2 =1

Gibt man nun sowohl p als auch ¢ der Reihe
nach verschiedene Werte, so erhilt man ein System
von sich rechtwinklig kreuzenden konfokalen EI-
lipsen und Hyperbeln.

Fig. 2 stellt ein Cosinusdiagramm dar, in wel-
chem sowohl reelle als auch imaginire Komponen-
ten des Argumentes ¢ — p + jq in Intervallen von
n
30
valle in beiden Richtungen gleich sind, entsteht ein
System von krummlinigen Quadraten 2).

Wie bei reellen Argumenten, so gilt auch hier

cos (p + jgq) = cos (—p—jq)
Im Diagramm nach Fig. 2 sind nur die Werte fur
0 < p < 4 180° mit den zugehirigen Werten von ¢

= 6 Grad sich sprungweise dndern. Da die Inter-

SEV5516

- -
< 1t 2 2 11 ¢
% B4 3 > 7 A
< < 2 T e=[-60 = d §
% 4, = § $
- ) g=|-54 d s
<. > { “,
< K3 q=|-48 J »
% - a=|-42 Y §
%, .
o ¢ Tig. 2.
N q=-36 '.p
o 7 N
" q=|-30 . .
75 c 8 v.ﬂ' Das Haupt-Cosinus-Diagramm
o, A =|-24 2]
75, le
s a=l-1 zeigt den Cosinus als Funktion sei-
*16e peri?
9=]-12 .
nes Argumentes. Reelle und ima-
Per1n g=}-6 p=+b
gindre Komponenten des Argumen-
e+ 18
a=ls6 tes sind in Intervalle von 6 Grad
prei?é Dayg T
LLard = —— eingeteilt. Zu jedem Punkt
168 30
Pt g=|+18 Prero i - 5
des Diagrammes gehort noch ein
Loe? g=]+24 onry
b zweiter Argumentwert, dessen beide
Wt gl s,
! ¥
Komponenten entgegengesetzies
& 2136 | o, » gegeng
MR s %, Vorzeichen haben.
°¢' .$
0'0. o8 s
b & CO
o
¢ & g=less Y %
3
< s ¥ - “% 3
* c: § ) 91260 ° ‘i ‘;
oy F % 8 1 % R
i 1o ®

und dem Funktions-Vektor cos g. Das Argument o
der Cosinus-Funktion kann in der Form

a=p+jq

geschrieben werden, wo p und g reelle Zahlen sind.
Man kann jetzt ohne weiteres bekannte Formeln
aus der Trigonometrie anwenden und erhilt

cos g == cos (p T jq) = cos p cos jg — sin p sin jg

—cos pCp3 g — jsin pGing—m + jn

(18)

Wird in Gl (18) ¢ konstant gelassen und p va-
riiert, so stellt sich die Cosinusfunktion (m = jn)
als eine Ellipse dar mit den Halbaxen €n3 ¢ und
@&in ¢. Der halbe Brennpunktabstand wird

1/ (Co3 ¢)* —- (Gin q) =1

aufgetragen. Zu jedem Punkt des Diagrammes ge-
hért also noch ein zweites Wertepaar (p, q), dessen
beide Komponenten entgegengesetztes Vorzeichen

haben.

D. Das Tangensdiagramm.

Das Tangensdiagramm stellt die Beziehungen
dar zwischen dem Argument-Vektor ¢ und dem
Funktions-Vektor tg a.

Eine wichtige Eigenschaft der Tangensfunktion
findet man folgendermassen: Es ist

joe cosa +jsina 1+ jtga
- cose —jsine 1—jtga

-2 2jp
e £ 7+ _

2) S. Literaturhinweise Nrn. 8 bis 10 am Schluss.
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gtierym ]:tga—i—l _ tga—_]: 19)
jtga—1 tga +j
In Fig. 3 sei OA=+j
OB=——j
OP:tga

Dann wird

AP_L_ tea — j
BP r, tga—+j

Hieraus ergeben sich folgende Sitze:

-2¢ 4+ j@2p + 1)

i
Ty
Bleibt ¢ konstant, so bleibt dieser absolute Betrag
konstant und der Punkt P beschreibt einen Kreis,
der entweder den Punkt A= + j oder den Punkt
B=—j umschlingt. In
der Geometrie wird er ap-
polonischer Kreis genannt.

b) Der Winkel, den die
A beiden Abstinde r, und

r, einschliessen, ist2p + 7.
Bleibt p konstant, so
Fig. 3.

a) Der absolute Betrag von ist gleich g2a.

P

bleibt dieser Winkel kon-
stant und der Punkt P be-
schreibt einen Kreis durch
die Punkte A und B.

Gibt man den Grossen
p und ¢ verschiedene
Werte, so erhilt man zwei Systeme von sich recht-
winklig kreuzenden Kreisen. Die Kreise des cinen
Systems umschliessen alle entweder den Punkt + j
oder — j, die Kreise des andern Systems gehen alle
durch beide Punkte + j und — j hindurch.

Fig. 4 stellt ein Tangensdiagramm dar, in wel-
chem wie beim Cosinusdiagramm nach Fig. 2 beide
Komponenten des Argumentes in Intervallen von
b4

30

SEVSSI?

= 6° sich dndern.3)
Wie bei reellen Argumenten, so gilt auch hier
tg(pt jgtna)=tg (p+jg

wobei n eine beliebige, ganze, reelle Zahl ist.

Im Diagramm nach Fig. 4 sind nur die Werte fiir
0" < p°*<180° eingetragen mit den zugehorigen
Werten von ¢q. Zu jedem p-Wert kann also noch n
mal 180" addiert oder subtrahiert werden.

E. Die verlustlose Leitung.

Nach den Vorbereitungen der ersten Abschnitte
sollen jetzt die Leitungsprobleme behandelt und zu-
niichst der Idealfall der verlustlosen Leitung be-
trachtet werden. Es sei also sowohl der ohmsche
Widerstand ldngs der Leitung als auch die ohmsche
Ableitung quer zur Leitung gleich Null.

r=0 und g—=0
Dann wird
yz= jxjb——xb=— w’lc

3) S. Literaturhinweise Nrn. 8 bis 10 am Schluss.

Fiir Freileitungen gilt mit grosser Anniherung

2
le — (L)
L7

wo v; die Lichtgeschwindigkeit ist. Dann wird

(20)

w

{3

2
Yz ) also J/yz = ]g und
UL

— S

(1)

=42 ¢

(&

= |#135
=|+12
= [+-18
=424
=|+30

D= #132
p=|+138
p=|+144
p=(+150
Dp=|#+156
Pp=|+162
D= |+16i
pa|+174
h
Le |
=46
P=|+36
=|¢ 4,
P=|+45
P=|+48

b
o,

13
SEVS518
Fig. 4.
Das Tangens-Diagramm

zeigt den Tangens als Funktion seines Argumentes. Reelle und
imaginire Komponente des Argumentes sind in Intervalle von

6 Grad= %

nen zum Argument noch n mal 180 reelle Grade addiert oder
subtrahiert werden.

eingeteilt. In jedem Punkt des Diagrammes kon-

Damit wird

w . .
0= 0ay—S8—=PpP +]q; Ao = Po +]q0

v

w
P—Po=—5—;3 q—q,—0; q=—gq,
v

Das konstante Glied ¢, ist eine komplexe Grosse,

das variable Glied s vﬂdagegen rein reell. Bei einer
/5
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Verinderung des Weges s andert sich daher nur die
reelle Komponente p des Argumentes «, wihrend
seine imaginire Komponente ¢g=g¢q, konstant
bleibt. Nach den Abschnitten C und D beschreibt
daher der Cosinusvektor eine Ellipse, der Tangens-
vektor einen appolonischen Kreis.

_Uqy/y

1 z

Nach Gl. (11) und ( ) ist

Die Grosse ]/i ist die Wellen-Impedanz, ihr
W

jtga= jtg g

reziproker Wert ]/l die Wellen-Admittanz. Die
z

Grosse Lo} soll die Belastungs-Impedanz, die Grosse

I
Iﬁ die Belastungs-Admittanz genannt werden. Es
ist also
S Belastungs-Admittanz
1B e== Wellen-Admittanz l
(22)
N Belastungs-Impedanz [
Itef= Wellen-Impedanz

In diesen beiden Ausdriicken sind die Nenner
der Briiche Konstante fiir eine gegebene Leitung,
nur die Ziahler sind variabel. Die Tangensdia-
gramme zeigen also unmittelbar den Verlauf der
Belastungs-Admittanz und Impedanz lings einer
Leitung. Man kann daher das Diagramm des Vek-
tors tg « das Admittanz- Dlagramm, dasjenige des
Vektors tg § das Impedanz-Diagramm nennen.

Zahlenbeispiel 1.

Es soll jetzt ein praktisches Beispiel durchge-
rechnet werden und es sei dazu die von den Berni-
schen Kraftwerken A.-G. und der Kraftwerke Ober-
hasli A.-G. betriebene 150 kV-Leitung von Innert-
kirchen iiber den Briinigpass, durch das Emmental-
Bickingen-Pieterlen nach Miihleberg gewithlt. Es
ist eine Drehstrom-Doppelleitung. Die sechs Leitun-
gen sind ungefidhr in einem reguliren Sechseck an-
geordnet. Die totale Leitungslinge betridgt 124,1 km.

Aus dem im Bull. SEV 1931, S. 212, Fig. 7, ab-
gebildeten Profil der genannten Leitung und dem
Leiterdurchmesser von 18,85 mm kann man die Lei-
tungskonstanten [ und ¢ berechnen. Man erhilt fiir

die Doppelleitung

1—0,64 mH/km
¢=0,018 yF/km

Im genannten Bulletin SEV sind gemessene
Werte nur fiir die Einfachleitung angegeben. Sie
decken sich mit den vom Verfasser ebenfalls be-
rechneten Werten [ =—1,32 mH/km und ¢ = 0,00875
wF/km fiir die Einfachleitung. Im folgenden wird
nur die Doppelleitung behandelt. Man erhilt zu-
nichst

F

lc = 0,64-10° —— . 0,018-10°  ——
km

_ 100 (8% e 1
= 0,115-10 (k =

) 1
o2
- (2 95 .10° k:“)

v ist die Wellenfortpflanzungsgeschwindigkeit

. .. . _km .
unserer Leitung; sie ist mit 2,95-10° —— nur wenig
)

kleiner als die Lichtgeschwindigkeit v;, die bekannt-

lich 3-10° kTm ist. Nimmt man an Stelle der mas-
siven Seile unendlich diinnwandige Hohlseile, so
fillt das magnetische Feld im Innern der Leiter
weg und damit wird die Induktivitdt nur noch 0,615
mH/km. Dann wird die Wellenfortpflanzungsge-
schwindigkeit genau gleich der Lichtgeschwindig-
keit, also v=vy.

Wenn v—v; ist, erhdlt man fiir eine 100 km
lange Leitung bei einer Frequenz von 50 Per./s

s2nf 100.2 7.50 =«

o, = 300000 — 30— 06rad

sl ye=

Dies ist aber im Cosinus- und im Tangens-Diagramm
nach Fig. 2 und 4 gerade die Intervallendifferenz
zweier benachbarter Kurven. Sie wurde absichtlich
so gewiihlt, um bei 50 Per./s mit einem Blick gerade
100 km mit ziemlich grosser Genauigkeit ablesen
zu konnen. Es ergibt sich nun:

Fiir 50 Per./s entspricht einer ganzen Ellipse im
Cosinus-Diagramm angenihert eine Leitungsstrecke
von 6000 km, einem ganzen appolonischen Kreis
des Tangensdiagrammes eine Strecke von 3000 km
bei verlustlosen Freileitungen.

Da jedoch in dem vorliegenden Beispiel die Fort-
pflanzungsgeschwindigkeit etwas kleiner als die
Lichtgeschwindigkeit ist, so erhélt man fiir 100 km
6,1 Grad und im Cosinus- und im Tangensdiagramm
fiir die vorgedruckte Intervallendifferenz von 6 Grad
nur 98,5 km.

Die Leitung von Innertkirchen nach Miihleberg
hat eine Linge von 124,1 km, was einem Argument
von 6,1-1,24="1,56 Grad entspricht. Die Wellen-
Impedanz wird

0,64 - 10°
0,018.10° ~

Dieser Wert ist bei verlustlosen Leitungen rein reell.

Die verkettete Nennspannung betridgt 150 kV, die
Sternspannung U somit 86,6 kV. Bei Vollbetrieb
des Kraftwerkes Handeck stehen in Innertkirchen
4-28 000 =112 000 kVA zur Verfiigung, die nach
Miihleberg transportiert werden konnen. Der Be-
triebsstrom wird dann 430 A. Der Normalstrom fiir
die Doppelleitung wird:

[ =T y - Spannung .
»— "0 z T Wellenimpedanz
= 460 A,

188,5 Ohm

86600 V
188,5 Ohm
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Man erhilt somit:

Betriebhsstrom 430

Diese Leistung werde unter einem Leistungsfaktor
cos ¢ von 0,866 in Innertkirchen mit voreilender
Spannung von Innertkirchen nach Miihleberg iiber-
tragen, was einem Verschiebungswinkel von + 30
Grad zwischen Spannungs- und Strom-Vektor ent-
spricht. Die Belastungsimpedanz ist dann

U 86600V &%

— 30
= 430 A = 201 ¢/3° Ohm

Hieraus ergeben sich nach Gl. (22) fiir die Tangens-
Vektoren

Normalstrom

Jtgay = gy e = 0,935 £~
J 30
gy = Lol = 10T e

Um nun den cos ¢, zu bestimmen, wird das Hilfs-
Cosinus-Diagramm nach Fig. 1 beniitzt und dort der
Schnittpunkt der beiden Kurven «t=0,935» und
«t=-—30°» gesucht. Um cos f, zu bestimmen, wird
der Schnittpunkt der beiden Kurven «z =1,07» und
«r="+ 30" gesucht. Man erhilt auf diese Weise
die beiden Punkte A und B in Fig. 1.

Horizontale und vertikale Komponenten der
Punkte A und B werden nun mit dem MaBstab oder
Zirkel von Fig. 1 auf Fig. 2 ubertragen. Es ist je-
doch von grossem Vorteil, wenn man sich von dem
Haupt-Cosinus-Diagramm nach Fig. 2 einige Exem-
plare auf durchsichtigem Papier herstellt, und zwar
in demselben Mal3stab wie Fig. 1*). Mit diesen
kann man einfach die beiden Fig. 1 und 2 aufein-
anderlegen und die beiden gefundenen Punkte A
und B von Fig. 1 auf Fig. 2 iibertragen. In Fig. 2
liegen jetzt beide Punkte auf derselben Ellipse,
nimlich «¢ = — 37,5°», Punkt A liegt auf der Hy-
perbel «p=138,8°»>, Punkt B auf der Hyperbel
«p=48,8"». Man findet Gl. (15) bestdtigt, nach
welcher ¢, — f,= 1 90" ist. Dies gibt eine wertvolle
Kontrolle.

Wie weiter oben berechnet, ist fiir die ganze
Leitung von Innertkirchen bis Miihleberg der Wert

Js ]/ vz=—=1,56 Grad. Wenn der Bezugssinn von
Innertkirchen bis Miihleberg positiv gewdhlt wird
(es sei hier nochmals auf die Ausfithrungen im Ab-
schnitt A betreffend Bezugssinn verwiesen), so er-
hélt man fiir s in Miihleberg einen positiven Wert,

somit wird s — positiv. Damit wird in Miihleberg
v

ty— s % — 138,80 — j 37,50 — 7,56°

— 131,240 - j 37,50

w

= fp—s - = 48,80 — ;37,50 __ 7,56°
= 41,2405 37,50

1) Transparente Diagramme kénnen vom Verfasser (Chalet-
weg Y, Ziirich 11) bezogen werden.

Damit ergeben sich die Endpunkte C und D der
Spannungs- und Stromkurven (Fig. 2).

Man findet damit den allgemein giiltigen Satz:
Bei verlustfreien Leitungen verdrehen sich die Vek-
toren cos a und cos f im Uhrzeigersinn, beim Wan-
dern auf der Leitung im Sinne des Wirkleistungs-
flusses (wenn man die Strom- und Spannungs-Vek-
toren zeitlich im Gegenuhrzeigersinn rotieren ldsst,
was heute als das Normale gilt). Der Satz ist un-
abhéngig von der Wahl der Bezugsrichtung.

Nach Gl (16) ist U=A cos ¢ und I =B cos $.

Nach GI. (15) ist é= tj /i

B V
Da bei verlustfreien Leitungen V/i rein reell 1ist,

Y

so stehen die Vektoren A und B senkrecht aufein-
ander. Um daher aus dem Verlauf der Cosinus-Vek-
toren den Verlauf der Strom- und Spannungs-Vek-
toren in ihrer richtigen gegenseitigen Lage zu fin-
den, wird das Spannungsdiagramm unverindert ge-
lassen und das Stromdiagramm um 90 Grad in dem
Sinne verdreht, dass zwischen den gegebenen Vek-
toren U, und I, der gegebene Phasenverschiebungs-
winkel von 30° erscheint. Man erhilt damit zwei

senkrecht aufeinanderstehende kongruente Ellipsen

SEV5519

Fig. 5.
Spannung- und Strom-Diagramm der verlustlosen Leitung in
richtiger gegenseitiger Lage.

nach Fig. 5. Je ein kleines Teilstiick dieser Ellipsen
stellt den Vektorenverlauf dar zwischen den gege-
benen Punkten A, B am Anfang und C, D am Ende
der Leitung. Um den MafBlstab der Kurven zu be-
stimmen, trigt man einfach die gegebenen Strom-
und Spannungswerte in die gefundenen Anfangs-
werte der Cosinusdiagramme ein und findet dadurch
leicht mit dem Rechenschieber, wieviel Volis und
Ampéres einem cm Vektorlinge entsprechen.
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Die in Fig. 5 eingetragenen Zahlen sind Effektiv-
werte. Da die rotierenden Ellipsen den rdumlichen
und zeitlichen Verlauf von Strom und Spannung
darstellen, sollten eigentlich Scheitelwerte eingetra-
gen werden, was durch Multiplikation mit ]/2 ge-
schehen kann. An der Form der Kurven wird da-
durch natiirlich nichts gedndert. Samtliche Glei-
chungen gelten sowohl fiir Scheitel- als auch Effek-
tivwerte.

Unendlich lange Leitung.

Fir Leitungen von weniger als 200 km Linge
findet man bei 50periodigem Wechselstrom zwi-
schen Anfangs- und Endvektor meistens nur ein
kurzes Stiick einer fast geradlinigen Kurve. Interes-
sant werden die Verhiltnisse bei dieser Frequenz
erst bei grosseren Leitungslingen. Es sei daher an-
genommen, die behandelte Leitung sei nur ein Teil-
stiick einer grossen europiischen Sammelschiene;
sie habe also eine Linge von einigen tausend Kilo-
metern. Der Einfachheit halber wird angenommen,
am gegebenen Anfangspunkt seien Strom und Span-

; .
—I—O“/l > 1. Dann
IO z

wird U, zur grossen, I, zur kleinen Halbaxe einer
Ellipse. In Fig. 5 werden beide Anfangsvekioren
in die Horizontalrichtung nach links gelegt. Dann
ergibt sich folgender Verlauf:

nung in Phase, und zwar sei

s==0 km. U ist ein Maximum, I ein Minimum,
beide sind in Phase (Punkte 1,1).

s=750 km. U hat abgenommen und sich um
weniger als 45° verdreht, I hat zugenommen und
sich um mehr als 45° verdreht, U eilt I um einen
maximalen Winkel vor (Punkte 2,2).

s=1500 km. U ist ein Minimum, I ein Maxi-
mum, beide sind wieder in Phase. Beide sind gegen-
itber s =0 um 90° verdreht (Punkte 3,3").

s = 2250 km. U hat zugenommen, I hat abhge-
nommen. Wir haben wieder eine maximale Phasen-
verschiebung zwischen U und I, jedoch im umge-
kehrten Sinn; dieses Mal eilt der Strom der Span-
nung vor (Punkte 4,4").

§=23000 km. U und I haben gleiche Grosse, wic
bei s =0, sind jedoch um 180° gegen jenen Punkt
phasenverschoben (Punkte 5,57).

Zwischen s = 3000 km und s = 6000 km erschei-
nen wieder die genau gleichen Werte wie zwischen
s=0 km und s =3000 km; nur sind alle um 180"
verdreht.

Bei hoheren Frequenzen, die z. B. in der Schwach-
stromtechnik beim Uebertragen von Sprechstromen
vorkommen, werden diese Distanzen natiirlich ver-
kiirzt. So erhilt man z. B. bei einer Frequenz von
2000 Per./s fiir eine ganze Ellipse des Cosinusdia-
grammes nur eine Distanz von 150 km.

Interessant ist nun auch die Betrachtung der Tan-
gensdiagramme. Es werden daher die fiir Zahlen-
beispiel 1 berechneten Werte von tg ¢, und tg g, in
ein Tangensdiagramm nach Fig. 4 eingetragen und

dadurch die zwei Punkte A und B erhalten. Wenn

man an diesen Punkten die Werte von p, und g,
abliest, so miissen sie mit den aus den Cosinusdia-
grammen herausgefundenen Werten iibereinstimn-
men. Dies ergibt wieder eine wertvolle Kontrolle.
Insbesondere findet man, dass beide Punkte A und
B auf demselben appolonischen Kreis ¢ —=— 37,5
liegen. Sie liegen ferner auf zwei Kreishogen p—=
138,8° und p=48,8°, die sich zu einem vollstindi-
gen Kreis durch die Punkte + j und — j erginzen.
Man findet nun leicht auch die Werte fiir den End-
punkt der Leitung; sie liegen auf demselben appo-
lonischen Kreis (Punkte C und D).

Das Tangensdiagramm zeigt den Verlauf der Be-
lastungsimpedanz und der Belastungsadmittanz. Bei
einer sehr langen Leitung findet man:

Fir s=0, 3000, 6000 km ist die Impedanz ein
Maximum, die Admittanz ein Minimum, fiir s =
1500, 4500 km ist die Impedanz ein Minimum, die
Admittanz ein Maximum (Punkte 1,1°, 3,3).

Im Tangensdiagramm kann man besonders gut
den Phasenverschiebungswinkel ablesen; er er-
scheint als Winkel zwischen dem Tangensvektor
und der vertikalen Axe. Man findet fiir s = 750,
3750 km eine maximale Voreilung des Spannungs-
vektors (Punkte 2,2"), fiir s =2250, 5250 km eine
maximale Voreilung des Stromvektors (Punkte 4,47),
wihrend fiir s = 0, 1500, 3000, 4500, 6000 km Strom
und Spannung in Phase sind. Den Phasenverschie-
bungswinkel kann man berechnen:

; _sin 2p  Blindleistung 23)
89 = “Gin2q  Wirkleistung

Da &in 2 g und die Wirkleistung konstant blei-
ben (es ist ja eine verlustfreie Leitung angenom-
men), so ist sin 2 p direkt ein Mass fiir die Blind-
leistung.

Man bezeichnet gewohnlich Kondensatoren als Blind-
leistungserzeuger, Drosselspulen (Asynchronmotoren usw.) als
Blindleistungsverbraucher. Diese Annahme ist willkiirlich;
es ist auch schon die gegenteilige Annahme vorgeschlagen
worden. Es soll jedoch hier an der erstgenannten Delinition
festgehalten werden. Dann fliesst bekanntlich Blindleistung
von einer iibererregten zu einer untererregten Synchron-
maschine. Fiir lange Leitungen findet man:

Die Blindleistung wird in den Gebieten hoher
Spannung (s =0, 3000, 6000 km) erzeugt, fliesst in
beiden Richtungen nach den Gebieten hohen Stro-
mes (s=1500, 4500 km) und wird dort verbraucht.

Bei langen Leitungen wird also die Blindleistung
nicht immer von Generatoren oder Phasenschiebern
geliefert und von den Stromverbrauchern ver-
braucht, sondern sie entsteht und verschwindet auf
der Leitung selbst. Sie kann bei 5Operiodigem
Wechselstrom auf einer verlustfreien Leitung auf
keinen Fall weiter als 1500 km transportiert werden
(woran man allerdings auch kein Interesse hat).

Die Wirkleistung fliesst natiirlich immer in der-
selben Richtung; es gibt daher Gebiete, in welchen
Wirk- und Blindleistung gleichgerichtet sind (s =
750, 3750 km) und solche, in welchen sie entgegen-

gerichtet sind (s =2250, 5250 km).
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Leerlauf und Kurzschluss.

Ist an einer Stelle der Leitung der Strom gleich
Null, so fallen die Cosinusdiagramme in die Brenn-
strecke hinein, die Tangensdiagramme in die unend-
lich lange horizontale Axe. In einiger Entfernung
vom Leerlaufpunkt ist der Strom nicht mehr Null,
Strom- und Spannungsvektor stehen auf der ganzen
Leitung senkrecht aufeinander.

Aus den Diagrammen findet man leicht, dass in
1500 km Entfernung von diesem Leerlaufpunkt ein
Kurzschlusspunkt liegt, in 3000 km Entfernung wie-
der ein Leerlaufpunkt. Man kann sich eine beliebig
lange Leitung vorstellen, auf welcher Leerlauf- und
Kurzschlusspunkte in Intervallen von 1500 km im-
mer abwechseln. Dabei ist es nicht nétig, dass an
allen Kurzschlusspunkten eine leitende Verbindung
zwischen den Phasenleitern vorhanden sei, es ist
einfach die Spannung Null, ebenso ist auch nicht
an allen Leerlaufpunkten ein Leitungsunterbruch,
es ist einfach der Stromvektor Null.

Es wird nur Blindleistung transportiert, der Zu-
stand bleibt bei einer absolut verlustfreien Leitung
ohne dussere Energiezufuhr dauernd bestehen. Wir
haben ein System von Schwingungskreisen (Reso-
nanz). Es sind reine stehende Wellen auf der Lei-
tung.

Eine Stromschleife, die an einem Ende offen, am
andern kurzgeschlossen ist, kann Schwingungen mit
ihrer Eigenfrequenz ausfithren. Diese ist z. B. bei
einer 100 km langen Leitung 750 Per./s. Es kinnen
auch Schwingungen mit einem ungeraden Viel-
fachen der Grundfrequenz auftreten.

Leitung ohne Blindleistung.
Wenn die Belastungsimpedanz nach Grosse und
Richtung genau gleich der positiven oder negativen
Wellenimpedanz wird, erhilt man

N ) .

tgay = —JUOI/§ =+
0

LUy~ /y .

tg 3, = —JI(:)]/%——-iJ

Das ganze Tangensdiagramm schrumpft in den
Punkt + j oder — j zusammen, g wird unendlich
gross. Die Cosinusdiagramme werden zu unendlich
grossen Kreisen. Die Amplituden 4 und B nach
Gl. (10) und (13) werden jedoch unendlich klein,
so dass die Produkte A cos a,=U, und B cos f,=
I, Werte von endlicher Grisse werden (es sind ja
die gegebenen Spannungs- und Stromvektoren). Die
Vektoren U und I behalten immer denselben abso-
luten Betrag und verindern nur ihre Richtung. Sie
bleiben dauernd miteinander in Phase oder um 180°
phasenverschoben, je nach der Wahl des Bezugs-
sinnes; es wird keine Blindleistung transportiert.

Wie man sieht, konnen sowohl die Tangens- als
auch die Cosinusvektoren alle mioglichen Werte in
der unendlichen Ebene annehmen, auch wenn Strom
und Spannung nicht unendlich gross werden. Es
empfiehlt sich daher, mehrere Cosinus- und Tan-
gensdiagramme in verschiedenen Mal3stiben anzu-

fertigen, fiir unendlich grosse Werte von ¢ wird das
Cosinusdiagramm zu einem System von konzentri-
schen Kreisen und Radien.

F, Die Leitung mit Verlusten.

Nachdem im vorangegangenen Abschnitt die ver-
lustfreie Leitung, die natiirlich einen wunerreich-
baren Idealzustand darstellt, ausfithrlich behandelt
wurde, soll jetzt der Einfluss der Leitungsverlustie
untersucht werden. Man erkennt sofort, dass sich

der Wert des Ausdruckes }/yz indern muss. Es soll
daher gleich das im Abschnitt E behandelte Zah-
lenbeispiel 1 nochmals aufgegriffen und die dort
vernachlissigten Leitungsverluste sollen nachtrig-
lich beriicksichtigt werden.

Zahlenbeispiel 2.

Die Induktivitdt der Leitung betrigt wie in Bei-
spiel 1 0,64 mH/km, was bei 50 Per./s einen induk-
tiven Widerstand von x —=w [—2 7-50-0,61-10* =
0,201 Ohm/km ergibt.

Nach den Angaben des bereits zitierten Artikels
Seite 210 bis 215 des Bull. SEV 1931 hat die Dop-
pelleitung einen ohmschen Widerstand von 0,084
Ohm/km. Damit erhilt man fir die Impedanz

r + jx = 0,084 + j 0,201
= 0,2178 ¢ i67°20 Ohm/km
Die ohmsche Ableitung soll auch dieses Mal ver-
nachlissigt werden, so dass sich fiir die Admittanz
ergibt:
y = jb = 5,65 -
Dann wird
yz = 5,65 - 106 £i%°. 0,2178 £i67°20
= 1,23 . 100 ¢/157°20" km2
Vyz = 1,11 . 10-8 £i78°40" km-!
Fiir eine 100 km lange Leitung erhilt man dann
js Vyz = j 0,111 im0 = 0,111 ¢ i168°40
= — 0,1088 4+ j 0,0218
In Graden ausgedriickt erhilt man fiir 100 km
js Vyz=—16,24 + j 1,25 Grad.
Die Wellenimpedanz wird

z 0,218 ¢/ 6720
vy ) 5,65 .10° &/%°

Fiir den Anfangspunkt der Leitung in Innert-
kirchen sollen wieder dieselben Werte fiir U, und
I, angenommen werden wie in Beispiel 1, nimlich
U,= 86600 V und I,=—430 A. Die Spannung soll
wieder dem Strom um 30 Grad voreilen. Dann wird
die Belastungsimpedanz am Anfang der Leitung
wieder wie frither 201 ¢3° Ohm. Hieraus erhilt
man nach Gl. (22) fiir die Tangensvektoren:

196 g711020
201 /30
201 gi30°
196 ¢ 120

z =

106 & i%° Siemens/km

= 196 &11°20 Ohm

jtga, = = 0,975 7412

j tg ‘80 = —; 1,025 €+j 41020°
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Um nun den cos a, und den cos 3, zu bestimmen,
wird wieder wie in Beispiel 1 das Hilfs-Cosinusdia-
gramm nach Fig. 1 benutzt und darin bestimmt man

SEVS520

Fig. 6.
Spannungs- und Strom-Diagramm der Leitung mit Verlusten in
richtiger gegenseitiger Lage.

die Punkte E und F, die auch in das Diagramm
nach Fig. 2 iibertragen werden. Beide liegen wieder
auf derselben Ellipse «g=-—27,9"5, E liegt auf

SEvs521

Fig. 7.

und Strom-Diagramm der Leitung mit Verlusten.
Strom-Diagramm.
Kurve a: Blindleistung =
Kurve c¢: Wirkleistung = 0

Allgemeines Spannungs-

Spannungs-Diagramm.
Kurve b: Blindleistung = 0
Kurve d: Wirkleistung = 0

der Hyperbel «p=136,1°» und F auf der Hyperbel
«p=46,1"». Es ist also wieder ¢ — == 90",

Fiir die gegebene Leitung von 124,1 km Linge
erhilt man

124
S 175+ 1,55
s 7,75 + j1,55

Damit wird am Ende der Leitung in Miihleberg

jsyyz=(—6,24 + j1,25)

a=a, + js Jyz=136,1 — j27,9 — 7,75 + j 1,55 =
128,35 — j 26,35 Grad

p=Pp8 *js)yz= 461 —j21,9 —7,75 + j 1,55 =
38,35 — j26,35 Grad

wodurch die Endpunkte G und H der Spannungs-
und Stromkurven gefunden werden (Fig. 2).

Wiihrend man bei der verlustfreien Leitung ein-
fach auf einer Ellipse wandern konnte, miissen jetzt
Ellipsen und Hyperbeln geschnitten werden. Beim
Fortschreiten im Sinne des Wirkleistungsflusses tritt
also nicht nur eine Verdrehung der Vektoren im
Uhrzeigersinn auf, sondern auch ein Uebergang zu
immer kleineren Ellipsen, bis die Brennstrecke er-
reicht wird. Hierbei gilt der wichtige Satz:

Die Aenderungen von p und ¢ stehen in einem
konstanten Verhiltnis. Dasselbe ist bei dem behan-
delten Beispiel

Ap —624
Ag T 41,25
Nach Gl (15) ist

A . Tz
Bzij]/i:
y

= 196 £-7101°20 Ohm

Die Vektoren A und B stehen
also nicht mehr senkrecht aufein-
ander. Es wird wieder das Span-
nungsdiagramm in seiner horizon-
talen Lage gelassen und das Strom-
diagramm um den soeben berech-
neten Winkel von 101°20° ver-
dreht, wodurch sich Fig. 6 ergibt.

—5,0

+j196 g-iuc

Die unendlich lange Leitung, Leer-
lauf, Kurzschluss und allgemeine
Betriebszustinde.

Bei einer Leitung mit Verlusten
gibt es keine Schwingungszustinde
ohne Leistungszufuhr wie bei der
verlustfreien Leitung. Es kann
hochstens ein einziger Leerlauf-
punkt oder ein einziger Kurz-
schlusspunkt vorkommen.

Die Kurve des Leerlaufsiromes
geht natiirlich durch den Null-
punkt. Der weitere Verlauf ist aus
Kurve I der Fig. 7 ersichtlich. Sie
kann auch um 180" gedreht wer-
den, wodurch die Kurve III erhal-
ten wird. Die Leerlaufspannung
beginnt in einem der beiden
Brennpunkte und wird durch eine der beiden Kur-
ven II oder 1V dargestellt.

Die Kurve der KurzschluBspannung ist mit der-
jenigen des Leerlaufstromes identisch (Kurve [

=l
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oder III), die Kurve des KurzschluBBstromes ist mit
derjenigen der Leerlaufspannung identisch (Kurve
II oder IV).

Selbstverstindlich miissen die Stromkurven noch
um den oben berechneten Winkel von 101° 20" gegen
die Spannungskurven verdreht werden.

Wenn man diese vier Kurven immer weiter ver-
folgt, so erhilt man in grosser Entfernung vom Null-
punkt vier gleiche logarithmische Spiralen. Zwi-
schen diese Kurven konnen nun eine beliebige An-
zahl weiterer Parallelkurven gelegt werden. Diese

2

‘ 'lllf’ﬁm\“‘

S

M

5

Impedan

Leers, b
X, uf.
YZSChly 55 = =", Wiz
ﬂ mpe,
‘ Tanz™

=

Kurzschiuss -

\

SEV5522

Fig. 8.

Allgemeines Impedanz- und Admittanz-Diagramm der Leitung
mit Verlusten.

Impedanz-Diagramin.
Gerade b: Blindleistung
Gerade d: Wirkleistung

Admittanz-Diagramm.
Gerade a: Blindleistung = 0
Gerade c; Wirkleistung = 0

= 40
=0
haben alle denselben Charakter. Sie kommen als
logarithmische Spiralen im Uhrzeigersinn aus dem
Unendlichen, nehmen in der Nihe der Brennpunkie
eine abgeplattete Form an, umschlingen ~férmig
beide Brennpunkte und wandern als logarithmische
Spiralen im Gegenuhrzeigersinn wieder ins Unend-
liche hinaus.

Dieses Kurvensystem stellt alle méglichen Be-
triebszustidnde dar, die iiberhaupt bei der gegebenen
Leitung denkbar sind. Fiir eine beliebige Belastung
und Phasenverschiebung bestimmt man nach Fig. 1
zunidchst den Anfangspunkt, iibertrigt denselben
direkt in das Diagramm nach Fig. 7, wandert dort
zwischen den benachbarten Kurven parallel dazu

hindurch, addiert oder subtrahiert fiir die gegebene
Strecke die entsprechende Anzahl reeller und ima-
gindrer Grade und findet so den Zustand am Ende
der Leitung.

Es sollen auch hier wieder die Verhiltnisse im
Tangensdiagramm studiert werden, wodurch Fig. 8
erhalten wird. Alle Tangenskurven beginnen im
Punkt +j, von welchem sie sich im Gegenuhrzeiger-
sinn spiralférmig immer weiter entfernen. Sie durch-
schneiden an irgendeiner Stelle die horizontale Axe,
worauf sie sich im Uhrzeigersinn spiralférmig dem
Punkt — j nihern, den sie erst nach unendlich vie-
len Umdrehungen erreichen.

Je nachdem, ob das Tangensdiagramm als Ad-
mittanz- oder Impedanz-Diagramm aufgefasst wird,
ergibt sich der Phasenverschiebungswinkel ¢ zwi-
schen dem Spannungs- und dem Stromvektor als
Winkel zwischen dem Tangensvektor und einer der
beiden geneigten Geraden a oder b, deren Neigung

durch die Richtung +j ]/i oder *j VL be-
y z

stimmt ist.

Man zieht nun noch zwei weitere Gerade ¢ und d,
welche auf den Geraden a und b senkrecht stehen.
Dann ist im Admittanzdiagramm auf der Geraden a
die Blindleistung, auf der Geraden c¢ die Wirk-
leistung Null, im Impedanzdiagramm ist auf der
Geraden b die Blindleistung, auf der Geraden d die
Wirkleistung Null. Ein Durchschreiten der Gera-
den ¢ im Admittanzdiagramm oder der Geraden d
im Impedanzdiagramm ist daher nun bei Kupp-
lungsleitungen zwischen zwei Kraftwerken miglich
bei schwacher Belastung, wobei dann von den bei-
den Werken Wirkleistung in die Leitung hinein ge-
spiesen wird, die auf der Leitung selbst in Form
von Verlusten vollstindig verbraucht wird. Im
Diagramm nach Fig. 7 entsprechen den Geraden a,
b, ¢, d acht Kurven «7r — konstant», wobei 7 durch

die Richtungen +]/—}z7 g & —I/*Z" +J ]/:

und + j ]/y bestimmt ist.

z

Im Impedanzdiagramm ist fiir den Leerlauf-
punkt die Impedanz Null; man erhilt dafiir den
Nullpunkt. Fiir den Kurzschlusspunkt ist sie un-
endlich gross, sie fillt daher in unendliche Ferne.
Im Admittanzdiagramm vertauschen die entspre-
chenden Punkte ihre Lage.

Mit Hilfe des Diagrammes nach Fig. 7 erkennt
man leicht, ob bei einer langen Leitung bei irgend-
einem Belastungszustand gefihrliche Ueberspan-
nungen auftreten konnen, die zu Ueberschlagen fiih-
ren konnen, oder ob ausserordentlich hohe Strome
moglich sind, welche die Leitung iibermissig er-
wirmen oder mechanisch iiberbeanspruchen. Ohne
diese Diagramme kiénnte man dies nur mit umstiind-
lichen Berechnungen herausfinden.

Um dies einzusehen, soll beispielsweise versucht
werden, die gesamte Leistung des Kraftwerkes Hand-
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eck von 112000 kVA bei der gleichen Sternspan-
nung von 86,6 kV und dem gleichen Strom von
430 A iiber ein oder mehrere parallele Kabel zu
iibertragen. Die Kapazitdt wird viel grosser, z. B.
etwa 0,35 yF/km; die Induktivitit wird viel kleiner,
z. B. etwa 0,14 mH/km. Dann wird bei Annalhime
eines Impedanzwinkels von 68° und einer Voreilung
des Stromes von 11°

. U,
jtg B =7 |/l
o) 2z
_ 86600 VIIO 106 ¢ 790
430&711° | 44 . 103 ¢ i'68
Hieraus t=10, =0, woraus sich mit Hilfe der
Fig. 1 und 2 fiir g, ein Wert von (90 —6j) Grad
als Anfangspunkt der Stromkurve ergibt. In 250 km
Entfernung wird =90—6j—30 + 6 j=060".
(Die Fortpflanzungsgeschwindigkeit in diesem Ka-
bel ist nur etwa die halbe Lichtgeschwindigkeit.)
Der Strom am Leitungsende wird das Fiinffache
des Normalstromes, also 2150 A, und die Leitung
mechanisch und thermisch iiberbeansprucht, wih-
rend im Kraftwerk nur der Normalstrom vorhanden
ist, welcher keine Schalterauslésung bewirkt.

=10

Wird dagegen ;—]]/Z:O,l, so erhilt man fiir

den Anfangspunkt der Spannungskurve den Punkt
(90 — 6 j) Grad. Die Spannung steigt in 500 km
Entfernung auf den fiinffachen Wert und ruft na-
tiirlich Ueberschlige hervor.

Man kommt nun ganz von selbst zum Schluss,
dass die Wellenimpedanz und die Belastungsimpe-
danz bei Vollast fur eine Kraftiibertragung unge-
fahr gleich gross sein miissen. Dies ist bei der Lei-
tung von Innertkirchen nach Miihleberg tatsdchlich
der Fall.

Spezialfall.

Im Gegensatz zu den Beispielen 1 und 2 soll die
obige Bedingung nicht nur dem absoluten Betrag,
sondern auch der Richtung nach ganz genau zutref-
fen. Es sei also vektoriell genau

U __ 'z
f‘ﬂ/?

Aus dem Hilfs-Cosinus-Diagramm nach Fig. 1 er-
sieht man sofort, dass die Cosinuskurven im Un-
endlichen beginnen, es sind einfache logarithmische
Spiralen und behalten diese Form bei bis in unend-
liche Distanzen auf der Leitung. Es entspricht dies
dem Fall eines Kreises bei verlustfreien Leitungen.
Der Phasenverschiebungswinkel zwischen Spannung
und Strom bleibt konstant, woraus folgt, dass auch

das Verhiiltnis M = konstant bleibt.
Wirkleistung

Spannung und Strom nehmen pro km prozentual
immer gleich viel ab. Aus Gl. (5) erhilt man fiir
diesen speziellen Fall

U—_- Uo 8'SVEundI=IOS-Sm

Man kann in diesem Fall leicht den Wirkungs-
grad einer s km langen Leitung berechnen

_ UO e sVyz IO e-SVyz cos @
L Uo Iy cos ¢

=g 25Vyz

Von diesem Ausdruck ist nur der absolute Betrag
(ohne Richtung) zu nehmen. Mit den Zahlenwerten
des Beispiels 2 erhilt man fiir eine 100 km lange
Leitung

p = & 2008 — £-0046 — ~ 1_0,0436 = 0,9564

Fiir andere Belastungszustinde werden die allge-
meinen Formeln ziemlich kompliziert; der Wir-
kungsgrad kann stark von dem obigen Wert ab-
weichen.

Aus dem Richtungswinkel des Vektors] / Z er-
Y

gibt sich, dass in unserm Beispiel fiir diesen Fall
der Strom der Spannung voreilen muss, Wirk- und
Blindleistung wandern daher in entgegengesetzten
Richtungen.

Im Tangensdiagramm erhilt man fiir diesen Zu-
stand nur den Punkt + j. Im Gegensatz zur verlust-
freien Leitung wird hier eine im Vergleich zur
Wirkleistung kleine Blindleistung iiber Distanzen
von mehr als 1500 km transportiert.

Zahlenbeispiel 3.

In diesem Beispiel sollen ausser den ohmschen
Lingswiderstinden auch noch die ohmschen Quer-
leitfihigkeiten (Ableitung, Koronaverluste) beriick-
sichtigt werden. Dann erhilt also die Admittanz
eine reelle Komponente

y=gtjb=g+tjoc

Durch die im Bulletin SEV 1931, S. 210, beschrie-
benen Versuche wurden fiir die Koronaverluste
bei 150 kV 0,08 kW/km bis 1 kW/km fiir die Ein-
fachleitung gemessen, je nach der Witterung. Durch
Umrechnen des grossten Wertes auf die Doppellei-
tung findet man fiir g einen Wert von 8,8-10* Sie-
mens/km. Damit wird

y=>5,65 ¢/8°¢-10-° Siemens/km
Vyz=111-10" £ ™1 km-!

Der Richtungswinkel von 7/yz hat sich um 27’,
also weniger als ein halbes Grad verindert. Die all-
gemeinen Cosinus- und Tangenskurven werden da-
her um diesen Betrag stirker geneigt als in Bei-
spiel 2. Das bedeutet im Cosinusdiagramm etwas
raschere Abnahme der Vektoren gegen die Brenn-
strecke (zwischen + 1 und — 1) hin; die Verluste
werden etwas grosser und die Wirkungsgrade etwas
schlechter.

Die Koronaleitfihigkeit ist keine Konstante ?).
Die Grosse g ist stark spannungsabhiingig. Man wird

5) Siehe ausser dem bereits mehrmals zitierten Artikel
im Bull. SEV 1931 besonders auch die dort am Schluss (S.

215) zusammengestellten Literaturangaben.
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also bei sehr genauen Arbeiten beim Aufzeichnen
der Fig. 7 zunichst nur etwa bis zu einer 10 %sigen
Spannungsinderung fortschreiten und hierauf mit
einem neuen Wert von g weiterfahren. Fiir nicht
iibertriebene Genauigkeit kann man jedoch meistens
einen konstanten Mittelwert iiber den ganzen Span-
nungshereich annehmen.

Fiir die Leitung Innertkirchen-Miihleberg findet
man, dass bei voller Leistung die Koronaverluste
etwa 25mal kleiner sind als die ohmschen Verluste.

Zahlenbeispiel 4.

Es sei noch ein anderes Beispiel erwiihnt, bei
welchem die Ableitung so gross ist, dass der Rich-
tungswinkel von y und z genau gleich wird. Die
Cosinus- und Tangenskurven erhalten die doppelte
Neigung, wonach sich doppelte Verluste ergeben;
ohmsche und Ableitungs-Verluste werden genau
gleich.

Fiir die unendlich lange Leitung konzentriert
sich das ganze Tangensdiagramm bekanntlich aufl

einen der Punkte + j oder — j. Da —l/i reell ist,
Y

fallen in Fig. 8 die Geraden a und b in die vertikale
Axe, was anzeigt, dass iiber die ganze Leitung reine
Wirkleistung ohne Blindkomponente iibertragen
wird.

Beim Uebertragen von Sprechstromen erhélt man
schon mit kiirzeren Leitungen mehrere Wellenldn-
gen, so dass man mit guter Anniherung eine unend-
lich lange Leitung annehmen kann. Es stellt sich
dann an der Sendestation immer ziemlich genau
T =i'| 7 ein, unabhingig davon, ob sie am

z
Ende unterbrochen, kurz geschlossen oder durch
eine Impedanz beliebiger Grosse belastet sei.

G. Literaturhinweise und Schlussbemerkungen.

Ueber die Berechnung langer Leitungen existiert schon
eine umfangreiche Literatur. Es seien hier nur ganz wenige
Veroffentlichungen herausgegriffen.

1. M. L. Keller: Die Uebertragung grosser Leistungen. Bull.

SEV 1929, S. 477, 517.

2. L. F. Woodruff: Complex hyperbolic funciion charts. Elec-

trical Engineering 1935, S. 550.

3. Frinckel: Theorie der Wechselstrome, 3. Auflage 1930,

12. Kapitel.

4. R. Wengler: Sinusrelief und Tangensrelief in der Elektro-
technik (nach einem Vortrag von Prof. Dr. Ing. F. Emde).

ETZ 1927, S. 766.

5. A. Blondel und Ch. Lavanchy: Resumé pratique du calcul
électrique des transmissions d’énergie a haute tension par
Pemploi d’abaques. Revue Générale d’Electricité. Nov.
1923, S. 775.

6. Giinther Oberdorfer: Zur Kraftiibertragung auf langen
Héchstspannungsleitungen. ETZ 1927, S. 1691.

7. Edith Clarke: «A transmission line calculatory und «Sim-

plified transmission line calculationsy. General Electric
Review 1923, S. 380, und 1926, S. 321.

In diesen Veroffentlichungen wird zum Teil mit Reihen-
entwicklungen der hyperbolischen Funktionen operiert, zum
Teil werden ganz interessante Diagramme dargestellt.

In Literatur 2 erkennt man Leerlaufspannungs- und Kurz-

schluBstrom-Kurven fiir verschiedene Werte von l/yz, jedoch

nur fiir einen beschrinkten Bereich, wihrend in Fig. 7 des
vorliegenden Artikels fiir einen einzigen Wert von 'l/yz alle

Belastungsstrom- und Spannungs-Kurven fiir unbeschriinkte
Leitungslingen dargestellt sind.

Beim Vergleich der Fig. 2 und 4 von Literatur 4 mit den
Fig. 2 und 4 dieses Aufsatzes findet man, dass das Argument
s ]/yz und die Funktion (sin, cos, tg) ihre Rollen in den
beiden Artikeln vertauschen. Ausserdem werden bei Wengler
und Emde die Funktionen durch absoluten Betrag und Rich-
tung dargestellt. Sehr interessant sind die Reliefs. Von den
Fig. 2 und 4 dieses Artikels konnte man natiirlich auch Re-
liefs konstruieren.

Literatur 5 zeigt in Fig. 5 und 6 ihnliche Diagramme wie
Literatur 4.

In Fig. 3 der Literatur 6 kann man vereinzelte Bruch-
stiicke der Kurven nach Fig. 7 dieses Aufsatzes erkennen.

Der Verfasser ist der Ansicht, dass mit keiner dieser Dar-
stellungen eine solch klare Uebersicht iiber die Cosinus-,
Sinus- und Tangensfunktionen komplexer Argumente gewon-
nen wird, wie mit den Fig. 2 und 4 dieses Artikels. Fig. 7
und 8 zeigen alle méglichen Betriebszustinde auf einer Lei-
tung beliebiger Linge mit einer sonst nicht erreichbaren
Uebersichtlichkeit. Der Verfasser glaubt daher, mit dem
vorliegenden Artikel einen Beitrag zum Problem der Fern-
kraftiibertragung zu liefern. Besonders auch fiir die Tele-
phonie, bei der Sprechstrome mit Frequenzen von einigen
Tausend Hz vorkommen, konnen diese Ueberlegungen niitz-
lich sein.

Ausser obigen Literaturangaben 1 bis 7 elektrotechnischen
Charakters sei noch auf folgende rein mathematische Werke
hingewiesen:

8. A. E. Kennelly, Atlas der komplexen Hyperbelfunkiionen.
9.L. Lewent, konforme Abbildungen, S. 24, 64, 74.
10. Mises-Frank, Differential- und Integralgleichungen I, S. 107.

Diese Werke 8 bis 10 enthalten ebenfalls das Cosinus-
(resp. Sinus-) sowie das Tangensdiagramm nach Fig. 2 und 4
dieses Aufsatzes. Eine ausfithrliche Anwendung auf Leitungs-
probleme wird jedoch nicht gemacht.

Die Fig. 1, 2, 4 wurden vom Verfasser in grésserem Mass-
stab, nidmlich 500 mm fiir die Zahleneinheit je fiir einen
Quadranten angefertigt. Es konnen daher Abziige in dieser
Grosse vom Verfasser ¢) bezogen werden, womit natiirlich
ein genaueres Arbeiten moglich ist.

Der Verfasser gedenkt in einem weiteren Artikel noch den
Verlauf der Leistung sowie eventuell noch einige verwandte
Probleme zu behandeln.

6) Chaletweg 9, Ziirich 11.
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