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Der Verlauf von Strom und Spannung längs einer Uebertragungsleitung.
Von Ernst Peter, Zürich-Oer] ilcon. 621-335.051

Die Grundgleichungen für die Berechnung von Strom und
Spannung bei Uebertragungsleitungen enthalten bekanntlich
hyperbolische Funktionen komplexer Argumente. Während
sich diese Funktionen bei reellen Argumenten durch zwei
einfache Kurven darstellen lassen, die der junge Ingenieur
bei seinem Studium kennen lernt, liegen die Verhältnisse bei
komplexen Argumenten scheinbar derart kompliziert, dass
die meisten Ingenieure darüber sehr wenig orientiert sind.
Für die Berechnung von kürzeren Leitungen kann man diese
Funktionen in Reihen entwickeln und sich mit den ersten
zwei bis drei Gliedern begnügen. Der Verfasser behandelt
eine Durstellung, mit welcher man einen überraschend klaren
Ueberblick über diese Funktionen gewinnt, und zwar für
Argumente, deren reelle und imaginäre Komponenten in
beliebigen positiven und negativen Grenzen variieren können.
Dadurch ist man bei Leitungsberechnungen sowohl hinsichtlich

der Leitungslänge als auch der Frequenz des Wechselstromes

an keine Grenzen gebunden. Es kann daher auch der
Schwachstromtechniker die gleiche Methode mühelos zum
Studium der Uebertragung von Sprechströmen (Tonfrequenz)
anwenden. An Stelle umständlicher Berechnungen tritt das
einfache Ablesen aus einem Diagramm.

Les équations fondamentales pour le calcul du courant
et de la tension dans les lignes de transmission contiennent
des fonctions hyperboliques à arguments complexes. Lorsque
les arguments sont réels, ces fonctions peuvent se représenter
par deux courbes simples que le jeune ingénieur apprend à

connaître au cours de ses études. Pur contre, lorsque les

arguments sont complexes, la situation paraît si compliquée
que la plupart des ingénieurs en savent très peu. Pour
calculer des lignes courtes, on peut développer ces fonctions
en séries et se limiter aux deux ou trois premiers termes.
L'auteur expose une méthode qui apporte une étonnante
clarté dans ces fonctions, et cela pour des arguments dont les

termes réels et imaginaires peuvent varier entre n'importe
quelles limites positives et négatives. De la sorte, le calcul
des lignes n'est plus lié à aucune limite, tant au point de vue
de la longueur des lignes que de la fréquence du courant
(dlernatif. Le technicien à courant faible peut donc sans

autre utiliser cette méthode pour l'étude de la transmission
des courants à fréquence musicule. Les calculs compliqués
sont remplacés par la simple lecture d'un diagramme.

A. Ableitung der Grundgleichungen.
Sind bei einer Uebertragungsleitung Spannung

und Strom an einem bestimmten Punkt in ihrer vek-
loriellen Grösse (d. h. absoluter Betrag und Pliasen-
verschiebungswinkel) gegeben, so kann man Strom
und Spannung für jeden beliebigen Leitungspunkt
berechnen, wenn die Leitungskonstanten bekannt
sind.

Es bedeute:
s die Leitungslänge in km;
co 2 77 / die Kreisfrequenz;
z r + jx=r + ju>l den Impedanz-Vektor in

Ohm pro Phase und pro km;
y g + jb g + jcoc den Admittanz-Vektor in

Siemens pro Phase und pro km;
U0 den Vektor der Sternspannung an dem gegebenen

Punkt;
/„ den Vektor des Stromes an dem gegebenen Punkt;
U den Vektor der Sternspannung an dem gesuchten

Punkt ;

/ den Vektor des Stromes an dem gesuchten Punkt.

Der gegebene Punkt, der als Nullpunkt bezeichnet

werden soll, liege irgendwo auf der Leitung und
diese sei nach beiden Seiten beliebig weit fortge¬

führt. Wie bei allen Problemen mit vektoriellen
Spannungs- und Stromdiagrammen muss man längs
der Leitung eine positive Bezugsrichtung wählen
und die Entfernung s von dem gegebenen
Nullpunkt in der Bezugsrichtung positiv, entgegen der
Bezugsrichtung negativ bezeichnen. Auch in der
Richtung quer zur Leitung muss man eine positive
Bezugsrichtung wählen, und zwar sei sie positiv in
der Richtung von der Erde (oder eventuell von
einem Nulleiter) nach einem Phasenleiter. In der
Zeichnungsebene, in welcher die rotierenden
Vektoren dargestellt werden, sei die positive reelle Axe
horizontal nach rechts und die positiv imaginäre
Axe vertikal nach oben gerichtet. Die Strom- und
Spannungs-Vektoren sollen zeitlich im Gegenuhrzeigersinn

rotieren und werden derart aufgetragen,
dass sie mit der positiv reellen Axe einen spitzen
Winkel einschliessen, wenn sie zur Zeit t 0 in der
Bezugsrichtung einen positiven Wert haben.

Unter diesen Voraussetzungen gelten dann
folgende Differentialgleichungen:
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Durch nochmalige Differenziation erhält man

d2 U dl
ds2

d2/
d.s'2 -y

d.s

d U
ds

+zy u

zy,

(2)

Die allgemeine Lösung für U lautet

U KlE'Vyz + K2e-'Vy' (3)

Hieraus findet man

(4)

Ist für s 0, U U0 und / so kann man die
Integrationskonstanten berechnen und findet

U

.-Vi-

I

\[h+u,yt)e-K'

(5)

Fasst man in den Gleichungen (5) je die Glieder
mit U0 und /„ zusammen, so erhält man:

U l/0 ©o§ S \yz — /„ l/y (Sin s }/yz

I I0 ©os s]/yz- Uj/^Sin s}/yz
(6)

Wenn man die Wahl der Bezugsrichtung konsequent
durchführt, so gelten diese Gleichungen unter allen Umständen,

ob nun /o und I/o die gegebenen Werte am Anfang der
Leitung Generatorenwerte), / und U die gesuchten Werte
am Ende der Leitung (Verhraucherwerte) darstellen oder ob
das Umgekehrte der Fall ist. Oies steht im Gegensatz zu den
Ausführungen mehrerer anderer Autoren, welche die Lei-
lungslänge einfach als eine positive Grösse annehmen und
dann das Gleichungssystem (6) nach /o und Uo auflösen,
wodurch sowohl Uo und U als auch Io und I ihre Plätze
vertauschen, während die mit dem @{n behafteten Glieder ihr
Vorzeichen wechseln. Dieser Vorzeichenwechsel erscheint für
die Zwecke dieses Artikels ungeeignet. Durch Einführung
der Bezugsrichtungen ') gelingt es, ihn zu vermeiden; ebenso
wird das Auflösen des Systems (6) nach Uo und Io
überflüssig.

Der nötige Richtungswechsel der zweiten Glieder der beiden

Gleichungen vollzieht sich automatisch, ohne dass am
Vorzeichen etwas zu ändern ist, da die beiden @in-Vektoren
heim Einsetzen einer negativen Leitungslänge sich um 180"

drehen, während die beiden ßo8-Vektoren ihre Richtungen
beibehalten. Da die Wahl der positiven Bezugsrichtung
willkürlich erfolgt ist, so kann sie jederzeit wieder geändert werden,

wenn man nicht gern mit negativen Leitungslängen
rechnet. Dann sind aber beide Stromvektoren um 180° zu
verdrehen, während die beiden Spannungsvektoren ihre Richtung

beibehalten.

1 Siehe A. von Brunn: «Die Bedeutung des Bezugssinnes
in Vektordiagrammen», Bull. SEV 1922, S. 385, 449, und A.
von Brunn: «Neue Methoden zur graphischen Bestimmung
von Wechselstrom-Ortskurven», Bull. SEV 1929, S. 65.

Die Ueberlegungen sind besonders wichtig hei Leitungen
mit wechselnder Energiefluss-Richtung, hei welchen die
Begriffe «Anfang» und «Ende» ihre Bedeutung verlieren.

Die Wirkleistung soll dann positiv sein, wenn sie in der
Bezugsrichtung fliesst, Strom und Spannungsvektor bilden
dann einen spitzen Winkel. Bei einem Wechsel der
Bezugsrichtung wird dieser Winkel stumpf, da der Stromvektor um
180° verdreht wird, während der Spannungsvektor
unverändert bleibt. Die früher positive Leistung wird dadurch
negativ.

Die meisten Autoren verwenden die Gleichungen
(6) mit hyperbolischen Funktionen. Da jedoch in
den technischen Handbüchern für Kreisfunktionen
ausführlichere Formelsammlungen zur Verfügung
stehen, welche ohne weiteres auch für komplexe
Argumente gelten, sollen die Gleichungen (6) auf
Kreisfunktionen umgeformt werden. Dies ist um so

eher berechtigt, als bei verlustlosen Leitungen oder
bei sehr hohen Frequenzen ohnehin Kreisfunktionen

mit reellen Argumenten auftreten. Es gelten
die Beziehungen

sin jx j ©itt x ©in jx j sin x
cos jx Eo2 x ©o§ jx cos x
tg jx j%§x $0 jx j tgx

(7)

(8)

Wenn man diese Beziehungen in Gl. (6) einsetzt, so

ergibt sich

U U0 cos j s]/yz I0 jy^ ain js]/yz

I Ig cos j s }/yz -+- U0j J s \'yz

Auch diese beiden Gl. (8) gelten in allen Fällen
ohne Vorzeichenwechsel.

Die Summe einer cos- und einer sin-Funktiou
kann man wie bei jeder Wellenbewegung auch hier
mit den komplexen Argumenten in eine einzige
Kreisfunktion verwandeln nach folgendem Ansatz:

U — A cos (;s|/yz-l-a0) A cos a (9)

wobei a a0 + jsj/yz ist; A und a0 sind jetzt die
zu bestimmenden Integrationskonstanten.

Aus Gl. (9) erhält man

U A (cos or() cos js \yz — sin a0 sin js]/yz)
Aus Gl. (8) erhält man

U — A
Uo

A
cos js}/yz

i'-f
sin j s ]/y z

Da beide Gleichungen identisch sind, wird

Ug
cos ßn —u A

-JHo]/
Sln «0 A

z

y

Quadriert und addiert ergibt sich

cos2 ct0 + sin2 or0

772 _ 12u u 7 0

A2
1
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Hieraus -Y u2, - R (10)

Damit ergibt sich endgültig

Un
cos an -

'•«y

UI-1Ï

jU0]/

]/Ul - 11 (11)

tg «0 -J
Aelinlich erhält man

/ ß cos (jfsj/yz + ßa) B cos ß (12)
wobei ß ß0 + jsyyz ist

B ]/« — U2 —V°
z

COS ß0
h sin ß0

y v. - TJ2-v o

tg ßi

-•^y
ya- ui~

z

(13)

(14)

B. Das Hilfs-Cosinus-Diagramm.
Die Formel (11) kann noch etwas umgeformt

werden.
1

y> Hz y i + tg2 «0
(17)

Uly
Die Gl. (11) und (17) sind ziemlich kompliziert
und es würde daher für den praktischen Betriebsmann

zu umständlich sein, den cos a0 jedesmal nach
diesen Formeln zu berechnen. Es wurde daher in
dem Hilfs-Cosinus-Diagramm nach Fig. 1 die
Beziehungen zwischen den Vektoren cos an und

j tg - feV
graphisch dargestellt.

Angenommen, der Vektor j tg an habe den
absoluten Betrag t und den Richtungswinkel r. Für
konstante Werte von r und variable Werte von t erhält
man Kurven, die in Fig. 1 mit t 0°, r 6",

t t= 12° usw. angeschrieben sind.
Für konstantes t und variables r dagegen ergeben

sich Kurven, die mit t <= 0,8, î >= 1, t — 1,25
usw. angeschrieben sind.

Fig. 1.

Das Hilfs-Cosinus-Diagramm.

Es sei entweder j lg <x
I -,
V

oder j tg ß -

— t-eJT
y

'±=t.eir

Zwischen den Grössen A, B, or„, ß0 bestehen die
Beziehungen

B tg«o tg ß0 —1 (15)

Hieraus a„ — ß(l ± 90".
Die Gl. (9) und (12) können jetzt noch etwas

vereinfacht werden. Unter Zuhilfenahme der Gl.
(9) bis (14) ergibt sich

U A cos a cos « 1/ U20 - /g- U0 -— (16)i/ y cos

I B cos ß — cos ß i/n-w.z-i^y z cos ß0

Dann zeigt dieses Diagramm den Cosinus
als Funktion des Tangens, d. h. als Funktion

von t und f Der Richtungswinkel r
ist in Intervalle von 6 Grad eingeteilt:
finden absoluten Betrag t wurden folgende
Werte angenommen:
t ~ 0.1 — 0.125 — 0,16 — 0,2 — 0,25 — 0,316

— 0,4 — 0,5 — 0,625 — 0,8 — 0,9 — 1 —
1,11 — 1,25 — 1,6 — 2 — 2,5 — 3,16 —
4 — 5 — 6,25 — 8 — 10

Die ersten Werte liegen in der Nähe der
Punkte +1 und —1 und können in der
Verkleinerung nicht mehr genau abgelesen
werden.

Mit Hilfe des Diagrammes nach Fig. 1 findet man
daher zu einem beliebigen Wertepaar (t, r) leicht
den zugehörigen Vektor cos a0 (bzw. seine Spitze)
als den Schnittpunkt der beiden entsprechenden
Kurven «t konstant» und «r konstant».

Für eine bestimmte gegebene Leitung ist der

Ausdruck eine konstante Grösse. Normalerweise

will man die Spannung U0 an einem
Verbraucher-Punkt der Leitung konstant halten. Dann ist

von dem Ausdruck y y JL der Strom /„ die ein-
y

zige Variable und das Diagramm Fig. 1 stellt den
cos a„ als Funktion des Stromvektors dar. Wenn
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der Wert /,. U, V- als Normalstrom bezeichnet

wird, dann bedeuten die in Fig. 1 eingetragenen
Werte «t konstant» einfach ein Vielfaches des
Normalstromes.

Das Hilfs-Cosinus-Diagramm kann aber auch in
gleicher Weise für den cos ß0 benutzt werden. Die¬

ser ist dann eine Funktion von j tg ß0
Un y

also bei konstanter Spannung ebenfalls eine Funktion

des Strom-Vektors /„. Nur muss man jetzt dessen

reziproken Wert nehmen. Aus diesem Grunde
wurde das System der Kurven «fi= konstant» in
Fig. 1 derart gewählt, dass zu jeder Kurve «t —
konstant» auch die Kurve des reziproken Wertes von t
vorhanden ist.

C. Das Cosinusdiagramm.
Das eigentliche Cosinus-Diagramm stellt die

Beziehungen dar zwischen dem Argument-Vektor a

Wird dagegen p konstant gelassen und q variiert,
so erhält man eine Hyperbel mit den Halbaxen
cos p und sin p. Der halbe Brennpunktabstand wird

j/(cos p)2 -(- (sin p)2 1

Gibt man nun sowohl p als auch q der Reihe
nach verschiedene Werte, so erhält man ein System
von sich rechtwinklig kreuzenden konfokalen
Ellipsen und Hyperhein.

Fig. 2 stellt ein Cosinusdiagramm dar, in
welchem sowohl reelle als auch imaginäre Komponenten

des Argumentes a p + jq in Intervallen von
71

— 6 Grad sich sprungweise ändern. Da die Intervalle

in beiden Richtungen gleich sind, entsteht ein
System von krummlinigen Quadraten2).

Wie bei reellen Argumenten, so gilt auch hier
cos (p + jq) cos (— p — jq)

Im Diagramm nach Fig. 2 sind nur die Werte für
0 < p < + 180° mit den zugehörigen Werten von q

Fig. 2.

Das Haupt-Cosimis-Diagramin

zeigt den Cosinus als Funktion seines

Argumentes. Reelle und

imaginäre Komponenten des Argumentes

sind in Intervalle von 6 Grad
TT

30 eingeteilt. Zu jedem Punkt

des Diagrammes gehört noch ein

zweiter Argumentwert, dessen beide

Komponenten entgegengesetztes

Vorzeichen haben.

und dem Funktions-Vektor cos a. Das Argument a
der Cosinus-Funktion kann in der Form

a>=p + jq
geschrieben werden, wo p und q reelle Zahlen sind.
Man kann jetzt ohne weiteres bekannte Formeln
aus der Trigonometrie anwenden und erhält

cos a — cos (p + jq) — cos p cos jq — sin p sin jq
cos p ©0? q — j sin p ©in q m + jn (18

Wird in Gl. (18) q konstant gelassen und p
variiert, so stellt sich die Cosinusfunktion (m, + jn)
als eine Ellipse dar mit den Halbaxen ©03 q und
©in <j. Der halbe Brennpunktabstand wird

]/(©02 q)- — (©in q)2 1

aufgetragen. Zu jedem Punkt des Diagrammes
gehört also noch ein zweites Wertepaar (p, q), dessen
beide Komponenten entgegengesetztes Vorzeichen
haben.

D. Das Tangensdiagramm.
Das Tangensdiagramm stellt die Beziehungen

dar zwischen dem Argument-Vektor a und dem
Funktions-Vektor tg a.

Eine wichtige Eigenschaft der Tangensfunktion
findet man folgendermassen: Es ist

j2<x _ -2q + 2jp cos a -j- j sin a

cos a —j sin a
j tg«

-J tga

2) S. Literatur'.iinweise Nrn. 8 bis 10 am Schluss.
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-2 q +j(2p +JT) j tg a + 1

J tga -
In Fig. 3 sei OA — + j

OB — j
OP — tga

Dann wird

tg a — j
tg « 4- j (19)

AP
BP

tga
tga

e
2? + ./'(2p + TT)

Hieraus ergeben sich folgende Sätze:

a) Der absolute Betrag von — ist gleich c-2q

Bleibt q konstant, so bleibt dieser absolute Betrag
konstant und der Punkt P beschreibt einen Kreis,
der entweder den Punkt A + j oder den Punkt

B= — j umschlingt. In
der Geometrie wird er ap-
polonischer Kreis genannt.

b) Der Winkel, den die
beiden Abstände r3 und
r2 einschliessen, ist 2p ± tj,.
Bleibt p konstant, so
bleibt dieser Winkel
konstant und der Punkt P
beschreibt einen Kreis durch
die Punkte À und B.

Gibt man den Grössen

p und q verschiedene
Werte, so erhält man zwei Systeme von sich
rechtwinklig kreuzenden Kreisen. Die Kreise des einen
Systems umschliessen alle entweder den Punkt + j
oder —j, die Kreise des andern Systems gehen alle
durch beide Punkte + j und — j hindurch.

Fig. 4 stellt ein Tangensdiagrannn dar, in
welchem wie beim Cosinusdiagramm nach Fig. 2 beide
Komponenten des Argumentes in Intervallen von
71

Fig. 3.

30
6° sich ändern.3)

Wie bei reellen Argumenten, so gilt auch hier

tg (P + j'l ± n 7t) tg (p + jq »

wobei n eine beliebige, ganze, reelle Zahl ist.
Im Diagramm nach Fig. 4 sind nur die Werte für

0° < p" < 180° eingetragen mit den zugehörigen
Werten von q. Zu jedem p-Wert kann also noch n
mal 180° addiert oder subtrahiert werden.

E. Die verlustlose Leitung.
Nach den Vorbereitungen der ersten Abschnitte

sollen jetzt die Leitungsprobleme behandelt und
zunächst der Idealfall der verlustlosen Leitung
betrachtet werden. Es sei also sowohl der ohmsche
Widerstand längs der Leitung als auch die ohmsche
Ableitung quer zur Leitung gleich Null.

Dann wird
r 0 und g — 0

yz jxjb — xb — —
3) S. Literaturliinweise Nrn. 8 bis trt am Schluss.

Für Freileitungen gilt mit grosser Annäherung

" -
wo vL die Lichtgeschwindigkeit ist. Dann wird

(20)

yz — also ]/yz j— und

j s ]/yz — s
ÙJ

(21)

Fig. 4.

Das Tangens-Diagramm
zeigt den Tangens als Funktion seines Argumentes. Reelle und
imaginäre Komponente des Argumentes sind in Intervalle von
6 Grad=-—- eingeteilt. In jedem Punkt des Diagrammes können

zum Argument noch n mal 180 reelle Grade addiert oder
subtrahiert werden.

Damit wird

Po'

CO

Vr

CO

jq; a0 Po + jq0

7o — 0 ; <1 9o

Das konstante Glied a„ ist eine komplexe Grösse,

das variable Glied s -^dagegen rein reell. Bei einer



506 BULLETIN No. 18 XXVII. Jahrgang 1936

Veränderung des Weges s ändert sich daher nur die
reelle Komponente p des Argumentes a, während
seine imaginäre Komponente q q0 konstant
bleibt. Nach den Abschnitten C und D beschreibt
daher der Cosinusvektor eine Ellipse, der Tangensvektor

einen appolonischen Kreis.
Nach Gl. (11) und (14) ist

j tg t|4
Die Grösse ist die Wellen-Impedanz, ihr

reziproker Wert y — die Wellen-Admittanz. Die

Grösse ~ soll die Belastungs-Impedanz, die Grösse

I
U

die Belastungs-Admittanz genannt werden. Es

ist also

jtaa- Belastungs-Adinittanz

J ^

Wellen-Admittanz

Belastungs-Impedanz
Wellen-Impedanz

(22)

In diesen beiden Ausdrücken sind die Nenner
der Brüche Konstante für eine gegebene Leitung,
nur die Zähler sind variabel. Die Taiigensdia-
gramme zeigen also unmittelbar den Verlauf der
Belastungs-Admittanz und Impedanz längs einer
Leitung. Man kann daher das Diagramm des Vektors

tg a das Admittanz-Diagramm, dasjenige des
Vektors tg ß das Impedanz-Diagramm nennen.

Zahlenbeispiel 1.

Es soll jetzt ein praktisches Beispiel durchgerechnet

werden und es sei dazu die von den Bernischen

Kraftwerken A.-G. und der Kraftwerke Obet-
hasli A.-G. betriebene 150 kV-Leitung von Innert-
kirchen über den Briinigpass, durch das Emmental-
Bickingen-Pieterlen nach Mühleberg gewählt. Es
ist eine Drelistrom-Doppelleitung. Die sechs Leitungen

sind ungefähr in einem regulären Sechseck
angeordnet. Die totale Leitungslänge beträgt 124,1 km.

Aus dem im Bull. SEV 1931, S. 212, Fig. 7,
abgebildeten Profil der genannten Leitung und dem
Leiterdurchmesser von 18,85 mm kann man die
Leitungskonstanten l und c berechnen. Man erhält für
die Doppelleitung

l 0,64 mH/km
c 0,018 «F/km

Im genannten Bulletin SEV sind gemessene
Werte nur für die Einfachleitung angegeben. Sie
decken sich mit den vom Verfasser ebenfalls
berechneten Werten l<= 1,32 mH/km und c 0,00875
/tF/kin für die Einfachleitung. Im folgenden wird
nur die Doppelleitung behandelt. Man erhält
zunächst

le 0,64-10 :
H

km
• 0,018-10-'

F
km

0,115 -10-10 12:

2,95 - 105

v ist die Wellenfortpflanzungsgeschwindigkeit

unserer Leitung; sie ist mit 2,95-105 nur wenig

kleiner als die Lichtgeschwindigkeit vL, die bekannt-
km

lieh 3 105 ist. Nimmt man an Stelle der mas-
s

siven Seile unendlich dünnwandige Hohlseile, so
fällt das magnetische Feld im Innern der Leiter
weg und damit wird die Induktivität nur noch 0,615
mH/km. Dann wird die Wellenfortpflanzungsgeschwindigkeit

genau gleich der Lichtgeschwindigkeit,
also v <= vL.

Wenn v=vL ist, erhält man für eine 100 km
lange Leitung bei einer Frequenz von 50 Per./s

,i— s 2 7Tf 100-2;r-50 jt „- 30Ö000 30
6 Grad-

Dies ist aber im Cosinus- und im Tangens-Diagramm
nach Fig. 2 und 4 gerade die Intervallendifferenz
zweier benachbarter Kurven. Sie wurde absichtlich
so gewählt, um bei 50 Per./s mit einem Blick gerade
100 km mit ziemlich grosser Genauigkeit ablesen
zu können. Es ergibt sich nun:

Für 50 Per./s entspricht einer ganzen Ellipse im
Cosinus-Diagramm angenähert eine Leitungsstrecke
von 6000 km, einem ganzen appolonischen Kreis
des Tangensdiagrammes eine Strecke von 3000 km
bei verlustlosen Freileitungen.

Da jedoch in dem vorliegenden Beispiel die
Fortpflanzungsgeschwindigkeit etwas kleiner als die
Lichtgeschwindigkeit ist, so erhält man für 100 km
6,1 Grad und im Cosinus- und im Tangensdiagramm
für die vorgedruckte Intervallendifferenz von 6 Grad
nur 98,5 km.

Die Leitung von Innertkirchen nach Miihleberg
hat eine Länge von 124,1 km, was einem Argument
von 6,1 • 1,24 fc= 7,56 Grad entspricht. Die Wellen-
Impedanz wird

1/7=1/4=1/Mis'.io- i88'5 oh
Dieser Wert ist bei verlustlosen Leitungen rein reell.

Die verkettete Nennspannung beträgt 150 kV, die
Sternspannung U somit 86,6 kV. Bei Vollbetrieb
des Kraftwerkes Handeck stehen in Innertkirchen
4-28 000 112 000 kVA zur Verfügung, die nach
Mühleberg transportiert werden können. Der
Betriebsstrom wird dann 430 A. Der Normalstrom für
die Doppelleitung wird:

Spannung 86 600 V

Wellenimpedanz 188,5 Ohm
460 A.
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Man erhält somit:
Betriebsstrom
Normalstrom - 430 - 0 935- 460 -

Diese Leistung werde unter einem Leistungsfaktor
cos cp von 0,866 in Innertkirchen mit voreilender
Spannung von Innertkirchen nach Mühleberg
übertragen, was einem Verschiebungswinkel von + 30
Grad zwischen Spannungs- und Strom-Vektor
entspricht. Die Belastungsimpedanz ist dann

U 86 600 V EJ30
201 eJ 30 Ohm

/ 430 A

Hieraus ergeben sich nach Gl. (22) für die Tangens-
Vektoren

188,5
J tg «o 2(1 P./30

0,935 e~J3°

j tg ßo
201 EJ 30

1,07 e +>30
188,5

Um nun den cos a0 zu bestimmen, wird das

HilfsCosinus-Diagramm nach Fig. 1 benützt und dort der
Schnittpunkt der beiden Kurven «t 0,935» und
«r — 30°» gesucht. Um cos ß0 zu bestimmen, wird
der Schnittpunkt der beiden Kurven «f 1,07» und

«r= + 30°» gesucht. Man erhält auf diese Weise
die beiden Punkte A und B in Fig. 1.

Horizontale und vertikale Komponenten der
Punkte A und B werden nun mit dem Maßstab oder
Zirkel von Fig. 1 auf Fig. 2 übertragen. Es ist
jedoch von grossem Vorteil, wenn man sich von dem
Haupt-Cosinus-Diagramm nach Fig. 2 einige Exemplare

auf durchsichtigem Papier herstellt, und zwar
in demselben Maßstab wie Fig. 14). Mit diesen
kann man einfach die beiden Fig. 1 und 2

aufeinanderlegen und die beiden gefundenen Punkte A
und B von Fig. 1 auf Fig. 2 übertragen. In Fig. 2

liegen jetzt beide Punkte auf derselben Ellipse,
nämlich «q — 37,5"», Punkt A liegt auf der
Hyperbel «p= 138,8"», Punkt B auf der Hyperbel
«p — 48,8°». Man findet Gl. (15) bestätigt, nach
welcher «0 — ß„ — ± 90° ist. Dies gibt eine wertvolle
Kontrolle.

Wie weiter oben berechnet, ist für die ganze
Leitung von Innertkirchen bis Mülileberg der Wert
js y yz 7,56 Grad. Wenn der Bezugssinn von
Innertkirchen bis Mülileberg positiv gewählt wird
(es sei hier nochmals auf die Ausführungen im
Abschnitt A betreffend Bezugssinn verwiesen), so
erhält man für s in Mülileberg einen positiven Werl,

somit wird s — positiv. Damit wird in Mülileberg
v

a 138,8« -j 37,50 _ 7,56°
U V

131,240 _ j 37,50

ß ß0s — 48,8°— j 37,50 — 7,56°

41,240—j37,50
4) Transparente Diagramme können vom Verfasser (Chaletweg

9, Zürich 11 bezogen werden.

Damit ergeben sich die Endpunkte C und D der
Spannungs- und Stromkurven (Fig. 2).

Man findet damit den allgemein gültigen Satz:
Bei verlustfreien Leitungen verdrehen sich die
Vektoren cos a und cos ß im Uhrzeigersinn, beim Wandern

auf der Leitung im Sinne des Wirkleistungsflusses

(wenn man die Strom- und Spannungs-Vektoren
zeitlich im Gegenuhrzeigersinn rotieren lässl,

was heute als das Normale gilt). Der Satz ist
unabhängig von der Wahl der Bezugsrichtung.

Nach Gl. (16) ist U A cos a und /^=B cos ß.

Nach Gl. (15) ist —
D

+ 'V
Da bei verlustfreien Leitungen V

y
/ z rein reell ist,

so stehen die Vektoren A und B senkrecht aufeinander.

Um daher aus dem Verlauf der Cosinus-Vek-
toren den Verlauf der Strom- und Spannungs-Vektoren

in ihrer richtigen gegenseitigen Lage zu
finden, wird das Spannungsdiagramm unverändert
gelassen und das Stromdiagramm um 90 Grad in dem
Sinne verdreht, dass zwischen den gegebenen
Vektoren U0 und /„ der gegebene Phasenverschiebungswinkel

von 30° erscheint. Man erhält damit zwei
senkrecht aufeinanderstellende kongruente Ellipsen

[X

Fig. 5.

Spannung- und Strom-Diagramm dor verlustlosen Leitung in
richtiger gegenseitiger Lage.

nach Fig. 5. Je ein kleines Teilstück dieser Ellipsen
stellt den Vektorenverlauf dar zwischen den
gegebenen Punkten A, B am Anfang und C, D am Ende
der Leitung. Um den Maßstab der Kurven zu
bestimmen, trägt man einfach die gegebenen Strom-
und Spannungswerte in die gefundenen Anfangswerte

der Cosinusdiagramme ein und findet dadurch
leicht mit dem Rechenschieber, wieviel Volts und
Ampères einem cm Vektorlänge entsprechen.
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Die in Fig. 5 eingetragenen Zahlen sind Effektiv-
werte. Da die rotierenden Ellipsen den räumlichen
und zeitlichen Verlauf von Strom und Spannung
darstellen, sollten eigentlich Scheitelwerte eingetragen

werden, was durch Multiplikation mit j/ 2

geschehen kann. An der Form der Kurven wird
dadurch natürlich nichts geändert. Sämtliche
Gleichungen gelten sowohl für Scheitel- als auch
Effektivwerte.

Unendlich lange Leitung.
Für Leitungen von weniger als 200 km Länge

findet man bei 50periodigem Wechselstrom
zwischen Anfangs- und Endvektor meistens nur ein
kurzes Stück einer fast geradlinigen Kurve. Interessant

werden die Verhältnisse bei dieser Frequenz
erst bei grösseren Leitungslängen. Es sei daher
angenommen, die behandelte Leitung sei nur ein
Teilstück einer grossen europäischen Sammelschiene;
sie habe also eine Länge von einigen tausend
Kilometern. Der Einfachheit halber wird angenommen,
am gegebenen Anfangspunkt seien Strom und Spannung

in Phase, und zwar sei ~| j1_ > 1. Dann
A) X Z

wird Un zur grossen, 70 zur kleinen Halbaxe einer
Ellipse. In Fig. 5 werden beide Anfangsvektoren
in die Horizontalrichtung nach links gelegt. Dann
ergibt sich folgender Verlauf:

s=-0 km. U ist ein Maximum, 7 ein Minimum,
beide sind in Phase (Punkte 1,1).

s — 750 km. U hat abgenommen und sich um
weniger als 45° verdreht, / hat zugenommen und
sich um mehr als 45° verdreht, U eilt I um einen
maximalen Winkel vor (Punkte 2,2').

s — 1500 km. U ist ein Minimum, I ein Maximum,

beide sind wieder in Phase. Beide sind gegenüber

s 0 um 90° verdreht (Punkte 3,3').
s 2250 km. U hat zugenommen, I hat

abgenommen. Wir haben wieder eine maximale
Phasenverschiebung zwischen U und I. jedoch im
umgekehrten Sinn; dieses Mal eilt der Strom der Spannung

vor (Punkte 4,4').
s — 3000 km. U und I haben gleiche Grösse, wie

bei s 0, sind jedoch um 180" gegen jenen Punkt
phasenverschoben (Punkte 5,5

Zwischen s 3000 km und s 6000 km erscheinen

wieder die genau gleichen Werte wie zwischen
s — 0 km und s 3000 km; nur sind alle um 180°
verdreht.

Bei höheren Frequenzen, die z. B. in der
Schwachstromtechnik beim Uebertragen von Sprechströmen
vorkommen, werden diese Distanzen natürlich
verkürzt. So erhält man z. B. bei einer Frequenz von
2000 Per./s für eine ganze Ellipse des Cosinusdia-
grammes nur eine Distanz von 150 km.

Interessant ist nun auch die Betrachtung der Tan-
gensdiagramme. Es werden daher die für
Zahlenbeispiel 1 berechneten Werte von tg oc0 und tg ß0 in
ein Tangensdiagramm nach Fig. 4 eingetragen und
dadurch die zwei Punkte A und B erhalten. Wenn

man an diesen Punkten die Werte von p0 und q„
abliest, so müssen sie mit den aus den Cosinusdiagrammen

herausgefundenen Werten übereinstimmen.

Dies ergibt wieder eine wertvolle Kontrolle.
Insbesondere findet man, dass beide Punkte A und
B auf demselben appolonischen Kreis q — 37,5"
liegen. Sie liegen ferner auf zwei Kreisbögen p
138,8° und /> 48,8°, die sich zu einem vollständigen

Kreis durch die Punkte + j und — j ergänzeil.
Man findet nun leicht auch die Werte für den
Endpunkt der Leitung; sie liegen auf demselben
appolonischen Kreis (Punkte C und D).

Das Tangensdiagramm zeigt den Verlauf der Be-
lastungsimpedanz und der Belastungsadmittanz. Bei
einer sehr langen Leitung findet man:

Für s 0, 3000, 6000 km ist die Impedanz ein
Maximum, die Admittanz ein Minimum, für s

1500, 4500 km ist die Impedanz ein Minimum, die
Admittanz ein Maximum (Punkte 1,1', 3,3').

Im Tangensdiagramm kann man besonders gut
den Phasenverschiebuugswinkel ablesen; er
erscheint als Winkel zwischen dem Tangensvektor
und der vertikalen Axe. Man findet für s 750,
3750 km eine maximale Voreilung des Spannungs-
vektors (Punkte 2,2 für s 2250, 5250 km eine
maximale Voreilung des Stromvektors (Punkte 4,4'),
während für s 0, 1500, 3000, 4500, 6000 km Strom
und Spannung in Phase sind. Den Phasenverschiebungswinkel

kann man berechnen:

sin 2 p Blindleistungf 2 q Wirkleistung

Da @in 2 q und die Wirkleistung konstaut bleiben

(es ist ja eine verlustfreie Leitung angenommen),

so ist sin 2 p direkt ein Mass für die
Blindleistung.

Man bezeichnet gewöhnlich Kondensatoren als
Blindleistungserzeuger, Drosselspulen (Asynchronmotoren usw.) als»

Blindleistungsverbraucher. Diese Annahme ist willkürlich;
es ist auch schon die gegenteilige Annahme vorgeschlagen
worden. Es soll jedoch hier an der erstgenannten Definition
festgehalten werden. Dann fliesst bekanntlich Blindleistung
von einer übererregten zu einer untererregten
Synchronmaschine. Für lange Leitungen findet man:

Die Blindleistung wird in den Gebieten hoher
Spannung (s 0, 3000, 6000 km) erzeugt, fliesst in
beiden Richtungen nach den Gebieten hohen Stromes

(s 1500, 4500 km) und wird dort verbraucht.
Bei langen Leitungen wird also die Blindleistung

nicht immer von Generatoren oder Phasenschiebern
geliefert und von den Stromverbrauchern
verbraucht, sondern sie entsteht und verschwindet auf
der Leitung seihst. Sie kann bei 50periodigem
Wechselstrom auf einer verlustfreien Leitung auf
keinen Fall weiter als 1500 km transportiert werden
(woran man allerdings auch kein Interesse hat).

Die Wirkleistung fliesst natürlich immer in
derselben Richtung; es gibt daher Gebiete, in welchen
Wirk- und Blindleistung gleichgerichtet sind (s

750, 3750 km) und solche, in welchen sie entgegengerichtet

sind (s 2250, 5250 km).
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Leerlauf und Kurzschluss.
Ist an einer Stelle der Leitung der Strom gleich

Null, so fallen die Cosinusdiagramme in die
Brennstrecke hinein, die Tangensdiagramme in die unendlich

lange horizontale Axe. In einiger Entfernung
vom Leerlaufpunkt ist der Strom nicht mehr Null,
Strom- und Spannungsvektor stehen auf der ganzen
Leitung senkrecht aufeinander.

Aus den Diagrammen findet man leicht, dass in
1500 km Entfernung von diesem Leerlaufpunkt ein
Kurzschlusspunkt liegt, in 3000 km Entfernung wieder

ein Leerlaufpunkt. Man kann sich eine beliebig
lange Leitung vorstellen, auf welcher Leerlauf- und
Kurzschlusspunkte in Intervallen von 1500 km
immer abwechseln. Dabei ist es nicht nötig, dass an
allen Kurzschlusspunkten eine leitende Verbindung
zwischen den Phasenleitern vorhanden sei, es ist
einfach die Spannung Null, ebenso ist auch nicht
an allen Leerlaufpunkten ein Leitungsuiiterhrucli,
es ist einfach der Stromvektor Null.

Es wird nur Blindleistung transportiert, der
Znstand bleibt bei einer absolut verlustfreien Leitung
ohne äussere Energiezufuhr dauernd bestehen. Wir
haben ein System von Schwingungskreisen
(Resonanz). Es sind reine stehende Wellen auf der
Leitung.

Eine Stromschleife, die an einem Ende offen, am
andern kurzgeschlossen ist, kann Schwingungen mit
ihrer Eigenfrequenz ausführen. Diese ist z. B. bei
einer 100 km langen Leitung 750 Per./s. Es können
auch Schwingungen mit einem ungeraden
Vielfachen der Grundfrequenz auftreten.

Leitung ohne Blindleistung.
Wenn die Belastungsimpedanz nach Grösse und

Richtung genau gleich der positiven oder negativen
Wellenimpedanz wird, erhält man

tg«o — J
Ur 7 ±

tg/3,

Das ganze Tangensdiagramm schrumpft in den
Punkt + j oder — j zusammen, q wird unendlich
gross. Die Cosinusdiagramme werden zu unendlich
grossen Kreisen. Die Amplituden A und B nach
Gl. (10) und (13) werden jedoch unendlich klein,
so dass die Produkte A cos a0 U„ und B cos ß„
/„ Werte von endlicher Grösse werden (es sind ja
die gegebenen Spannungs- und Stromvektoren). Die
Vektoren U und / behalten immer denselben
absoluten Betrag und verändern nur ihre Richtung. Sie
bleiben dauernd miteinander in Phase oder um 180"
phasenverschoben, je nach der Wahl des Bezugssinnes;

es wird keine Blindleistung transportiert.
Wie man sieht, können sowohl die Tangens- als

auch die Cosinusvektoren alle möglichen Werte in
der unendlichen Ebene annehmen, auch wenn Strom
und Spannung nicht unendlich gross werden. Es

empfiehlt sich daher, mehrere Cosinus- und
Tangensdiagramme in verschiedenen Maßstäben anzu¬

fertigen, für unendlich grosse Werte von q wird das

Cosinusdiagramm zu einem System von konzentrischen

Kreisen und Radien.

F. Die Leitung mit Verlusten.
Nachdem im vorangegangenen Abschnitt die

verlustfreie Leitung, die natürlich einen unerreichbaren

Idealzustand darstellt, ausführlich behandelt
wurde, soll jetzt der Einfluss der Leitungsverluste
untersucht werden. Man erkennt sofort, dass sich

der Wert des Ausdruckes ]/yz ändern muss. Es soll
daher gleich das im Abschnitt E behandelte
Zahlenbeispiel 1 nochmals aufgegriffen und die dort
vernachlässigten Leitungsverluste sollen nachträglich

berücksichtigt werden.

Zahlenbeispiel 2.

Die Induktivität der Leitung beträgt wie in
Beispiel 1 0,64 mH/km, was bei 50 Per./s einen induktiven

Widerstand von x a> l <= 2 jt • 50 • 0,61 • 10-3

0,201 Ohm/km ergibt.
Nach den Angaben des bereits zitierten Artikels

Seite 210 bis 215 des Bull. SEV 1931 hat die
Doppelleitung einen ohmschen Widerstand von 0,084
Olim/km. Damit erhält man für die Impedanz

z — r -\- jx 0,084 -f- / 0,201

0,2178 e <67°20' Ohm/km
Die ohmsche Ableitung soll auch dieses Mal
vernachlässigt werden, so dass sich für die Admittanz
ergibt :

y jb — 5,65 10~6 e '90° Siemens/km
Dann wird

yz 5,65 • 10-6 £<90° • 0,2178 e'«020'

1,23 • 10-6 £ /1570 20' km-2

\/yz= 1,11 10"3 £ / 780 40* km-l
Für eine 100 km lange Leitung erhält man dann

jS j 0,111 fi/VSMO' 0,111 £ ' >680 40'

— 0,1088 + j 0,0218
In Graden ausgedrückt erhält man für 100 km

js "j/yz^= — 6,24 + 7 1,25 Grad.

Die Welleninipedanz wird

j/y -V 5?62518lo'7- 1% °bm

Für den Anfangspunkt der Leitung in
Innertkirchen sollen wieder dieselben Werte für U0 und
/„ angenommen werden wie in Beispiel 1, nämlich
I/0 — 86 600 V und I„<= 430 A. Die Spannung soll
wieder dem Strom um 30 Grad voreilen. Dann wird
die Belastungsimpedanz am Anfang der Leitung
wieder wie früher 201 e7 30 Ohm. Hieraus erhält
man nach Gl. (22) für die Tangensvektoren:

l oft o-y 11° 20'

7" tg a0 0,975 £-' 410 20'

j tgßo

201 eJ'30°

201 e'30"

196 £-yu°20'
1,025 s+J 4P20'
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js-fyz (— 6,24 + j 1,25) — 7,75 + j 1,55°

Damit wird am Ende der Leitung in Mühleberg

a «„ + js /yz 136,1 — j 27,9 — 7,75 + j 1,55
128,35 — j 26,35 Grad

ß ßo+ P Vyz 46,1 — j 27,9 - 7,75 + j 1,55
38,35 — j 26,35 Grad

wodurch die Endpunkte G und H der Spannungs-
und Stromkurven gefunden werden (Fig. 2).

Während man bei der verlustfreien Leitung
einfach auf einer Ellipse wandern konnte, müssen jetzt
Ellipsen und Hyperbeln geschnitten werden. Beim
Fortschreiten im Sinne des Wirkleistungsflusses tritt
also nicht nur eine Verdrehung der Vekloren im
Uhrzeigersinn auf, sondern auch ein Uebergang zu
immer kleineren Ellipsen, bis die Brennstrecke
erreicht wird. Hierbei gilt der wichtige Satz:

Die Aenderungen von p und q stehen in einem
konstanten Verhältnis. Dasselbe ist hei dem behandelten

Beispiel

Ap -6,24 0
A q 4-1,25

Nach Gl. (15) ist

±j y~ ± j 196 £-/u°2o

196 £-1101° 20' Ohm

Um nun den cos a0 und den cos ß0 zu bestimmen,
wird wieder wie in Beispiel 1 das Hilfs-Cosinusdia-
gramm nach Fig. 1 benutzt und darin bestimmt man

Fig-. r>.

Spannungs- und Strom-Diagramm der Leitung mit Verlusten in
richtiger gegenseitiger Lage.

die Punkte E und F, die auch in das Diagramm
nach Fig. 2 übertragen werden. Beide liegen wieder
auf derselben Ellipse «q — 27,9°», E liegt auf

Die Vektoren A und B stehen
also nicht mehr senkrecht aufeinander.

Es wird wieder das
Spannungsdiagramm in seiner horizon-o o
talen Lage gelassen und das Stroin-
diagramm um den soeben berechneten

Winkel von 101° 20'
verdreht, wodurch sich Fig. 6 ergibt.

Fig. 7.

Allgemeines Spannunffs- und Strom-Diagramm der Leitung mit Verlusten.
Spannungs-Diagramm. Strom-Diagramm.

Kurve b: Blindleistung 0 Kurve a: Blindleistung 0

Kurve d: Wirkleistung 0 Kurve c: Wirkleistung ü

der Hyperbel «p 136,1°» und F auf der Hyperbel
«p 46,1°». Es ist also wieder a — ß — - 90°.

Für die gegebene Leitung von 124,1 km Länge
erhält man

Die unendlich lange Leitung, Leerlauf,

Kurzschluss und allgemeine
Betriebszustände.

Bei einer Leitung mit Verlusten
gibt es keine Schwingungszustände
ohne Leistungszufuhr wie hei der
verlustfreien Leitung. Es kann
höchstens ein einziger Leerlaufpunkt

oder ein einziger
Kurzschlusspunkt vorkommen.

Die Kurve des Leerlaufstromes
geht natürlich durch den
Nullpunkt. Der weitere Verlauf ist aus
Kurve I der Fig. 7 ersichtlich. Sie
kann auch um 180" gedreht
werden, wodurch die Kurve III erhalten

wird. Die Leerlaufspannung
beginnt in einem der beiden

Brennpunkte und wird durch eine der beiden Kurven

II oder IV dargestellt.
Die Kurve der Kurzschlußspannung ist mit

derjenigen des Leerlaufstromes identisch (Kurve 1
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oder III), die Kurve des Kurzschlußstromes ist mit
derjenigen der Leerlaufspannung identisch (Kurve
II oder IV).

Selbstverständlich müssen die Stromkurven noch
um den ohen berechneten Winkel von 101° 20' gegen
die Spannungskurven verdreht werden.

Wenn man diese vier Kurven immer weiter
verfolgt, so erhält man in grosser Entfernung vom
Nullpunkt vier gleiche logarithmische Spiralen.
Zwischen diese Kurven können nun eine beliebige
Anzahl weiterer Parallelkurven gelegt werden. Diese

Allgemeines Impedanz- und Admittanz-Diagramm der Leitung
mit Verlusten.

Impedanz-Diagramm. Admiitanz-Diagramm.
Gerade b: Blindleistung 0 Gerade a: Blindleistung (I

Gerade d: Wirkleistung 0 Gerade C; Wirkleistung 0

haben alle denselben Charakter. Sie kommen als
logarithmische Spiralen im Uhrzeigersinn aus dem
Unendlichen, nehmen in der Nähe der Brennpunkte
eine abgeplattete Form an, umschlingen ~fürmig
beide Brennpunkte und wandern als logarithmische
Spiralen im Gegenuhrzeigersinn wieder ins Unendliche

hinaus.
Dieses Kurvensystem stellt alle möglichen Be-

triebszustände dar, die überhaupt bei der gegebenen
Leitung denkbar sind. Für eine beliebige Belastung
und Phasenverschiebung bestimmt man nach Fig. 1

zunächst den Anfangspunkt, überträgt denselben
direkt in das Diagramm nach Fig. 7, wandert dort
zwischen den benachbarten Kurven parallel dazu

hindurch, addiert oder subtrahiert für die gegebene
Strecke die entsprechende Anzahl reeller und
imaginärer Grade und findet so den Zustand am Ende
der Leitung.

Es sollen auch hier wieder die Verhältnisse im
Tangensdiagramm studiert werden, wodurch Fig. 8

erhalten wird. Alle Tangenskurven beginnen im
Punkt + j, von welchem sie sich im Gegenuhrzeiger-
sinn spiralförmig immer weiter entfernen. Sie
durchschneiden an irgendeiner Stelle die horizontale Axe,
worauf sie sich im Uhrzeigersinn spiralförmig dem
Punkt — j nähern, den sie erst nach unendlich vielen

Umdrehungen erreichen.
Je nachdem, ob das Tangensdiagramm als Ad-

mittanz- oder Impedanz-Diagramm aufgefasst wird,
ergibt sich der PhasenVerschiebungswinkel qj
zwischen dem Spannungs- und dem Stromvektor als
Winkel zwischen dem Tangensvektor und einer der
beiden geneigten Geraden a oder b, deren Neigung

durch die Richtung ± j "]/— "der ± j 1 / F be-
v y \ z

stimmt ist.
Man zieht nun noch zwei weitere Gerade c und d,

welche auf den Geraden a und b senkrecht stehen.
Dann ist im Admittanzdiagramm auf der Geraden a
die Blindleistung, auf der Geraden c die
Wirkleistung Null, im Impedanzdiagramm ist auf der
Geraden b die Blindleistung, auf der Geraden d die
Wirkleistung Null. Ein Durchschreiten der Geraden

c im Admittanzdiagramm oder der Geraden d
im Impedanzdiagramm ist daher nun bei
Kupplungsleitungen zwischen zwei Kraftwerken möglich
hei schwacher Belastung, wobei dann von den beiden

Werken Wirkleistung in die Leitung hinein ge-
spiesen wird, die auf der Leitung selbst in Form
von Verlusten vollständig verbraucht wird. Im
Diagramm nach Fig. 7 entsprechen den Geraden a,
b, c, d acht Kurven «r konstant», wobei t durch

die Richtungen + ' — "|j— ' — I "j/
Z

und + j 1 / bestimmt ist.
yz

Im Impedanzdiagramm ist für den Leerlaufpunkt

die Impedanz Null; man erhält dafür den
Nullpunkt. Für den Kurzschlusspunkt ist sie
unendlich gross, sie fällt daher in unendliche Ferne.
Im Admittanzdiagramm vertauschen die
entsprechenden Punkte ihre Lage.

Mit Hilfe des Diagrammes nach Fig. 7 erkennt
man leicht, ob bei einer langen Leitung bei irgendeinem

Belastungszustand gefährliche Ueberspan-
nungen auftreten können, die zu Uebersclilägen führen

können, oder ob ausserordentlich hohe Ströme
möglich sind, welche die Leitung übermässig
erwärmen oder mechanisch überbeanspruchen. Ohne
diese Diagramme könnte man dies nur mit umständlichen

Berechnungen herausfinden.
Um dies einzusehen, soll beispielsweise versucht

werden, die gesamte Leistung des Kraftwerkes Hand-
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eck von 112 000 kVA bei der gleichen Sternspan-
nung von 86,6 kV und dem gleichen Strom von
430 A über ein oder mehrere parallele Kabel zu
übertragen. Die Kapazität wird viel grösser, z. B.
etwa 0,35 //F/km ; die Induktivität wird viel kleiner,
z. B. etwa 0,14 mH/km. Dann wird bei Annahme
eines Impedanzwinkels von 68" und einer Voreilung
des Stromes von 11"

j tg ß =^°
'o

86 600
430 e'— l/ru» y

no • ÎO"6 £ <"90

44 • 10-3 £ I'68
10

Hieraus t •= 10, r 0, woraus sich mit Hilfe der
Fig. 1 und 2 für ß0 ein Wert von (90 — 6 j) Grad
als Anfangspunkt der Stromkurve ergibt. In 250 km
Entfernung wird /? 90 — 6 j — 30 + 6 7 — 60°.

(Die Fortpflanzungsgeschwindigkeit in diesem Kabel

ist nur etwa die halbe Lichtgeschwindigkeit.)
Der Strom am Leitungsende wird das Fünffache
des Normalstromes, also 2150 A, und die Leitung
mechanisch und thermisch überbeansprucht, während

im Kraftwerk nur der Normalstrom vorhanden
ist, welcher keine Schalterauslösung bewirkt.

Wird dagegen y so erhält man für
den Anfangspunkt der Sjxinnungskurve den Punkl
(90 — 6 j) Grad. Die Spannung steigt in 500 km
Entfernung auf den fünffachen Wert und ruft
natürlich Ueberschläge hervor.

Man kommt 111111 ganz von selbst zum Schluss,
dass die Wellenimpedanz und die Belastungsimpedanz

bei Vollast für eine Kraftübertragung ungefähr

gleich gross sein müssen. Dies ist bei der
Leitung von Innertkirchen nach Mühleherg tatsächlich
der Fall.

Spezialfall.
Im Gegensatz zu den Beispielen 1 und 2 soll die

obige Bedingung nicht nur dem absoluten Betrag,
sondern auch der Richtung nach ganz genau zutreffen.

Es sei also vektoriell genau

2-+1/II \ y
Aus dem Hilfs-Cosinus-Diagramm nach Fig. 1

ersieht man sofort, dass die Cosinuskurven im
Unendlichen beginnen, es sind einfache logarithmische
Spiralen und behalten diese Form bei bis in unendliche

Distanzen auf der Leitung. Es entspricht dies
dem Fall eines Kreises hei verlustfreien Leitungen.
Der Phasenverschiebungswinkel zwischen Spannung
und Strom bleibt konstant, woraus folgt, dass auch

das Verhältnis Blindleistung
Wirkleistung

konstant bleibt.

Spannung und Strom nehmen pro km prozentual
immer gleich viel ab. Aus Gl. (5) erhält man für
diesen speziellen Fall

u Un £ "s F yz und I In £ ~s Vy z

Man kann in diesem Fall leicht den Wirkungsgrad

einer s km langen Leitung berechnen

U0 £ ~s Io E "s v v~* cos CP

V
U0 Iq cos 9

£ "2 SF y *

Von diesem Ausdruck ist nur der absolute Betrag
(ohne Richtung) zunehmen. Mit den Zahlenwerten
des Beispiels 2 erhält man für eine 100 km lange
Leitung

r) £ -2 0,0218 £ -0,0436 ~ 1 _ 0,0436 0,9564

Für andere Belastungszustände werden die
allgemeinen Formeln ziemlich kompliziert; der
Wirkungsgrad kann stark von dem obigen Wert
abweichen.

Aus dem Richtungswinkel des Vektors \ — er-
y

gibt sich, dass in unserm Beispiel für diesen Fall
der Strom der Spannung voreilen muss, Wirk- und
Blindleistung wandern daher in entgegengesetzten
Richtungen.

Im Tangensdiagramm erhält man für diesen
Zustand nur den Punkt + j. Im Gegensatz zur verlustfreien

Leitung wird hier eine im Vergleich zur
Wirkleistung kleine Blindleistung über Distanzen
von mehr als 1500 km transportiert.

Zahlenbeispiel 3.

In diesem Beispiel sollen ausser den ohmschen
Längswiderständen auch noch die ohmschen
Querleitfähigkeiten (Ableitung, Koronaverluste) berücksichtigt

werden. Dann erhält also die Admittanz
eine reelle Komponente

yc j b g + j CO c

Durch die im Bulletin SEV 1931, S. 210, beschriebenen

Versuche wurden für die Koronaverluste
bei 150 kV 0,08 kW/km bis 1 kW/km für die
Einfachleitung gemessen, je nach der Witterung. Durch
Umrechnen des grössten Wertes auf die Doppelleitung

findet man für g einen Wert von 8,8 -10'8
Siemens/km. Damit wird

y 5,65 ei890 6' • 10-6 Siemens/km

1/97= 1,11 • IO"3 eJ 780 13' knr1

Der Richtungswinkel von "J yz hat sich um 27',
also weniger als ein halbes Grad verändert. Die
allgemeinen Cosinus- und Tangenskurven werden
daher um diesen Betrag stärker geneigt als in
Beispiel 2. Das bedeutet im Cosinusdiagramm etwas
raschere Abnahme der Vektoren gegen die Breim-
strecke (zwischen + 1 und —1) hin; die Verluste
werden etwas grösser und die Wirkungsgrade etwas
schlechter.

Die Koronaleitfähigkeit ist keine Konstante5).
Die Grösse g ist stark spannungsabhängig. Man wird

5) Siehe ausser dem bereits mehrmals zitierten Artikel
im Bull. SEV 1931 besonders auch die dort am Schluss (S.
215) zusammengestellten Literaturangaben.
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also bei sehr genauen Arbeiten beim Aufzeichnen
der Fig. 7 zunächst nur etwa bis zu einer 10 °/oigen
Spannungsänderung fortschreiten und hierauf mit
einem neuen Wert von g weiterfahren. Für nicht
übertriebene Genauigkeit kann man jedoch meistens
einen konstanten Mittelwert über den ganzen
Spannungsbereich annehmen.

Für die Leitung Innertkirchen-Mühleberg findet
man, dass hei voller Leistung die Koronaverluste
etwa 25mal kleiner sind als die ohmschen Verluste.

Zahlenbeispiel 4.

Es sei noch ein anderes Beispiel erwähnt, bei
welchem die Ableitung so gross ist, dass der
Richtungswinkel von y und z genau gleich wird. Die
Cosinus- und Tangenskurven erhalten die doppelte
Neigung, wonach sich doppelte Verluste ergeben;
ohmsche und Ableitungs-Verluste werden genau
gleich.

Für die unendlich lange Leitung konzentriert
sich das ganze Tangensdiagramm bekanntlich auf

einen der Punkte + j oder —j. Da "J/ — reell ist,

fallen in Fig. 8 die Geraden a und b in die vertikale
Axe, was anzeigt, dass über die ganze Leitung reine
Wirkleistung ohne Blindkomponente übertragen
wird.

Beim Uebertragen von Sprechströmen erhält man
schon mit kürzeren Leitungen mehrere Wellenlängen,

so dass man mit guter Annäherung eine unendlich

lange Leitung annehmen kann. Es stellt sich
dann an der Sendestation immer ziemlich genau

-jj + ~|^/^^ein, unabhängig davon, ob sie am

Ende unterbrochen, kurz geschlossen oder durch
eine Impedanz beliebiger Grösse belastet sei.

G. Literaturliinweise und Sclilussbemerkungen.
Ueber die Berechnung langer Leitungen existiert schon

eine umfangreiche Literatur. Es seien hier nur ganz wenige
Veröffentlichungen herausgegriffen.
1. M. L. Keller: Die Uebertragung grosser Leistungen. Bull.

SEV 1929, S. 477, 517.

2. L. F. Woodruff: Complex hyperbolic function charts.
Electrical Engineering 1935, S. 550.

3. Fränckel: Theorie der Wechselströme, 3. Auflage 1930,
12. Kapitel.

4. R. Wengler: Sinusrelief und Tangensrelief in der Elektrotechnik

(nach einem Vortrag von Prof. Dr. Ing. F. Emde).
ETZ 1927, S. 766.

5. A. Blondel und Ch. Lavanchy: Résumé pratique du calcul
électrique des transmissions d'énergie à haute tension par
l'emploi d'abaques. Revue Générale d'Electricité. Nov.
1923, S. 775.

6. Günther Oberdorfer: Zur Kraftübertragung auf langen
Höchstspannungsleitungen. ETZ 1927, S. 1691.

7. Edith Clarke: «A transmission line calculator» und
«Simplified transmission line calculations». General Electric
Review 1923, S. 380, und 1926, S. 321.

In diesen Veröffentlichungen wird zum Teil mit
Reihenentwicklungen der hyperbolischen Funktionen operiert, zum
Teil werden ganz interessante Diagramme dargestellt.

In Literatur 2 erkennt man Leerlaufspannungs- und
Kurzschlußstrom-Kurven für verschiedene Werte von j/yz, jedoch

nur für einen beschränkten Bereich, während in Fig. 7 des

vorliegenden Artikels für einen einzigen Wert von i/yz alle

Belastungsstrom- und Spannungs-Kurven für unbeschränkte
Leitungslängen dargestellt sind.

Beim Vergleich der Fig. 2 und 4 von Literatur 4 mit den
Fig. 2 und 4 dieses Aufsatzes findet man, dass das Argument
s i/yz und die Funktion (sin, cos, tg) ihre Rollen in den

beiden Artikeln vertauschen. Ausserdem werden bei Wengler
und Emde die Funktionen durch absoluten Betrag und Richtung

dargestellt. Sehr interessant sind die Reliefs. Von den
Fig. 2 und 1 dieses Artikels könnte man natürlich auch
Reliefs konstruieren.

Literatur 5 zeigt in Fig. 5 und 6 ähnliche Diagramme wie
Literatur 4.

In Fig. 3 der Literatur 6 kann man vereinzelte Bruchstücke

der Kurven nach Fig. 7 dieses Aufsatzes erkennen.
Der Verfasser ist der Ansicht, dass mit keiner dieser

Darstellungen eine solch klare Uebersicht über die Cosinus-,
Sinus- und Tangensfunktionen komplexer Argumente gewonnen

wird, wie mit den Fig. 2 und 4 dieses Artikels. Fig. 7

und 8 zeigen alle möglichen Betriebszustände auf einer
Leitung beliebiger Länge mit einer sonst nicht erreichbaren
Uebersichtlichkeit. Der Verfasser glaubt daher, mit dem
vorliegenden Artikel einen Beitrag zum Problem der
Fernkraftübertragung zu liefern. Besonders auch für die Tele-
phonie, bei der Sprechströme mit Frequenzen von einigen
Tausend Hz vorkommen, können diese Ueberlegungen nützlich

sein.
Ausser obigen Literaturangaben 1 bis 7 elektrotechnischen

Charakters sei noch auf folgende rein mathematische Werke
hingewiesen :

8. A. E. Kennelly, Atlas der komplexen Hyperbelfunktionen.
9. L. Lewent, konforme Abbildungen, S. 24, 64, 74.

10. Mises-Frank, Differential- und Integralgleichungen I, S. 107.
Diese Werke 8 bis 10 enthalten ebenfalls das Cosinus-

(resp. Sinus-) sowie das Tangensdiagramm nach Fig. 2 und 4

dieses Aufsatzes. Eine ausführliche Anwendung auf
Leitungsprobleme wird jedoch nicht gemacht.

Die Fig. 1, 2, 4 wurden vom Verfasser in grösserem Masst-

stab, nämlich 500 mm für die Zahleneinheit je für einen
Quadranten angefertigt. Es können daher Abzüge in dieser
Grösse vom Verfasser6) bezogen werden, womit natürlich
ein genaueres Arbeiten möglich ist.

DerVerfasser gedenkt in einem weiteren Artikel noch den
Verlauf der Leistung sowie eventuell noch einige verwandte
Probleme zu behandeln.

c) Chaletweg 9, Zürich 11.
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