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Eine neue Methode zur Berechnung von Wechselstromsysteinen.
F. J. Rutgers, Kairo. 518:621.311.1.025

Der Verfasser, Professor der Elektrotechnik an der
Faculté Polytechnique de l'Université Egyptienne, Giza, Kairo,
hat eine neue Methode ausgearbeitet, die gestattet, unter
Vermeidung der Rechnung mit imaginären Grössen die
Stromverteilung in Wechselstromsystemen mit R. L und C in
beliebiger Anordnung zu berechnen. Die Methode beruht darauf,

dass die Spannungsabfälle, bzw. die elektromotorischen
Kräfte, erzeugt durch Wirkstrom und Blindstrom, getrennt
betrachtet werden, und dass die sich so ergebenden vier Ohm-
schen und induktiven (oder kapazitiven) elektromotorischen
Kräfte in nur zwei senkrechten Richtungen liegen, und für
jede dieser zwei Richtungen einfach algebraisch addiert werden

können. Man erhält so für einen Knotenpunkt zwei rein
algebraische Stromgleichungen (ohne Phasenwinkel), statt
eine Vektorgleichung mit Phasenwinkel. Für eine Masche
erhält man zwei rein algebraische Spannungsgleichungen, statt
einer Vektorgleichung. Die Auflösung der so erhultenen
einfachen algebraischen Gleichungen ist äusserst leicht, wie
an Beispielen gezeigt wird. Die Arbeit ist eine Bestätigung
der vom Verfasser früher geäusserten Ansicht, dass die
getrennte Betrachtung von Wirk- und Blindgrössen vorteilhaft
ist und wesentliche Vereinfachungen bringt.

L'auteur, professeur d'électrotechnique à la Faculté
Polytechnique de l'Université Egyptienne, Giza, le Caire, a
développé une nouvelle méthode qui permet d'éviter l'emploi de
grandeurs imaginaires lorsqu'on calcule la répartition du
courant alternatif dans un système comprenant R, L et C
disposées d'une façon quelconque. La méthode consiste à
considérer séparément les chutes de tension ou les forces
électromotrices produites par le courant actif et par le courant

réactif, et à additionner algébriquement, pour chacune
des deux directions, les quatre composantes ohmiques et
inductives (ou capacitives) situées dans deux directions
perpendiculaires. On obtient ainsi pour chaque point nodal
deux équations de courant purement algébriques (sans angle
de phase), au lieu d'une équation vectorielle avec angle de
phase. Pour un circuit fermé, on obtient deux équations de
tension purement algébrique, au lieu d'une équation
vectorielle. La solution de ces équations algébriques est
excessivement simple, ce que montrent des exemples. Cette étude
confirme l'hypothèse émise antérieurement par l'auteur, que
la considération séparée des grandeurs actives et réactives
est avantageuse et entraine d'importantes simplifications.

Unter den Problemen, die den Studierenden und
den praktischen Elektroingenieuren einige
Schwierigkeiten machen, befinden sich in erster Linie die
Kirchhoffschen Gesetze für Wechselstrom.
Merkwürdigerweise werden diese in den meisten
Lehrbüchern geradezu stiefmütterlich behandelt. Oft
begnügt man sicli damit, zu sagen, dass ilire Anwendung

sinngemäss wie für Gleichstrom zu erfolgen
hat. Die Fragen, welche Studenten ihrem Lehrer
stellen, zeigen aber, dass diese «sinngemässe» Anwendung

nicht immer so einfach ist. Die positive und
negative Bezugsrichtung, z. B. für gegenelektromotorische

Kräfte, die senkrecht zur Stromricbtuiig
sind, und die Phasenverschiebungswinkel
verursachen den Studenten manches Kopfzerbrechen. Die
elegante Metbode der Rechnung mit komplexen
Zahlen wird von Studierenden und oft auch von
praktischen Ingenieuren nicht immer genügend
beherrscht, um damit Probleme selbständig lösen zu
können. Die Methode bleibt meistens beschränkt
auf die Beweise von Lehrsätzen oder Formeln aus
der Messbrückentechnik. Und die graphische
Vektordarstellung allein eignet sich nur zur Lösung
einfachster Aufgaben.

Ich habe schon früher 1) öfters darauf hingewiesen,

wie zweckmässig und natürlich die getrennte
Betrachtung der Wirkströme und Blindströme sowie
der Wirkleistungen und Blindleistungen ist. In der
Tat gehen die Wirk- und Blindleistungen in unseren
elektrischen Anlagen sozusagen getrennt nebeneinander

lier, und die Wirkströme und Blindströme
können jede für sich einfach algebraisch addiert
werden. Eine scheinbare Schwierigkeit ist, dass die
Spannungsabfälle, bzw. gegenelektromotorischen
Kräfte in einem Stromkreise durch den Gesamtstrom

bedingt sind. Diese Schwierigkeit lässt sich
aber bei der getrennten Behandlung der Wirk- und
Blindströme leicht beheben, indem man auch die
Spannungsabfälle getrennt behandelt. Man erhält
dann für den ohmschen und induktiven (oder
kapazitiven) Spannungsabfall zwei Komponenten je für
Wirkstrom und Blindstrom, die aber alle vier nur
in zwei senkrechten Richtungen liegen, und zwar in
der Richtung des Wirkstromes (oder entgegenge-

*) Siehe z. B. : «Einfache graphische Darstellung von
Wirk- und Blindleistung in Vektordiagrammen» v. F. Rutgers,
Bull. SEV 1928, Nr. 22; Conférence Internationale des Grands
Réseaux Electriques, 1929, Rapport Nr. 16.
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setzt), d. h. in der Richtung der Hauptspannung,
und in einer Richtung senkrecht dazu, die hier als
Richtung der Querspannung bezeichnet werden soll.
Man wählt die positive Richtung der Hauptspannung

gleich wie die Richtung des Wirkstromes, und
die positive Richtung der Querspannung 90 Grade
dem Wirkstrom nacheilend. Man basiert dann die
Berechnung einer Stromverteilung nicht auf die
Gesamtströme mit ihren Phasenverschiebungen,
sondern auf die Wirk- und Blindströme. Man erhält
dann zwar die doppelte Zahl Ströme und die
doppelte Zahl Spannungsabfälle (oder besser
«gegenelektromotorische Kräfte») und die doppelte Zahl
Gleichungen, dafür aber sind alle Gleichungen rein
algebraisch und ersten Grades, alle Phasenwinkel
fallen aus der Rechnung weg, so dass man auch
keine komplexen Zahlen benötigt. Die Stromver-
teilnngsgleicliungen lassen sich getrennt für die
algebraisch addierbaren Wirkströme und für die ebenfalls

algebraisch addierbaren Blindströme schreiben
(Knotenpunktsgleichungen). Und die gegenelektromotorischen

Kräfte bilden ebenfalls zwei für sich
algebraisch addierbare Gruppen, deren Vektoren
senkrecht aufeinander stehen. Die Spannungssummen

beim Rundgang um eine Masche des Netzes
ergeben für jede Masche zwei getrennte, einfache
algebraische Gleichungen. Die Auflösung der
doppelten Gesamtzahl von Gleichungen einfachster
algebraischer Art ist viel leichter und sicherer als die
Auflösung der halben Zahl Vektorgleichungen nach
der Methode der Rechnung mit komplexen Zahlen.

*uH

% ^

*ü0 *0
*IWX

-luR

für einen Wirk- oder Blindstrom eine positive Zahl,
so hat dieser Strom die Richtung des Bezugspfeiles,
sonst entgegengesetzt. Dabei wird angenommen,
dass der positive Blindstrom dem positiven Wirkstrom

um 90° nacheilt.
Für jeden Knotenpunkt erhält man zwei einfache

algebraische Gleichungen :

1. Summe aller zum Knotenpunkt hinfliessenden
Wirkströme gleich Null.

2. Summe aller zum Knotenpunkt hinfliessenden
Blindströme gleich Null.

Für die elektromotorischen Kräfte ist es
zweckmässig, nur wirklich bestehende elektromotorische
Kräfte zu betrachten, und nicht die sogenannten
EMKe zur «Ueberwindung» von ohmschen und
induktiven Spannungsabfällen. Man setzt also die
ohmsche gegenelektromotorische Kraft IR
entgegengesetzt der Stromrichtung und der wirklich
durch Selbstinduktion hervorgerufenen elektromotorischen

Kraft IX, die dem Strom um 90" nacheilt,

wo X entweder wL oder — ist, je nachdem es
at C

sich um Selbstinduktion oder Kapazität handelt.

Als Grundlage für die Zerlegung der Ströme in
Wirk- und Blindströme wählt man eine Hauptspan-
nung, z. B. die Netzspannung. Sind weitere,
phasenverschobene Spannungen gegeben, so zerlegt man
diese in zwei Komponenten in Richtung und
senkrecht zur Hauptspannung.

*U„

u y
a 'U°- / h %

4

-lwR-IbX

Fig. 1.

Zerlegung aller Spannungen
in zwei senkrechte Richtungen,

«Hauptspannungen» Uh
und «QuerSpannungen-» Uq

Fig. 2.

Ein Wirkstroin 7W erzeugt
in einer Impedanz Z (bestehend

aus R und X in Serie)
eine negative Hauptspannung

— /w R und eine positive

Querspannung + 7W X.

Fig. 3.

Ein Blindstrom h erzeugt
in einer Impedanz Z eine
negative Hauptspannung
— 7b R und eine negative

Querspannung 7b X.

Fig. 4.

Ein beliebiger Strom,
welcher eine Impedanz Z (R
und X in Serie) durchfliesst,
erzeugt eine

Hauptspannung —
— 7w R—7b X und eine
Querspannung —

+ 7w X—7b R 1

Ist es schon für die Anwendung der Kirchhoff-
schen Gesetze für Gleichstrom unbedingt erforderlich,

vor Beginn der Rechnung für jeden Teil des
Stromkreises einen positiven Bezugssinn festzulegen,
so ist dies ebenso nötig für die Berechnung eines
Wechselstromsystems. Man gibt also jedem Element
der Strombahn einen Bezugspfeil, der willkürlich
gewählt werden kann. Ergibt dann die Rechnung

Fig. I zeigt die Zerlegung der Spannungen in die
zwei senkrechten Richtungen : Hauptspannungen
und Querspannungen Uq.

Wie Fig. 2 zeigt, bewirkt ein Wirkstrom Iw in
einem ohmschen Widerstande R eine EMK gleich
—IWR in der Richtung der Hauptspannung und
negativ. Der Wirkstrom bewirkt in einer Induktivität
(X.-<= (oL) eine EMK IWX, die dem Wirkstrome um
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90" nacheilt, also eine positive Querspannung
darstellt.

Fig. 3 zeigt, dass ein Blindstrom Ib in einem ohm-
sehen Widerstande eine EMK — IhR erzeugt, die
eine negative Querspannung ist, während der Blindstrom

in der Induktivität eine EMK — IbX erzeugt,
welche dem Blindstrom nacheilt, d. h. eine negative
Hauptspannung ist.

Fig. 4 zeigt dann die Zusammensetzung dieser
Spannungen, woraus hervorgeht, dass ein beliebiger
Strom mit den Komponenten Iw und Ib, welcher
eine Impedanz Z (gebildet aus R und X) durchmesst,

die folgenden Spannungen erzeugt:
a) eine Hauptspannung —IWR — lbX und
b) eine Querspannung + IWX — IhR \

(Querspannungen können kenntlich gemacht werden

durch eine eckige Linie. X ist positiv oder
negativ, je nachdem es sich um eine Induktivität oder
eine Kapazität handelt.)

Resultat:
Eine von einem Strom durchflossene Impedanz

erzeugt :
eine Hauptspannung —IWR — IhX und
eine Querspannung —IbR + IWX

In einem Stromkreis muss die Summe aller
Hauptspannungen für sich gleich Null sein; ferner
muss auch die Summe aller Querspannungen für
sieh gleich Null sein.

Berechnung eines Stromsystemes.
Zur Berechnung eines Stromkreises oder eines

vermascliten Stromsystemes oder Netzes verfährt
man folgendermassen (siehe auch die folgenden
Beispiele) :

a) Man zeichnet das Schaltungsschema und
numeriert alle Elemente der Strombahn.

b) Man trägt an jedem Element einen Bezugspfeil

ein, der beliebig gewählt werden kann.
c) Man trägt im Schema alle vorhandenen sowie

alle durch die Ströme hervorgerufenen elektromotorischen

Kräfte ein, getrennt in Hauptspannungen
und Querspannungen (evtl, in zwei getrennten
Zeichnungen).

d) Man wendet auf die Knotenpunkte und auf
die geschlossenen Netzmaschen die folgenden
Gesetze an:
Gesetz Nr. 1. Die algebraische Summe aller zu ei¬

nem Knotenpunkte hinfliessenden Wirkströnie
ist Null.

Gesetz Nr. 2. Die algebraische Summe aller zu ei¬

nem Knotenpunkt hinfliessenden Blindströme
ist Null.

Gesetz Nr. 3. Geht man in einem und demselben
Umlaufsinn rings um eine geschlossene Masche,
so ist die algebraische Summe aller Hauptspannungen

gleich Null.
Gesetz Nr. 4. Geht man rings um eine Masche, wie

bei 3, so ist die algebraische Summe aller
Querspannungen gleich Null.

Gesetz Nr. 5. Begegnet man einem Bezugspfeil eines
Elementes, welcher dem Umlaufsinn entgegengerichtet

ist, so ist das Vorzeichen aller Spannungen
dieses Elementes umgekehrt in der Gleichung

einzusetzen.
Gesetz Nr. 6. Hat man für irgendein Element Iw

und Ib berechnet, so ist der Gesamtstrom in
diesem Element stets /= ]/ l -\~ II, ganz gleichgültig,

in welchen zwei senkrechten Richtungen
die Komponenten Iw und Ib gewählt waren.

Anmerkung : Für das Aufschreiben der Gleichungen

benützt man besser an Stelle von Iw und Ib die
kürzeren Symbole w und b, auch deshalb, weil sich
diese Komponenten auf die Richtungen der gewählten

Hauptspannung und Querspannung beziehen,
welche nicht immer mit der «lokalen» Klemmenspannung

der Elemente übereinstimmt (siehe
diesbezügliche spätere Erklärung).

Besser als durch eine langatmige Erläuterung
lässt sich dies an einigen ganz einfachen Beispielen
zeigen, so einfach gewählt, dass man das Resultat
auch sonst leicht überprüfen kann.

Beispiel I.
Ein Einphaseiigenerator mit der konstanten

Klemmenspannung U speise eine Impedanz Z, mit
dem ohmschen Widerstand R und dem induktiven
Widerstand X in Serie, nach Schema Fig. 5, wo
auch die Bezugspfeile eingetragen sind. Es sollen
die Ströme berechnet werden.

Fig. 5.

Schema zum Beispiel I.
(Für eine Induktivität ist X — o L
als positiver Wert, für eine Kapazität

ist X als negativer

Wert einzusetzen.)

Lösung.
Da es keinen Knotenpunkt gibt, braucht man

nur die Spannungsgleichungen anzuschreiben.
Gesetz Nr. 3 : Summe aller Hauptspannungen

gleich Null, gibt :

U — In.R — IbX 0

Gesetz Nr. 4: Summe aller Querspannungen
gleich Null, gibt:

— IbR + IWX 0

Man erhält somit zwei gewöhnliche algebraische
Gleichungen mit zwei Unbekannten. Man benötigt
keine komplexe Zahlen, Phasenwinkel oder
trigonometrische Funktionen. Die Auflösung der beiden
Gleichungen ist leicht, man erhält (passend
umgeformt) :

U IT V
i,„ und lb

i?2 + X 2 R2 + X2
R X

wo R und X die gegebenen Konstanten des
Stromkreises sind.
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Den Ausdruck
R2 A- X2

~rT
z2
fT

kann man als «Wirkimpedanz» Zw bezeichnen; der
Ausdruck

R2 + X2 Z2

x ~ IT
wäre dann die «Blindimpedanz» Zb.

Falls man den Gesamtstrom / sucht, so findet
man ihn aus

i y 11 +1
Diese Beziehung bleibt immer bestehen, wenn

man zwei aufeinander senkrechte Komponenten von
/ hat, auch wenn das Bezugssystem irgendeine Lage
hat, wie Fig. 6 zeigt.

Fig. 6.

I ist sowohl gleich \ 11 + /1

als auch gleich ]/iv'2 + b'2

Beispiel II.
Es soll der gleiche Fall betrachtet, aber der

Bezugspfeil in Element Z umgekehrt werden, wie
Fig. 7 zeigt.

(1) L h
Fig. 7.

©t O t
Schema zum Beispiel II.

(Bezugspfeil für Z umgekehrt als

bei Fig. 5.)

Auflösung.
Man erhält dann, unter Anwendung der Gesetze

3, 4 und 5:
1. aus Summe der Hauptspannungen gleich Null

V — [— IWR — IbX] — 0

2. Aus Summe der Querspannungen gleich Null

-[-/jR + /wX]=0
Die Auflösung der beiden Gleichungen gibt

u uL
R2 + X2

R

und lb -
R2 + X2

Das Resultat ist das gleiche wie im ersten
Beispiel, nur erhält man negative Werte für Iw und Ib,
d. h. die Ströme sind entgegengesetzt dem Bezugspfeil

in Z.

Beispiel III.
Ein Generator speise zwei parallele Impedanzen

Z1 und Z,, wie das Schema Fig. 8 zeigt, in welche

die Bezugspfeile und der gewählte Umlaufssinn der
Maschen eingetragen sind. Die Zeichnung gibt auch
die angenommenen Werte für R, und X1 und R.,

und X9.

6 \'>

(2,)
I

(Z2)

Rf=4û R2=6Ü

X2-4a

Fig. 8.

Schema zum

Beispiel III.

Lösung.
1. Für den Knotenpunkt A erhält man:

a) Summe der zufliessenden Wirkströme gleich
Null:

" Av'l Av2 " :0

b) Summe der zufliessenden Blindströme gleich
Null:

Ibi h*I== 0

2. Spannungsgleicliungen für Masche I:
a) Summe der Hauptspannungen gleich Null:

U — — /„Vi 0

b) Summe der Querspannungen gleich Null:

— hß-x + IWxXx 0

3. Spannungsgleichungen für Masche II:
a) Summe Hauptspannungen gleich Null:

[ 4A hlX-l] + [ Ju-2^2- Ib'Xï] =0
oder, besser geschrieben:

Ar: i
' Ar

: V IW2R2 Ib2X2 0

b) Summe aller Querspannungen gleich Null:

hlRl « A,2^2 + Av2^A> — 0

Setzt man die gegebenen Werte für URjXjR2X2
ein, so erhält man die folgenden sechs sehr
einfachen Gleichungen, wobei man, wie schon früher
bemerkt, deutlicher und kürzer statt IW1 Ibl usw.
nur u\ bx usw. schreibt.

Die sechs Gleichungen sind:
1. iv — tv1 — w2 0 ;

2. 6—6,-6., 0;
3. 100 — 4 u\ — 8 6X 0 ;

4. 8 u\ — 4 b2 0 ;
5. 4 w. +8 6, — 6 w„ — 4 6., 0:
6. 4 b2 — 8w, — 6 b2 + 4 w2 0.

Hieraus erhält man

u: 16,6 A; w2 5 A; w2 11,6 A; 6 17,7 A;
10 A; 62 7,7 A

und hieraus, falls der Gesamtstrom gewünscht wird:

1 yw2 + 62 - 24,3 A

A - Yw2 + b[ - 11,2 A

I2 }/IV* + bl - 13,9 A
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Für diesen einfachen Fall lassen sich die Ströme
natürlich einfacher nach bekannter Formel berechnen.

Es ist z. B.

A
U 100

VRÏ + Xî J/U + 82
11,15 A

und /2
100

]/62 + 42
13,9 A

Diese Kontrollrechnung zeigt, dass die Werte
stimmen.

Eine Kontrolle der Rechnungsergebnisse ist aber
auch in komplizierteren Fällen leicht zu machen
durch Anwendung der beiden folgenden Sätze:

a) Summe aller Wirkleistungen gleich Null;
b) Summe aller Blindleistungen gleich Null (wobei

Abgaben und Aufnahmen entgegengesetztes
Vorzeichen haben).

In diesem Beispiel ist die vom Generator
abgegebene Wirkleistung gleich U-w<= 100-16,6
1660 Watt, und die von den beiden Impedanzen
aufgenommenen Wirkleistungen sind zusammen

/rR, + I.rR, 11,22-4 + 13,92-6=1164 Watt.

(Eine kleine Differenz pflegt vom Rechnen mit
dem Rechenschieber herzurühren. Es ist gerade ein
Vorteil der geschilderten neuen Methode, dass die
Gleichungen so einfacher Art sind, dass alle
Rechnungen mit Rechenschieher gemacht werden
können.)

In unserem Falle ist weiter die abgegebene
Blindleistung gleich U -b — 100 • 17,7 1770 Var und die
aufgenommene Blindleistung der beiden Impedanzen

zusammen I12X1 + 1JX., 1000 + 775 =1775
Var, was also unser Rechnungsergebnis bestätigt.

Beispiel IV.
Zum Schlüsse sei noch ein letztes Beispiel mit

mehreren Impedanzen gegeben, wobei sich Gelegenheit

geben wird, auch die Vektordiagramme, die
sich aus der neuen Berechnung ergeben, zu
betrachten.

Fig. 9 zeigt das komplette Schaltungsschema mit
allen Bezugspfeilen und den gegebenen Daten.

Fig. 9.

Schema zum

Beispiel IV.

1. Knotenpunkt A
Lösung.

a) Atc 0 gibt w — w1

h) 2b 0 gibt b — b1 —

- w„ 0;
b.. 0.

2. Masche I:
a) 2 Hauptspannungen 0 gibt:

U — wR — bX — wiR1 — b1X1 — 0 ;

b) 2 Querspamiungen 0 gibt:

— bR + mV — b1R1 + w1X1 0

3. Masche II:
a) 2 Hauptspannungen 0 gibt:

»

— [—w1R1 — fciVjJ + [— W.zR2 — 62-^2] 0

oder anders geschrieben:

w1R1 + b1X1 — w.,R.2 — b2X„ 0

b) 2 Querspannungen 0 gibt:

h1R1 Mi1V1 b2R2 w2X2 0

Setzt man die gegebenen Werte ein und ordnet
man die Gleichungen, so erhält man die folgenden
sechs sehr einfachen Gleichungen:

1. u) — u>1— tc2 0;
2. b — b1 — b2 0;
3. 3 w + 4 u\ + 5 b + 8 b2 100 ;

4. 5 iv + 8 mjx — 3 b — 4 b1 0 ;
5. 4 iv1 — 6 m;2 + 8 bt — 4 b2 0 ;

6. 8 w, — 4 w2 — 4 6j + 6 b2 0.

Die sehr leicht zu findenden Auflösungen sind:

w 5,93 A; w2 1,55 A; m.. 4,38 A; 6 8,17 A;
b2 4,39 A; b2 3,77 A.

Hieraus erhält man, wenn gewünscht:

I |Au? + bT 10,09 A

7, y^vf^bf 4,65 A

I2 5,78 A

Es sei hier nochmals bemerkt, dass der Gesamtstrom

I stets gleich j/n;2 + b2 ist, ganz gleichgültig,
in welcher Richtung die Haupt- und Querspannung
gewählt wurde; die beiden Spannungsriclitungen
müssen nur senkrecht aufeinander sein (siehe nochmals

Fig. 6).
Die Richtigkeit der zahlenmässigen Auflösung

der sechs Gleichungen wird rasch durch Einsetzen
der erhaltenen Werte nachgeprüft.

Um zu kontrollieren, ob die gefundenen Ströme
der Wirklichkeit entsprechen, d. h. ob die Gleichungen

richtig sind, benützt man wieder am zweckmäs-
sigsten die Beziehungen:
1. Summe aller abgegebenen Wirkleistungen gleich

Summe aller aufgenommenen Wirkleistungen
(PR).

2. Summe aller abgegebenen Blindleistungen gleich
Summe aller aufgenommenen Blindleistungen
(PX).
Ein Vorteil ist es, dass man dazu die einzelnen

lokalen Klemmenspannungen an den verschiedenen
Impedanzen gar nicht zu keimen braucht



354 BULLETIN No. 13 XXVII. Jahrgang 1936

Kontrolle :

1. Abgegebene Wirkleistung U-w 593 W.

Aufgenommene Wirkleistungen :

Element Z PR 305,7 W
Element Z1 1\ R1 86,8 W

n
total 592,9 W

Element Z2 /f jR2 — 200,4 W

2. Abgegebene Blindleistung U'b>—817 Var.
Aufgenommene Blindleistungen :

Element Z PX 509,5 Var
Element Z, Px X1'— 173,6 Var
Element Z2 /2 ^2 133,6 Var

total 816,7 Var

Hier möge eine Bemerkung über das Vektordiagramm

eingeschaltet werden.
Die neue Berechnung gibt alle Ströme aufgelöst

nach zwei senkrechten Richtungen. Die eine
Komponente (mj; w2; usw.) liegt in der Richtung
der angenommenen Hauptspannung, die andere (b ;

b„; usw.) in die dazu senkrechte Richtung der
Querspannung (der Hauptspannung nacheilend).

nicht immer erforderlich ist, wenn man sich
angewöhnt hat, mehr mit den Wirk- und Blindleistungen

zu rechnen, für die man die Kenntnis der
lokalen Spannungen nicht benötigt.

In Fig. IIa ist die lokale Spannung am Element
Z, dargestellt als E1 ]/ (/jRj)2 + (/jX,)2. Es ist
empfehlenswert, die Spannungsvektoren nicht nach
der älteren Methode als Spannungen zur Ueberwin-
dung von R und X aufzutragen, sondern nach der
neueren Methode, die nur wirklich vorhandene
EMKe darstellt, wobei /,Rj entgegengesetzt dem
Strome /T ist, und l^X^^ dem Strome um 90° nacheilt.
Beispielsweise ergibt sich dann für das Diagramm
kein Unterschied, ob eine Maschine als Motor oder
als Generator arbeitet. Bei dieser neueren Methode
bilden dann auch alle elektromotorischen Kräfte
rings um eine geschlossene Masche ein geschlossenes
Vektorpolygon.

In Fig. IIa wurden somit die Spannungsvektoren
für den Strom lx in dieser Weise dargestellt.

Fig. 11h zeigt dann sämtliche Ströme und
Spannungen. Da Z, und Z2 an der gleichen Spannung
liegen, ergibt sich E1 gleich E2.

£>, -4,<i b-B.2A

Fig. 10.

Gesamtströme, erhalten aus
w- und b-Werten, wobei es
gleichgültig ist, nach
welchen zwei senkrechten
Richtungen die Komponenten w

und b gewählt wurden.

Fig. IIa.
Vektordiagramm der lokalen
Spannung Ei am Element Zu
Man erhält analog Ei und E.

Fig. IIb.
Vektordiagramm aller

Ströme und Spannungen.
(Hilfslinien für die
Spannungen weggelassen, siehe

Fig. IIa.)

Fig. 11c.

Die Vektoren U, E und Ei
sowie die Vektoren I, — Ii
und — 7i bilden je ein ge¬

schlossenes Polygon.

Um das Vektordiagramm aller Ströme nach
Grösse und Richtung zu erhalten, zeichnet man
zuerst das Bezugskreuz und findet zu jedem w und b
den Gesamtstrom und seine Phasenverschiebung mit
Bezug auf die Hauptspannung. Dieser Winkel kann
natürlich auch rechnerisch erhalten werden, da

deren Tangente gleich ist.
w

Fig. 10 zeigt die Vektoren der drei Ströme I, I±
und /2, die so erhalten wurden. Natürlich muss in
unserem Fall die Vektorsumme /, + /2 gleich 1 sein,
oder besser ausgedrückt / und — It und — /2 müssen

ein geschlossenes Vektorpolygon bilden.
Wünscht man auch die Vektoren der lokalen

Spannungen an den Klemmen jeder Impedanz zu
erhalten, so ist das ebenfalls leicht möglich,
obgleich die Kenntnis dieser lokalen Spannungen

Fig. 11c zeigt das geschlossene Polygon der
Ströme I, —J2 und —/, und die Spannungen
U, E und E1 rings um die Masche I. Die Spannungen

rings um die Masche I bilden, wie Fig. 11c

zeigt, ein geschlossenes Vektorpolygon, entsprechend

den ursprünglichen Kirchhoffsclien Gesetzen
für Wechselstromkreise.

Ich möchte den Leser nicht mit weiteren
Beispielen ermüden. Die Einfachheit der Rechnungen
mit nur algebraischen Gleichungen einfachster Form
im Vergleich zur Rechnung mit imaginären Grössen

und trigonometrischen oder Exponentialfunktionen

springt ins Auge.
Die Methode lässt sich auch auf andere Probleme,

Wechselstrombrückenmessungen usw., ausdehnen,
auch auf Drehstromsysteme gänzlich ungleicher Be-
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lastung der Phasen, indem man eine Phasenspan-
nung als Hauptspannungsrichtung annimmt und die
beiden anderen Phasenspannungen in der Richtung
dieser Hauptspannung und senkrecht dazu zerlegt.
Man erhält dann zur Berechnung eines beliebigen
Drehstromsystems nur einfache algebraische Glei
chungen ersten Grades, deren Auflösung für zahlen
massige Rechnungen sehr leicht ist. Auch hier sind
für die Berechnung der Stromverteilung keinerle
komplexe Zahlen oder trigonometrische Funktioner
erforderlich. Auch für die Berechnung des Ein
flusses höherer Harmonischer ist die getrennte Be
trachtung der Wirk- und Blindkomponenten zweck
massig.

Ich glaube, dass diese Darstellungen meine schon
früher mehrmals geäusserte Ansicht bestätigen, dass
die Benützung von Wirk- und Blindströmen,
Wirkleistungen und Blindleistungen, die in unseren
elektrischen Anlagen sozusagen getrennt nebeneinander
hergehen, gegenüber der noch meistens üblichen
Rechnungsweise mit Gesamtströmen und
Phasenverschiebungen manche Vorteile bietet.

Fig. 12.

Die Wirkleistung ist sowohl gleich
P R als auch

1 *uH

L i/

/ h

gleich 7w
Ä2 + X2

R Ii -Zw

und die Blindleistung ist sowohl
gleich P X als auch

2 fi2 4- X2 2
gleich I i ----J il -Zb,

wo Zw die Wirkimpedanz und
Zb die Blindimpedanz bedeuten.

Ich hoffe, später zeigen zu können, dass auch
andere Probleme als die hier näher behandelte
Berechnung der Stromverteilung eines Wechselsirom-
systems sich vereinfachen lassen durch Benützung
der Wirk- und Blindgrössen.

Man wäre vielleicht geneigt, einzuwenden, dass
dem entgegensteht, dass die Stromwärmeverluste
PR vom Gesamtstrom abhängig sind. Der Gesamtstrom

1 lässt sich stets sofort aus y w1 + b" finden,
auch dann, wenn die senkrechten Stromkomponen-
ten sich nicht auf die Lokalspannung am betreffenden

Element der Strombahn beziehen.
Sind w und b die Wirk- und Blindstromkomponenten,

bezogen auf die Klemmenspannung des
betreffenden Elementes (Lokalspannung), so lässt sich
übrigens die Stromwärme PR, d. h. die W irkleistung

auch aus dem Wirkstrom allein finden. Es ist nämlich,

wie Fig. 12 zeigt:

/2-R R
w2 Z2 R2 X2

cos cp j R

wobei wieder (wie bei Beispiel I)

R2 X2

R

R
Zw

als Wirkimpedanz bezeichnet wird. Die
Stromwärme PR ist dann gleich (Iw)2-Zn„ und man
erhält den

Satz: Die Wirkleistung in einem Strombahnelement

ist gleich dem Quadrat des Wirkstromes
(bezogen auf die Richtung seiner lokalen
Klemmenspannung), multipliziert mit der Wirkimpedanz

z.
R 2 X2

R

In gleicher Weise erhält man den weiteren
Satz: Die Blindleistung in einem Element der

Strombahn ist gleich dem Quadrat des Blindstromes
multipliziert mit der Blindimpedanz

Zb
R 2 X 2

X
Da die Wirkleistungen die Arbeit und die

Arbeitsverluste unserer Maschinen und Anlagen
darstellen, während die Blindleistungen mit den magnetischen

Feldern und deren Streuungen zusammenhängen,

kann man auch andere Probleme als die
hier behandelten lösen durch getrennte Rechnungen
über Wirkleistungen und ihre Wirkungsgrade sowie
über die dann getrennten Blindleistungen und deren
Wirkungsgrade. Wenn man im Auge behält, dass

vom allgemeinen Standpunkte der Physik aus die
Arbeit eine viel einfachere Einheit darstellt als der
elektrische Strom und die Spannung, ist zu erwarten,

dass Rechnungen mit Wirk- und Blindleistungen
und deren Wirkungsgraden manche

Vereinfachung bringen können gegenüber den Berechnungen

mit Strömen, Spannungen und deren
Phasenverschiebungen.

Vielleicht werden wir später Gelegenheit haben,
dies an weiteren Beispielen zu sehen.

Festigkeitsversuche an imprägnierten hölzernen Leitungsmasten.
Mitgeteilt von den Nordostschweizerischen Kraftwerken A.-G., liaden, und den Elektrizitätswerken des Kantons Zürich,

Zürich. 621.315.66S. 1.0014

Es wird über Festigkeitsversuche an alten hölzernen
Leitungsstangen berichtet. Diese Versuche zeigen, dass auch 30-
jährige Holzstangen, wenn sie durch Fäulnispilze nicht
angegriffen sind, im allgemeinen immer noch eine genügende
Festigkeit aufweisen, so dass die Bestrebungen zur Verlängerung

der Lebensdauer durchaus gerechtfertigt sind.

L'auteur relate des essais de résistance effectués sur de
vieux poteaux de lignes électriques en bois. Ces essais
démontrent que même des poteaux âgés de 30 uns présentent
encore une résistance mécanique suffisante, s'ils ne sont pas
atteints par les champignons. Les efforts en vue de prolonger
la durée des poteaux sont donc parfaitement justifiés.

Beim Auftreten von orkanartigen Sturmwinden, da und dort Brüche von Holzstangen an Regellei-
wie die, welche in einigen Gegenden der Ostschweiz tungen vor. Wenn es sich hierbei um Stangen han-
am 20. .Juli 1935 zu verzeichnen waren, kamen schon delte, die offenbar durch vorgeschrittene Fäulnis
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