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Die Berechnung der
Freileitungen mit Rücksicht auf die mechanischen Verhältnisse der Leiter.

Von E. Maurer, Innertkirchen.

(Fortsetzung von Seite 46 und Scliluss.)

651.315.056

4. Grosse Spannweiten.
Wie im dritten Kapitel angedeutet, sind für

Spannweiten über 500 m die Berechnungen nach
der angenäherten Methode nicht mehr genügend
genau. Es wird alsdann nötig, die Berechnungen nach
den Formeln der Kettenlinie durchzuführen. Nimmt
man z. B. eine Spannweite von 800 m Länge mit
gleich hohen Aufhängepunkten an, so wird der
Durchhang bereits so gross, dass die Zugbeanspruchung

des Seiles in den Aufliängepunkten nicht
mehr der Scheitelbeanspruchung gleich gesetzt werden

darf. Die Scheitelbeanspruchung ist in diesem
Fall wesentlich kleiner als die maximal zulässige
Zugbeanspruchung und muss aus dieser berechnet
werden.

Nimmt man den Zustand bei 0° und Schneebelastung,

so sind von der Seilkurve Horizontal- und
Vertikal-Distanz der Aufliängepunkte, das virtuelle
spezifische Seilgewicht und die Zugspannung im
höheren Aufhängepunkt gegeben. Der Parameter
der Kurve ist noch unbekannt und muss zunächst
bestimmt werden.

Bekanntlich ist bei der Kettenlinie der Seilzug
in einem Punkt der Ordinate dieses Punktes
proportional (Ableitung s. Anhang I, Gl. 10s). Es

gilt also

Pn y • y„ oder y„
P,-

y
(14)

Im oberen Aufhängepunkt ist p., gleich der gewählten

Maximalbeanspruchung pz oder < zulässige
Höchstbeanspruchung nach Starkstromverordnung)
zu setzen. Im unteren Aufhängepunkt beträgt die
Zugspannung demgemäss Pi p.— yh. Es seien
die beiden Stützpunkte A und B gegeben, ihre
Horizontaldistanz a, der Höhenunterschied Ii, der
Neigungswinkel der Strecke A B gegen die Horizontale
sei ip.

Dann gilt die Beziehung 6) :

y» 2
' (yi + y2> cos y> c-@o§ (15)

Ableitung siehe ETZ 1932, S. 28 und 29.

Die rechte Seite dieser Gleichung stellt nun die
Ordinate der Aufhängepunkte einer Kettenlinie
von gleichem Parameter und gleicher Spannweite,
wie die zu untersuchende, jedoch mit gleich hohen
Aufhängepunkten, dar. Man kann an Hand von
Gl. (15) die Unbekannte c berechnen, was aber
nicht einfach ist, da sie sowohl als Faktor als auch
unter dem (Soë auftritt. Man hilft sich durch
Reihenentwicklung

No — c + Ö f-2c ' 24 C3
oder

c-y0 c2H s h
X*

24 C2
• wobei x 2

(16)

Die Gleichung ist für c vierten Grades und kann
nur gelöst werden durch Einsetzen verschiedener
Werte von c bis zur Erfüllung der Gleichung. Wenn
man die vierte Potenz von x vernachlässigt, so
erhält man die Näherungsformel

y0 + 1U a'
T (16a)

Diese Formel ergibt c bereits mit einer Genauigkeit
von einigen %; der genaue Wert für c ist etwas
kleiner. Man berechnet also vorerst den angenäherten

Wert nach Gl. (16a) und setzt etwas kleinere
Werte in Gl. (16) bis zu deren Erfüllung ein. Die
Potenzen können einer Potenztafel (z. B. Hütte I)
entnommen werden.

Die Berechnung soll an einigen Beispielen
erläutert werden:

Beispiel 3.
Ein Seil aus Hartkupfer von 67,5 nun2 Querschnitt soll

zwischen 2 gleich hohen Aufhängepunkten mit einer Distanz
von 800 in so gespannt werden, dass die maximale
Zugbeanspruchung hei 2 kg Schnee pro Laufmeter die nach Stark-
stromverordnung höchstzulässige Beanspruchung von 2700
kg/cm2 nicht überschreitet.

Man setzt also

800 m
2700 kg'em5

_ 0.0089 + «;s_ 0,0385 38,5 • 10'3 kg/cm3
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Dann betragen die Ordinaten der Aufhängepunkte:

p _ 2700
n yz

V 38,5 10-3

1

70130 cm 701,3 m

(yi + yi) yi

Näherungswert für c ——(701,3 +"|/701,32 _ ü?° 557,7 m

Näherungswert für den Durchhang yo—c 701,3 — 557,7

143,6 m. Man wählt für c einen kleinern Wert, z. 13. 549,1 m,
setzt ihn in Gl. (16) ein und erhält:

1. x 400

16 • 104

x*
24 c2

256-10^
:24-301511

800Q0

301511

3 529

2. c 'yo 549,1 ' 701,3

385040

385 080

Die Uebereinstimmung von 1. und 2. zeigt, dass der gewählte
Wert für c richtig ist, und man erhält für den Durchhang

/ yo — c 701,3 — 549,1 — 152,2 m

Dieser Wert stimmt sehr gut mit dem nach Hyperbelfunktion
und Logarithmentafel berechneten Wert von 152,26 m

überein.
Für die Bogenlänge erhält man gemäss Anhang I, Gl. 9*:

l : yl cs 2 436,5 873 m-*•]/:
Der Horizontalzug wird

p c y 54 910 ' 38,5 • 10-3 2110 kg/cm2,

also erheblich weniger als /',. d. h. die wirkliche
Maximalbeanspruchung des Seiles wäre um rund 600 kg/cm2 22%
grösser als zulässig geworden, wenn nur mit den angenäherten

Werten (pz p) gerechnet worden wäre.

Beispiel 4.
Zwischen zwei Abspannpunkten mit einer Horizontaldistanz

von 900 m und einem Höhenunterschied von 120 m
soll ein Bronzeseil von 62 mm2 Querschnitt gezogen werden,
so dass die maximale Zugspannung im oberen Aufhängepunkt
bei 2 kg Schnee pro Laufmeter höchstens 77 % der nach
Starkstromverordnung zulässigen Beanspruchung (4300
kg/cm2) betragen soll.

Man setzt also
a 900 in cos y> 0,991 ip 7° 40'
h 120 m
pz 77 % von 4300 3300 kg/ein2 ps

0,02
y= 0 ,087 +

0,62
: 0,041 — 41 ' 10-3 kg/cm3

Die Ordinate des oberen Aufhän gepunktes

y2 75— 80 500 cm 805 m
y 41 • 10'J

Die Ordinate des unteren Aufhängepunktes

yi y2 — 120 685 m

yo —(yi -)- ys) cos y 745 • 0,991 738,5 m

Näherungswert von c

^738,5 + y738,52 _ 556,75 m

Man wählt c 541 m und setzt diesen Wert in Gl. (16) ein:
1. * 450

*2 20,25
2 _ 2

c2 292 681

104 101250

410,07 • 10»

24 c2 24-292 681

2. cy0 541 738,5

5837

399768

399 730

'-<»^>J,-(738'5-541»iÖ9T : 199,3 m

Höhenunterschied zwischen Kurvenscheitel und unterem
Aufhängepunkt:

y' yi — c 685 — 541 144 111

Bogenlänge:

l=y'y2 - c2 + yy2 __ c2 y/80S2 — 5412 + y/6852 — 5412

l 596,11 + 420,17 ~ 1016 m

Die Scheitelbeanspruchung p c'y 54100 41 ' 10-' 2220

kg/cm2, also nur % der wirklichen Maximalbelastung.

Für Spannweiten von 500 m und darunter kann
c mit genügender Genauigkeit nach der Näherungsformel

16a berechnet werden. Für die Berechnung
des Winkels, den die Tangente an die Kettenlinie
mit der Abszissenaxe bildet, gilt für die Kettenlinie
die einfache Beziehung

COS T - (17)

Die Zugbeanspruchungen im höchsten Punkt
interessieren meist nur in den Fällen der Maximal-
belastung und sind dann durch die Starkstromver-
orduung gegeben; also bei 0° und 2 kg Schnee pro
Meter. Bei den Umrechnungen auf andere Zustände
(verschiedene Temperaturen ohne Zusatzlast) liegt
als Resultat bereits die für den Parameter der
Kurve massgebende Scheitelbeanspruchung p vor
und der Durchhang kann direkt berechnet werden
nach der Gleichung

/ y • a-
8 P + y3 a1

384 p9/ cosy1
(8a)

welche für horizontale Spannweiten (cos ip — 1

mit Gl. (8) identisch ist.

Zur Bestimmung von Abständen gegen den
Erdboden oder kreuzende Leitungen ist, wie bei den
kleinen Spannweiten, der Scheitelpunkt der Kurve,
resp. die Koordinaten x und y der Aufhängepunkte
zu bestimmen. Das im 3. Kapitel dieser Abhandlung

dargestellte angenäherte Verfahren ist aber für
grosse Spannweiten nicht genau genug. Es ist in
diesem Fall mit folgenden, aus der Reihenentwicklung

der Kettenlinienformel abgeleiteten Gleichungen

zu rechnen7).

Gegeben seien: Horizontaldistanz a und Höhendif¬
ferenz h der Aufhängepunkte.
Horizontalbeanspruchung p und
spez. Gewicht y des Leiters.

Man bestimmt zunächst den Parameter der Kurve

c — ; die Gleichungen lauten dann
Y

") Ableitung s. Anbang I (Gl. 13*).
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a) x.. — xx a

b) h= £c' (x1+*«) i + 12 C2
8) (18)

An Stelle von xp+x22 können die nach den Gl. (11)
und (12) berechneten Näherungswerte xt'2 und x.,'2

eingesetzt wçrden, was die Berechnung sehr vereinfacht.

Aus den beiden Gl. (18a) und (18b) erhält
man die Abszissenwerte x1 und x„ der Aufhängepunkte.

Die Ordinaten ergeben sich aus der Gl.

i
-t2

I

y ~ C
2c + 24^ (6a)

oder wenn die Abszissenaxe durch den Kurvenscheitel

gelegt wird

X
y ~ 2c

je4
24 c3

(6b)

Zur Kontrolle des Ausdruckes in der eckigen Klammer

empfiehlt es sich, die Summe von x*~\~x* mit
der Summe von x1'2+x2'2 zu vergleichen.

5. Spezielle Fälle von Leitungen.
a) Kegelleitungen.

Als Regelleitungen werden Freileitungen mit
nahezu gleichmässigen Spannweiten bis zu 50 m
bezeichnet. Für diese Leitungen liegt in der
Starkstromverordnung °) eine Durchhangstabelle vor,
nach welcher die Durchhänge einzuregulieren sind
(Tab. II). Eine Berechnung der Durchhänge
erübrigt sich somit.

b) Weitspannleitungen mit festen Isolatoren.
Hierher gehören alle Leitungen mit fixen

Befestigungspunkten, d. h. mit festen Isolatoren (Stützen

und Abspannketten) mit Spannweiten über
50 m. Die Durchhangsberechnung erfolgt nach den
in den vorhergehenden Kapiteln dieser Abhandlung
dargestellten Regeln. Einzelne Spannweiten von
über 50 m im Zuge von Regelleitungen sowie für
sich abgespannte Spannweiten in Leitungen mit
Hängeisolatoren sind in gleicher Weise zu
behandeln.

e) Weitspannleitungen mit beweglichen Isolatoren.
Leitungen mit Hängeisolatoren haben die

bemerkenswerte Eigenschaft, dass die Aufhängepunkte
der Leiter nicht mehr fest sind, sondern sich bei
Zustandsänderungen unter der Einwirkung von
Differenzzügen zweier benachbarter Spannweiten in
Leitungsrichtung bewegen können. Infolge dieser
Bewegungen (Isolatorenauslenkungen) ändern sich
die Zugspannungen in den angrenzenden
Spannweiten.

Es hat sich gezeigt, dass bei genügend langen
Isolatorenketten im normalen Belriebszustand (mit
oder ohne gleichmässig verteilte Schneelast) diese

8) In der Jobinschen Originalarbeit hat sich seinerzeit in
diese Formel [Gl. (20)] ein Druckfehler eingeschlichen,
indem statt der Zahl 12 im Nenner des zweiten Klammergliedes
die Zahl 24 steht.

») Art. 88.

Verschiebungen sehr klein sind und nur in seltenen
Fällen 20 bis 30 cm übersteigen. Das durch die
Vertikalkomponente des Leiterzuges mit dieser
Auslenkung als Hebelarm erzeugte Drehmoment kann
also in den meisten Fällen vernachlässigt werden.
Durch diese Isolatoren-Auslenkungen werden somit
die horizontalen Seilspannungen bis auf ganz kleine
Differenzen ausgeglichen. Es ist also p für alle
Spannweiten zwischen zwei Abspannungen gleich
gross und die Seilkurven aller Spanmveiten gehören
der gleichen Kettenlinie an.

Die Horizontalkomponenten der Seilspannungen
sind also für Leitungen mit Hängeisolatoren für
Zustandsänderungen nicht Spannweite für Spannweite

zu berechnen, sondern für alle Spannweiten
zwischen zwei Abspannungen gemeinsam, wobei in
Gl. (1) für a die Berechnungsspannweite a* eingesetzt

wird.
Bezeichnet man mit

p0 die horizontale Seilbeanspruchung in kg/cm2 im
Anfangszustand ym t0.

/>'" die ausgeglichene horizontale Seilspannung im
Endzustand y, t,

so berechnet sich p~ nach den Gleichungen 10) :

a) Für Leitungen mit Hängeisolatoren und gleich
hoch liegenden Aufhängepunkten (horizontale
Spannweiten) :

Pn+P* rU*2 e
24-D2 -M«-y c£-po

rn
y2a*"E

24
(19)

Die Grösse der Berechnungsspannweite a* ergibt
sich zu:

1*2 :

2>3
_i

n (20)

wobei n die Anzahl der Spannweiten zwischen zwei
Abspannpunkten bedeutet.

b) Für Leitungen mit Hängeisolatoren und
ungleich hohen Aufhängepunkten:

u • p 3 -)- p *2 n2 a*2 E

24 pl + (t - y «E -u • Po

i*2 E
24

2 °3 xp I a( 1 +
h2

2 «2

2> 2>

(21)

(22)

Zur Berechnung der Horizontalkomponente p
aus der maximalen Zugbeanspruchung pz gemäss
Gl. (3) sind- für a und h die Werte derjenigen
Spannweite einzusetzen, welche die grösste Ordinate

y2' für den obern Aufhängepunkt aufweist. Es
ist dies in den meisten Fällen die Spannweite mit
dem grössten Neigungswinkel yj.

°) Ableitung s. Anhang I (Gl. 19* bis 26*).
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Normale Durchhänge der Leiter von Regelleitungen, wie sie gemäss Art. 88, Ziffer 3, einzuhalten sind, und dabei
auftretende Zugkräfte und Beanspruchungen. Tabelle II.

Leiter Leiterdurchhang in cm für Spannweiten Tempe- Leiteizug bei 100
Beanspruchung in
Spannweiten von

durch- quer-
schnitt

mm2

von m
0 C 50 m bei 0° 20 m bei

mm 20 25 30 35 40 45 50 (Zustand) kg kg/mm2
mit Zusatzlast

kq/mm2
— 25 »

kq/mm2

Halbharter Kupferdraht

4 12,6

10
14
19
45

17
22
27
64

25
32
38
84

36
43
50

107

49
56
63

131

63
71
78

158

80
88
95

187

0"
+ 10«

+ 20
0« S

l" 40 3,2 28,01) 9,0

4,5 15,9

10
14
19
41

17
22
27
58

25
32
38
76

36
43
50
95

49
56
63

118

63
71
78

143

80
88
95

170

0 11

+ 10"
+ 20"
0" S

[ 51 3,2 24,92) 9,0

5 19,6

10
14
18
37

16
21
26
52

24
30
36
69

34
41
48
87

46
54
61

107

60
68
75

130

75
84
91

154

0 0

+ 10"
+ 20°
0° S

i 65 3,3 22,6 9,2

6 28,3

9
13
17
32

15

20
25
45

23
29
35
59

32
39
46
75

43
51
59
93

56
64
72

112

70
79
87

133

0 «

+ 10"
+ 20«
0" s

| 100 3,5 18,7 9,6

7 38,5

9
12
16
28

14
19
24
40

21
27
33
53

30
36
43
67

40
47
55
83

52
60
68

100

65
74
82

119

0 «

+ 10"
+ 20"
0" S

| 145 3,8 16,1 10,0

8 50

8
11
15
25

13
17
23
35

19
25
32
47

27
34
42
60

37
45
52
75

48
57
64
90

61
70
78

107

0 «

+ 10"
+ 20"
0" S

j 200 4,0 14,3 10,3

Kupferseil

9,1 50

8
11
15
26

13
17
23
37

19
25
32
49

27
34
41
63

37
45
52
78

48
57
64
94

61
70
78

111

0 "

+ 10"
-f 20"
0" S

J> 200 4,0 13,7 9,8

9,6 70

8
11
15
23

13
17
23
33

19
25
32
44

27
34
41
56

37
45
52
70

48
57
64
85

61
70
78

101

0"
+ 10°
+ 20°
0" S

| 280 4,0 11,5 9,8

Reinaluminiumseil

6,4 25

6

10
17
45

10
16
24
62

14
22
32
81

20
30
41

101

28
39
51

122

37
50
62

144

48
62
74

167

0«
+ 10«

+ 20"
0« S

i 35 1,4 13,6
für 40 m

5,5

8,1 40

6
10
17
37

10
16
24
52

14
22
32
68

20
30
41
85

28
39
51

103

37
50
62

123

48
62
74

144

0«
+ 10"
+ 20"
0" S

| 56 1,4 11,5
höchst

zulässig

8,4

5,5

10,8 70

5

9
15
29

9
14
21
41

13
20
28
54

18
26
37
68

24
34
46
83

31
44
56
99

40
54
67

116

0°
+ 10«

+ 20"
0" S

| 112 1,6 5,8

13 100

5
9

15
24

9
14
21
34

13
20
28
46

18
26
37
59

24
34
46
73

31
44
56
88

40
54
67

103

0"
+ 10"
+ 20"
0" S

| 160 1,6 6,9 5,8

n) 25,7

2) 22,9
für 40 m Si
für 40 m S

ïannwei
lannwe

te und 22,5 für 30 m Spannwei
te.

e.

Bemerkung: Die Angaben in der Temperaturkolonne bedeuten, wo nichts bemerkt ist, den Zustand ohne Zusatzlast
und bei «0° S» den Zustand bei 0° mit der Zusatzlast nach Art. 88, Ziffer 1 b. Der letztere Zustand ist massgebend für
die minimale Hohe der Leiter über Boden und den minimalen lotrechten Abstand gegenüber andern gekreuzten Leitern
gemäss Art. 13 und 30 der Verordnung über Parallelführungen und Kreuzungen.

Die in der vorstehenden Tabelle angeführten Masse des Durchhangs sind gemäss Erläuterung zu Art. 88, Ziffer 3 der
Starkstromverordnung' als Minimalwerte anzusehen. Wenn aus Gründen grösserer Sicherheit die maximalen Zugbeanspruchungen

kleiner gewählt werden, als in der Tabelle angegeben, so ist die Durchhangsberechnung nach den in den
vorhergehenden Kapiteln dieser Abhandlung dargestellten Regeln durchzuführen.
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6. Berechnung der vom Leiter auf die Tragwerke
ausgeübten Kräfte.

Diese Kräfte sind massgebend für die Berechnung

der Tragwerke. Man kann sie als Komponenten

in drei Richtungen darstellen:

a) Kräfte in Leitungsrichtung.

Es handelt sich hier um die horizontalen
Zugspannungen, deren Berechnung in den vorhergehenden

Kapiteln dargestellt wurde.

b) Kräfte quer zur Leitungsrichtung.

Hier kommt in erster Linie der Winddruck auf
die Leiter in Betracht, ferner bei Winkelmasten der
Winkelzug. Gewöhnlich wird der Wind als
horizontal einfallend angenommen. Ist der Winddruck
auf die Leiter einer Spannweite bekannt, so kann
in diesem Fall die zugehörige Beanspruchung auf
jeden der beiden angehörigen Masten, herrührend
von dieser Spannweite, gleich der Hälfte des
Winddruckes auf alle Leiter angenommen werden.

Der Winkelzug wird aus dem Horizontalzug und
dem Ablenkungswinkel gemäss Fig. 6 berechnet; er
beträgt :

W 2 H cos
a
2

Tig. 6.

c) Kräfte in der Lotrechten zur Erde.

Es handelt sich hier um die Einwirkung des
Gewichtes der Leiter auf die Tragwerke. Da im
Scheitelpunkt der Seilkurve nur horizontale Kräfte
übertragen werden, die Vertikalkomponente somit Null
ist, so entfällt auf jeden Mast das Gewicht der Seile
vom Aufliängepunkt bis zum Kurvenscheitel. Liegt
der Scheitel ausserhalb der Spannweite, so ergibt
sich für den oberen Aufliängepunkt eine so grosse
Vertikallast, wie wenn das virtuelle Bogenstück vom
untern Aufhängepunkt bis zum Scheitel materiell
vorhanden wäre. Für den unteren Aufhängepunkt
erhält man dann eine Vertikalkomponente entsprechend

dem vorgenannten virtuellen Bogen, aber
nach oben wirkend.

Es kann nun vorkommen, dass bei einem Mast
die Resultierende der Vertikalkräfte heider Spannweiten

nach oben gerichtet ist, wobei die Isolatorenkette

gehoben wird. Ist diese Resultierende nicht
sehr gross, so kann ihr meistens durch ein an die
Seilklemme angehängtes Zusatzgewicht entgegengewirkt

werden. Das Zusatzgewicht muss immer grösser

sein als die maximale, nach oben gerichtete
Vertikalkomponente. Ist diese aber beträchtlich, so

muss die Leitung entweder an diesem Mast
abgespannt oder, wenn die Vertikalkomponente bei
allen Zuständen der Leitung nach oben gerichtet ist,

so kann die Isolatorenkette umgekehrt angeordnet
werden, so dass die Aufhängung am Ausleger unterhalb

der Seilklemme liegt. Das Abspannen ist in
den meisten Fällen vorzuziehen.

Da es bei der Bestimmung der Vertikalkräfte
nicht auf so grosse Genauigkeit ankommt, wie bei
der Durchhangsberechnung, so genügen in den meisten

Fällen die folgenden einfachen Näherungsformeln

(Fig. 7) :

Denkt man sich das Seil in einer Spannweite im
Schnittpunkt C der zur Verbindungsgeraden der
Aufhängepunkte parallelen Tangente
durchgeschnitten und bringt an dieser Stelle den Zug P an,
so ist der Vertikalzug im oberen Aufliängepunkt B
gleich dem Gewicht des Seilstückes B C + der
Vertikalkomponente des Seilzuges P in kg. Der
entsprechende Horizontalzug sei H p-q (in kg),
wobei q den Seilquerschnitt bedeutet. Das Bogenstück

B C können wir annähernd gleich der Hälfte
des ganzen Bogens A B setzen. Dann ist

V,

V,

vm
2 + H't8V |+ «-j <23>

G h
J-Ha

G ist das Gewicht des Seiles zwischen A und B.
Für kleinere Spannweiten ist es zulässig, die
Gerade AB dem Bogen AB gleichzusetzen. Bezeichnet

man mit g das Gewicht des Seiles (ohne oder
mit Zusatzlast) pro Längeneinheit, so erhält man

r, «," + ».-I a
(24)

V, g-a H
h

Negative Werte für V bedeuten Zug nach oben.
Gl. (23) bzw. (24) gibt für Spannweiten bis zu
400 m und Neigungswinkel bis zu 30° (cos ip 0,861

genügend genaue Resultate. Genauere Werte für
die Vertikalkräfte erhält man nach folgender
Methode, welche auch eine gute Kontrolle über die
Seilspannungen in den beiden Aufliängepunkten
ermöglicht.

Bekanntlich ist bei der Kettenlinie die Differenz
der Seilspannungen zweier Punkte gleich der Or-
dinatendifferenz dieser Punkte, multipliziert mit
dem (virtuellen) spezifischen Gewicht des Leiters.
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Gegeben seien a. h, p unil y, woraus sich der
Durchhang / berechnen lässt. Dann ist nach Fig. 8:

p -— wobei p die horizontale Seilspannung
COSi/l

Fig.

bedeutet, und die Zugspannungen in den Aufhängepunkten

ergehen sicli zu :

P2

P i

P
cos ip f (25)

+ • / —ö"cos yj

Aus den Seilziigen berechnen sich die Vertikalkräfte

für den Seilquerschnitt q zu

V2 q 1/pl-i (26)

Vx q - (±VPi—P2)
Da die Zugspannungen immer positiv sind, so fehlt
ein Kriterium darüber, ob die Quadratwurzel positiv

oder negativ zu rechnen ist, während bei Gl.
(23) und (24) das Vorzeichen der Vertikalkomponente

eindeutig bestimmt ist.
Handelt es sich um genaue Berechnung der

Kräfte bei grossen Spannweiten über 500 m, so
sind zunächst die Ordinaten der Punkte A und B
zu berechnen, wie in Kapitel 4 gezeigt wurde. Sind
diese Ordinaten und y2, bezogen auf den
Nullpunkt der Kettenlinie, bzw. y,' und y2', bezogen
auf den Kurvenscheitel, so erhält man die Seil-

spannungen aus folgenden Gleichungen, wobei p
die horizontale Seilspannung bedeutet:

p2 y • yï p + r • y2

p. y vi p + / • y'i

Diese Gleichungen sind identisch mit Gl. (14).

(27)

7. Leiter aus zwei verschiedenen Metallen.

In der Praxis kommen oft Leitungsseile zur
Anwendung, welche im Innern mehrere Drähte aus
einem Metall von hoher Zugfestigkeit enthalten,
um welche sich der eigentliche Leiter aus einem
Metall mit guter Leitfähigkeit, aber kleinerer
Zugfestigkeit gruppiert. Am bekanntesten ist die
Kombination von Stahl und Aluminium.

Bei den Festigkeits- und Zug-Bereclmungen
könnte zunächst das Metall höherer Zugfestigkeit
als allein tragend und der Leiter als Zusatzbelastung
angenommen werden. Diese Berechnungsweise
führt wohl zu sehr sichern Leitungen, aber auch,

wenn der Querschnitt des tragenden Teiles
verhältnismässig klein ist, zu Durchhängen, die
unwirtschaftlich sind.

Richtiger ist es, beide Metalle als tragend
anzunehmen, was nach Starkstromverordnung unter einigen

Voraussetzungen (s. Art. 89) auch gestattet ist.
Das Seil kann dann als Ganzes betrachtet und die
Berechnung wie für ein homogenes Seil durchgeführt

werden. Die physikalischen Konstanten des

kompletten Seiles (spez. Gewicht, Elastizitätsmodul
und Wärmeausdehnungskoeffizient) sind von
denjenigen der Komponenten verschieden, lassen sich
aber aus diesen berechnen.

Bezeichnet man mit
ql den Gesamtquerschnitt der Drähte des einen Metnlles,
(72 » » » » » andern Metalles,
q » totalen Seilquersehnitt, ferner mit
Fi den Anteil des Seilzuges, den die Drähte qi aufnehmen,
Pi » » » » » » » <72 »
P » totalen Seilzug, im weiteren mit
Ei » Elastizitätsmodul der Drähte qi,
E« » » » » qi,
E, » » des kompletten Seiles,

so ergeben sich aus der Bedingung, dass beim
Anspannen des Seiles beide Metalle die gleiche
Verlängerung erfahren, die folgenden Beziehungen 11

:

Pi

P2

E,

9i E,

<Jl E1 q2 • E2

I2 En

q1 • Ex-\- q2 • E2

P

P

(28)

>h

q
E, 92

q

Dies gilt, solange beide Metalle die Proportionalitätsgrenze

nicht wesentlich überschreiten.
Hat man z. B. ein Aluminiumstahlseil mit einem

Gesamtquerschnitt von 210,3 mm2, wovon 170,5 mm2
auf den Aluminiummantel und 39,8 mm2 auf die
Stahlseele entfallen, und beträgt der Elastizitätsmodul

des Aluminiums 5,5 -105 kg/cm2, derjenige
der Stahlseele 18,5 -103 kg/cm2, so übernimmt beim
Anspannen des Seiles nach Gl. (28) das Aluminium
56,7 % und die Stahlseele 43,3 % des gesamten
Seilzuges P.

Für den Wärmeausdehnungskoeffizienten des

ganzen Seiles erhält man aus der Bedingung, dass

die Längenänderungen beider Metalle hei
Temperaturänderungen gleich gross sein müssen, die
Beziehung 11 ^

9i ' ^1 ' öi + 92 ' E.2

E„
(29)

q 1 + qi

wobei a1 und a2 die Ausdehnungskoeffizienten beider

Metalle, as denjenigen des kompletten Seiles
bedeuten.

Die ungleichen Temperaturkoeffizienten haben
zur Folge, dass sich hei Temperaturänderungen die
Verteilung des Seilzuges ebenfalls ändert. Beispiels-

11 Ableitung siehe Anhang I (Gl. 27* bis 32*).
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weise wird bei fallender Temperatur das Metall
mit grösserem Ausdehnungskoeffizienten sich stärker

zusammenzuziehen suchen und einen entsprechend

grössern Belastungsanteil aufnehmen.
Besitzt dieses Metall dagegen den kleinern Elastizitätsmodul,

so wird durch die elastische Dehnung die
Mehrbelastung zum Teil wieder kompensiert. Die
im vorhergehenden Beispiel bereclmete Belastungsverteilung

gilt also streng genommen nur für die
Montagetemperatur.

Das spezifische Gewicht des ganzen Seiles ohne
Zusatzlast in kg/cm3 ist gleich dem Seilgewicht pro
cm, dividiert durch den Gesamtquerschnitt des Seiles

in cm2.

Die Bruchbelastung des kompletten Seiles ist
stets kleiner als die Summe der Bruchlasten der
Komponenten. Sie lässt sich nur auf Grund von
Erfahrungstatsachen berechnen und wird am besten
durch einen Zerreissversuch bestimmt.

Nach Starkstromverordnung gilt bei Seilen, die
aus verschiedenem Material bestehen, als höchst
zulässige Beanspruchung des ganzen Seiles
diejenige, welche im ungünstigsten Belastungsfall dann
auftritt, wenn das eine oder das andere der beiden
Materialien seine höchstzulässige Beanspruchung
erreicht.

Auf das Aluminiumstahlseil des vorhergehenden
Beispiels angewendet, ergibt sich aus der Belastungsverteilung

und den kleineren Ausdehnungsvermögen
des Aluminium ohne weiteres, dass dieses Metall

für den Bruch des Seiles massgebend ist. Dessen

höchstzulässige Beanspruchung beträgt gemäss
Starkstromverordnung 12)) 1300 kg/cm2, oder für
den gesamten Aluminiumquerschnitt: 1300-1,705
2215 kg 56,7 % der höchtzulässigen Seilheanspru-

cliung. Diese ergibt somit zu 2215 • ^ ~= 3910 kg

oder 3910 : 2,103 1860 kg/cm2, bezogen auf den
vollen Seilquerschnitt; die Stahlseele wird dabei nur
mit 1695 kg, also 36 % ihrer Bruchfestigkeit, belastet,

worin übrigens eine ganz erhebliche zusätzlicher

Sicherheit liegt.

8. Ausserordentliche Belastungsfälle.
In vielen Fällen interessiert das Verhalten einer

Leitung, die vorschriftsmässig erstellt worden ist,
bei ausserordentlichen Zuständen, z. B. Rauhreifansatz

über 2 kg pro Laufmeter. Ferner wird man
sich die Frage stellen, welche Zusatzlast die nach
Vorschrift gespannten Seile zum Reissen bringen
würde.

Beide Fragen lassen sich mit Hilfe der Zustandsgi
eichungen (1) und (la) lösen. Es ist aber zu

beachten, dass bei normalen Belastungsfällen bis zur
vorschriftsmässigen Höchstbelastung die Proportio-
nalitätsgrenze des Leitermetalles nur wenig
überschritten wurde, und deshalb mit einem konstanten
Elastizitätsmodul E gerechnet werden konnte. Bei

12) Siehe Tabelle I, Fussnote ').

höheren Belastungen ist dies nicht mehr der Fall.
Um Berechnungen durchführen zu können, ist die
Vorlage der Zerreisskurve des Seiles, bzw. die
Spannungs-Delinungskurve des Leitermaterials
erforderlich.

Es soll nun die Bruchschneelast eines Seiles vom
spez. Gewicht y0 berechnet werden, das in einer
horizontalen Spannweite a bei einer Temperatur in
mit einer Zugbeanspruchung p0 gespannt ist. Die
Lösung erhält man aus Gl. (la) :

S ' ($-iv)('-«.) » + IP - • i <!">

wenn man für p die Zerreissfestigkeit des Leiters
einsetzt. Man erhält dann als Lösung y, das
Gewicht des Leiters + der gesuchten Bruchschneelast,
bezogen auf die Längen- und Querschnittseinheit
des Leiters. In vorstehender Form ist aber die
Gleichung zur Lösung nicht geeignet, weil E keine
Konstante ist. Es ist nun allgemein die Dehnung des

Materials gleich der Zugspannung, dividiert durch

den Elastizitätsmodul, also £ ^.E

In Gl. (la) eingesetzt erhalten wir

' fe~f) (t ~to) "+ e ~~tv (30)

Liegt nun die Zerreisskurve des Seilmaterials vor
(Fig. 9), so entnimmt man ihr die Zerreissfestigkeit

pi, und die Bruchdehnung e;, und setzt diese
Werte an Stelle von p und £ in Gl. (30) ein. Ist

£
f in % angegeben, so ist der Wert in die

Gleichung einzusetzen. e0 ist durch die bekannten
Werte p„ und E gegeben. Wählt man noch die

p Po

/
Po

1
to to f

SEV*93I

Temperatur t, für welche die Bruchscbneelast
bestimmt werden soll, so sind alle Werte gegeben,
um die Unbekannte y zu berechnen, aus welcher
sich die Bruchschneelast Kb ergibt:

Kb q(y—r0). (31)

Haben wir die Werte y und y0, ausgedrückt in
kg/cm3, so erhält man Kb in kg pro cm Leiterlänge.

Etwas umständlicher gestaltet sich die Berechnung

der Zugspannung für eine 2 kg pro Laufmeter
übersteigende Zusatzlast. In Gl. (30) sind alsdann

y und y0 bekannt, sie enthält aber die beiden
Unbekannten p und £, die unter sich durch die Zerreisskurve,

aber nicht in analytischer Form zusammen-
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hängen. Man setzt nun verschiedene Werte von p
in Gl. (30) ein, berechnet daraus g und verändert p
so lange, bis die zugehörigen Werte von p und g

als Koordinaten im Zerreissdiagramm einen Punkt
ergeben, welcher auf der Zerreisskurve liegt.

Die Angaben unter 8, über das Verhalten einer
Leitung bei ausserordentlichen Zusatzlasten, gelten
nur für eine annähernde Orientierung, sogar wenn
die Spannungs-Dehnungskurve sich auf ein langes
Seilstück bezieht.

Zusammenstellung der für die Berechnung wichtigsten Formeln.
Tabelle III.

Spannweiten bis 300 m
gleich hohe Aufhängepunkte

B.
Spannweiten bis ca. 500 m

und Neigung ip bis ca. 30° *)
Spannweiten von 500 bis ca.

1200 m mit beliebigen Neigungen

p3+p2

1. Zustandsgieichung
\y„ ä2 E
"oü 2~ +(<-fo)"£-Pü

L 24 pl J

('+£Myg
a2 E cos

l'PS

y2 a2E
24

24 PÎ

(t- to) a E - p„ ^1 +
2 a2

y2 a2 E cos >y

o")1+!&)+'''[
y2 a2 Ecos y)

24 Pl

+ (t-<°)«£-po(l+1^r)
y2 a'- E cos y>

24 24

2. Durchhang / y • a'
a p

y • a2 / yo- c

cos iy
8 p cos iy y a2 y3 a* \ 1

V 8 p 384 p3 / cos ip

3. Seilkurve:
Scheitelgleichung y 2 c 2 c cos ip 2c + - +24 c3 720 c6

a) c

a) c wobei p nach Gl. b)

P

4. Seilkurve:
Parameter

h) c • yo <

b) 1)2 (i + 2)

+^ 0

X4

24 c2

p (2pz - y-h) x yo=4" (yi+ya) • cos ip

c) C t [*0+lAo-^-J3

5. Aufhängepunkte:
Abszissen *1 *2

#2 c ' h • cos V* _|_ a
#1 a 2

a) *2~*1 a

b) h -— (*i + *2)
2 c

6. Aufhängepunkte:
Ordinaten yi y-i

y • a' yxj
y' 2 p cos y> 2 c cos »p

^2 yî + h

-AT A_L j2c 1 "•!yî 2c1 21 c3

ri: y; + h

7. Zugspannungen in den
Aufhängepunkten pi P2 P + y -f ~ P

8. Yertikalkräfte in den
Aufhängepunkten :

Fl V2 :
g • «

P3

PI cos ip
+ r(/±l) Pi — P H" y y'y J' y* (gilt auch

p, p + y y\ y • ri ^ür ^ u-

gF± H(Ià)woH=p •g
K2 q l/p2 - pa ± wenn

r \ V-I 5 Seil-
^1 q(+\p\~P gewicht

In allen Formeln sind a, h, c und die übrigen Längenmasse in cm,

y in kg/cm3 p in kg/cm2
einzusetzen.

In Formeln, welche nur Längenangaben enthalten, können diese auch in Meter oder beliebigen Dimensionen

eingesetzt werden. In jeder Formel darf aber nur eine Dimension vorkommen.

Bei Neigungswinkel über 30° sind die Formeln C zu verwenden.
') Das letzte Glied kann, abgesehen von extremen Fällen, vernachlässigt werden.
') Näherungsformel, nur für Spannweiten bis 500 m genau.

Wie in diesem Artikel dargelegt wurde, lassen
sich die Berechnungen für Spannweiten bis zu 400
bis 500 Meter mit Näherungsformeln lösen, die mit
einem 50 cm langen Rechenschieber mit genügender

Genauigkeit ausgerechnet werden können. Für

grössere und stark geneigte Spannweiten kommt
man allerdings nicht darum herum, die Rechnungen

nach den Regeln der Kettenlinie durchzuführen,
wobei es unerlässlich ist, auf 5 Stellen genau

zu rechnen.
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Anhang II.
Graphisches Verfahren zur Lösung von Aufgaben der Seilberechnung mittels der

Einheitskettenlinie.

Die Gleichung der Kettenlinie lautet y — c ' (£o§ — •
c

Man bildet nun Relativwerte aller Längenangaben, welche
sich auf die Kettenlinie beziehen, also Spannweite,
Höhendifferenz, Durchhang usw., indem man sie durch den
Parameter dividiert.

Also Spannweite a relative Spannweite ~ A
c

Höhendifferenz h » Höhendifferenz h-=H
c

Durchhang J » Durchhang — F
c

Bogenlänge 1 » Bogenlänge — L
c

Abszisse X » Abszisse A
c

Ordinate y » Ordinate -y-= y
C

Parameter c » Parameter * i
c

Mit den Relativwerten gerechnet lautet die Gl«eichung der
Kettenlinie:

Das ist die Gleichung einer Kettenlinie vom Parameter 1.
Diese stellt also das Bild aller beliebigen Kettenlinien dar,
im Maßstab 1 : c gezeichnet. Hat man diese Kettenlinie
aufgezeichnet, so braucht man von einer Seilkurve, deren
Parameter, Spannweite und Höhendifferenz gegeben sind, nur
durch Division durch den Parameter deren Relativwerte zu
bilden und sie in die Einheitskurve einzutragen. Dann können

die Relativwerte für Durchhang, Bogenlänge, Abszissen
und Ordinaten von der Einheitskurve abgelesen und durch
Multiplikation mit dem Parameter deren Absolutwerte
bestimmt werden. Durch die Ordinaten der Aufliängepunkte A
und B sind ferner die Zugspannungen in diesen Punkten
bestimmt durch Multiplikation der Ordinaten mit dem Gewicht
des Seiles pro Längen- und Querschnittseinheit. Da die
Abbildung winkeltreu ist, so können auch die Winkel, welche
Seilkurve oder Kurventangente mit den Koordinatenaxen
bilden, direkt der Abbildung entnommen werden.

Es genügt also, für die Lösung verschiedener Aufgaben
ein für allemal diese Einheitskettenlinie aufzuzeichnen. Da
der Parameter der im Leitungsbau verwendeten Seilkurven
meist zwischen 500 und 1500 m liegt, so muss die Kurve
möglichst gross aufgezeichnet werden. Wählt man für den
Einheitsparameter 1 einen Meter, so stellt die Kurve direkt
die Abbildung einer Kettenlinie vom Parameter 1000 im Maßstab

1 : 1000 dar. Da auf dem Kurvenblatt Vi mm noch
abgelesen werden kann, so lassen sich alle Strecken nur bis auf
Vi Meter genau bestimmen.

Zur Aufzeichnung der Kurve ist ein Zeiclinungsblalt im
Format von 2,2 m X 1,5 m nötig. Die Koordinaten der Kurve
können direkt in Metern aus der Tafel der Hyperbelfunktion

Hütte Bd. I, abgelesen werden. Legt man die Abszissen-
axe durch den Kurvenscheitel, so ist von den Angaben der
Tafel für immer je 1 Meter in Abzug zu bringen. Um
auch stark überhöhte Spannweiten zur Darstellung bringen
zu können, ist es zweckmässig, die Ordinatenaxe nicht in der
Mitte, sondern ca. 70 cm vorn linken oder rechten Rand des
Kurvenblattes entfernt anzuordnen (Kurvenblatt I) *).

#) Das Generalsekretariat des SEV und VSE wird das
Kurvenblatt II voraussichtlich herstellen und an Interessenten
abgeben. Nähere Mitteilungen folgen.

Begnügt man sich mit einer kleinern Ablesegenauigkeit,
so kann man für die Aufzeichnung der Kurve den
Einheitsparameter durch 50 cm darstellen. Man erhält dann ein etwas
handlicheres Format 1,1 m X 0,75 m (Kurvenblatt II) *).

Ist ferner für zwei durch Spannweite und Plöhendifferenz
gegebene Aufhängepunkte A und B für eine gegebene maximale

Zugspannung und das spez. Seilgewicht die Seilkurve
zu bestimmen, so ist der Parameter zunächst unbekannt. Die
Aufgabe lässt sich aber folgendermassen lösen:

Da alle Seilkurven einander ähnlich sind, so kann die
aufgezeichnete Einheitskurve jede beliebige Seilkurve in einem
zugehörigen Maßstab darstellen. Wir wissen ferner, dass die
Ordinate des höheren Aufhängepunktes mit dem Seilgewicht
pro Längeneinheit multipliziert die maximale Zugspannung
ergibt.

Die Distanz der Aufhängepunkte A und B betrage zum
Beispiel x Meter. Man ziehl nun im Kurvenblatt mit der
Einheitskurve irgendeine Sehne mit dem gleichen Neigungswinkel,

wie ihn die Verbindungslinie der Punkte A und B
mit der Horizontalen aufweist. Die Länge dieser Sehne
zwischen den Schnittpunkten mit der Einheitskettenlinie,
abgemessen auf dem Kurvenblatt, soll mit b bezeichnet werden.
Man misst nun die Höhendifferenz des Punktes B über dem
Kurvenscheitel auf dem Kurvenblatt ab und addiert dazu
den Einheitsparameter; dieses Mass, mit Y bezeichnet, stellt
die Ordinate des Punktes B in der Zeichnung dar. Dann
beträgt die Ordinate in Natur

y Y

Man multipliziert y mit dem Seilgewicht pro Längeneinheit

und erhält so die maximale Zugspannung im Punkt B.
Stimmt die so ermittelte Zugspannung nicht mit der
vorgeschriebenen Zugspannung überein, so verschiebt man die

Sehne parallel zu sich selbst und wiederholt das Verfahren,
bis die ermittelte Zugspannung mit der gewählten übereinstimmt.

Ist dies der Fall, so ist der gesuchte Parameter
gleich dem Parameter der Einheitskurve multipliziert mit

und der von der Sehne abgeschnittene Bogen der Ein-
b

heitskettenlinie stellt das Abbild der gesuchten Seilkurve

im Maßstab 1 - dar.
b

Fig. 7* stellt die Abbildung einer solchen Einheits-Ketten-
linie dar.
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