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Diese Eigenschaften machen das Metall vorteilhaft

zur Verwendung für Verschalungen von Maschinen,

Bürstenbrücken, Käfiganker von Kurzschlussmotoren,

Propellerräder, Getriebegehäuse,
Schalterdeckel und Traversen, Kondensatorbeläge,
Radio- und Telephonapparate und viele andere
Gebiete.

Fig. 14.

Leichte und bewegliche Tragklemme aus Anticorodal
für Freileitungen, speziell für Seile aus Aluminium, Aldrey

oder Stalil/Aluminium geeignet.

Leider hat die Verwendung von Aluminium, dieses

jüngsten aller Metalle, in der Schweiz noch nicht
die grosse Bedeutung erlangt wie in andern
Ländern, besonders wie in dem devisenschwachen
Deutschland2). Wenn wir hoffentlich in der

2) Siehe Bull. SEV 1934, Nr. 14, S. 393.

Schweiz von Kupferverbot und ähnlichen
Beschränkungen, die in Deutschland bestehen,
verschont bleiben, dürfen wir doch nicht vergessen,
dass das Aluminium das einzige in der Schweiz
hergestellte Metall ist, für dessen Herstellung nur
ein kleiner Prozentsatz für Rohprodukte ins
Ausland geht, der Hauptanteil aber der schweizerischen
Wirtschaft und der schweizerischen Arbeiterschaft
verbleibt 3).

Bei den ersten Anwendungen von Aluminium
machte man nicht immer nur gute Erfahrungen.
Der Fehler lag fast ausnahmslos daran, dass der
neue Werkstoff ohne Rücksicht auf seine speziellen
Eigenschaften angewendet wurde. Konstruktionen,
die sich für Kupfer oder Bronze ergeben hatten,
wurden kritiklos auf Aluminium übertragen. Es sei

hier nur darauf hingedeutet, dass Aluminium im
Freien, wo Feuchtigkeit zutreten kann, nur mit
Metallen, mit denen es nicht korrodiert, in Kontakt
kommen soll, also ja nicht etwa mit Kupfer oder
kupferhaltigen Legierungen. Fast alle Korrosionsschäden

sind auf Elementbildung mit Kupfer
zurückzuführen.

Die Aluminiumwerke unterhalten Versuchs- und
Materialprüflaboratorien und Auskunftsstellen,
welche dieses noch so junge Metall nach allen
erdenklichen Methoden untersuchen und Auskunft
erteilen, damit Fehler nach Möglichkeit vermieden
und die guten Eigenschaften richtig ausgenützt
werden.

3) Bei der Exkursion nach Chippis am 9. September 1935
hatte man Gelegenheit, die Herstellung von Blechen,
Profilen, Rohren aua diesen Legierungen zu sehen; die Vorstellung

über Aluminium, die sich bei vielen noch mit dem Bild
einer Pfanne mit verbeultem Boden deckt, hat dabei andern
Vorstellungen gründlich Platz gemacht. Red.

Zur Begründung der Operatorenrechnung.
Von Ernst Völlm, Zollikon. 517 43

Der Autor gibt eine Uebersicht über die Begründung der L'auteur donne un aperçu des bases du calcul opératoriel
Operalorenrechnung durch die Laplacesche Transformation par la transformation de Laplace et déduit les conditions à

und arbeitet die Voraussetzungen heraus, unter denen die remplir pour pouvoir appliquer ce mode de calcul, sans
Operatorenrechnung angewendet werden darf. Auf Einzel- entrer dans les détails de la méthode,
heiten wird nicht näher eingegangen.

I. Einleitung.
Die Operatorenrechnung, ein von Heaviside

eingeführtes Verfahren zur Integration von
Differentialgleichungen, erfreut sich besonders bei den
Elektroingenieuren steigender Beliebtheit. Es
existieren bereits einige Lehrbücher über diesen
Gegenstand. Wie wertvoll diese von Praktikern ver-
fassten Werke hinsichtlich der gebotenen
Anwendungsbeispiele auch sind, so befriedigen sie weder
den Ingenieur noch den Mathematiker vollständig.

Heaviside selbst bat die Rechenregeln des nach
ihm benannten symbolischen Kalküls zum Teil, von
Analogien geleitet, ohne Beweis auf intuitivem
Wege gewonnen. Andere Autoren haben die
Richtigkeit der Ergebnisse der symbolischen Methode

für gewisse Typen von Differentialgleichungen
nachgewiesen, indem sie die Uebereinstimmung mit
den auf klassischem Wege gewonnenen Lösungen
feststellten. Dieses Verfahren ist offenbar unbefriedigend,

da es weder neue Ergebnisse noch neue
Begründungen bekannter Sätze liefert. Wieder andere,
um eine selbständige Begründung bemühte Verfasser

beweisen gewisse Sätze und wenden sie dann
auf viel allgemeinere Fälle an, die den
Voraussetzungen des Satzes nicht genügen.

Einwandfrei begründen und leiclitfasslich
herleiten lassen sich die bekannten Regeln der
Operatorenrechnung, seitdem man weiss, dass sie eng mit
der Laplaceschen Transformation zusammenhängt.
Der Zweck der folgenden Zeilen ist, die Leser dieser
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Zeitschrift mit dieser Begründung bekanntzuma-
chen, nicht aber die Methode selbst bis in alle
Einzelheiten darzulegen. Ich hoffe, ihnen durch
Unterdrückung alles unnützen und verwirrenden Beiwerkes

das Eindringen in die Methode zu erleichtern.
Es wird sich ergeben, dass der Heaviside-Kalkül
keineswegs nur hei Differentialgleichungen der
Elektrotechnik angewandt werden kann.

2. Der symbolische Weg,
erörtert an einem einfachen Beispiel.

Ist für eine gesuchte Funktion Y einer Unabhängigen

x eine Differentialgleichung gegeben, so
besteht der symbolische Weg darin, die Ableitungs-

d d2 d"
zeichen-;—, -=—z, fälschlicherweise aufzufas-

dx dx2 dx"
seil als Potenzen p, p2, pn eines Parameters p,
für die Ableitungen also zu setzen:

d Y
dx P-Y,

d2Y
dx2

p2- Y
d"Y
dx" — P"'Y ,(1)

Durch diesen Ersatz verschwinden die Ableitungen
und wenn die Differentialgleichung weiter keine
Funktionen von x enthielt, so ist aus ihr eine
gewöhnliche Gleichung zwischen Y und p geworden,
die Y als Funktion von p liefert. In Wirklichkeit
ist Y eine Funktion von x und es fragt sich, ob auf
irgendeine Weise aus der Kenntnis von Y (p) auf
Y (x) geschlossen werden kann.

Wir betrachten als Beispiel die Differentialgleichung

u
dY
dx + RY 1

des Stromes in einem Stromkreis, bestehend aus
einem Widerstand R und einer Selbstinduktion L
in Reihe, an den die Spannung 1 angelegt wird.
Symbolisch aufgefasst, lautet sie

LpY + RY=1
und die Funktion Y (pj wird

Y(P)
1

Lp + R

Um von hier aus zu der Funktion von x zu gelangen,

kann man mit den Symbolikern Y nach negativen

Potenzen von p entwickeln und sie als Um-
kehrungen der Differentiation, als Integrale
auffassen, also etwa setzen:

1

P
\ d* *' p2 \xdx 2!
0

1

p-
\ X-
J ("-!)!

dx

') John R. Carson, Elektrische Ausgleichsvorgänge un«l
Operatorenrechnung, erweiterte deutsche Bearbeitung von
Ollendorf und Pohlhausen, Springer 1929.

Auf diese Weise erhält man

1
Y

Lp 1-4-
R -£[>- R^ R2

Lp + L2p2

1

Lp
1

7î

l
R

Lp
R

(Lp)2

R2

(Lp) s

R

Lp
Rx
L

LpJ

Rx
L

R

Lp
1

2

Rx
L

1

3

Bemerkt man, dass abgesehen vom Anfangsglied der
Klammerausdruck entgegengesetzt gleich der Expo-

lientialreihe vom Argument
Rx

ist, so hat man

als gesuchtes Integral
1

R
1 —

Rx
L

Integriert man die vorgelegte Differentialgleichung
auf wohlbekanntem klassischem Wege, so

findet man, dass der symbolische Weg das Integral
liefert, welches für x 0 verschwindet. Nur dieser
Vergleich rechtfertigt bis auf weiteres das symbolische

Verfahren und es fragt sich, oh es auch in
allgemeineren, näher zu umschreibenden Fällen
zulässig ist. Um dies zu untersuchen, müssen wir uns
mit der Laplace-Transformation beschäftigen.

3. Die Laplace-Transformation.
Ist eine Funktion Y(x) gegeben im Intervall

0 < x < co, so kann man ihr sogenanntes Laplace-
oo

Integral betrachten, nämlich das Gebilde \e'pxY(x) dx
O

wobei p die Rolle eines willkürlichen Parameters
spielt. Unter ziemlich allgemeinen Voraussetzungen
wird dieses Integral einen Sinn haben beispielsweise
für alle p > 0. Zu diesen Voraussetzungen, die wir
im übrigen nicht näher erörtern, gehört offenbar
eine Vorschrift, wonach Y(x) nicht allzu stark
unendlich wird, wenn x gegen unendlich strebt. Dann
ist das genannte Integral eine Funktion von p (nicht
von x), die wir mit y(p) bezeichnen, so dass wir
schreiben können:

(2)y(p) =\ e'px Y (x) dx

Durch diese Formel wird einer im Intervall
0 < < oo gegebenen Funktion Y (x) eine
bestimmte Funktion y(p) zugeordnet, etwa im Intervall

0 < p < oo. Ist umgekehrt y(p)' gegeben, so ist
durch die Jntegralgleichung (2) die Funktion Y(x)
eindeutig bestimmt, natürlich wiederum unter
gewissen Voraussetzungen über die Funktion y(p).
Wir nennen y(p) die Transformierte von Y(x) und
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die Funktion Y(x) soll die Primitive von y(p)
lieissen. Durch die Formel (2) werden also
Funktionen Y(x) als Primitive und y(p) als Transformierte

umkehrbar-eindeutig einander zugeordnet.
Von den Eigenschaften der Laplace-Transforma-

tion erwähnen wir zuerst ihre Additivität. Sind
nämlich Y1(p) und y2(p) die Transformierten von
Y, (x) und Y2 (x), so sieht man sofort durch
Einsetzenin (2), dass y2(p) + y2(x) die Transformierte
von Y^x) + Y,(x) ist. Ferner ist offenbar ay(p)
die Transformierte von aY(x), wenn a eine
Konstante ist. Der Primitiven aY^{x) + bY.,(x)
entspricht also die Transformierte ay1{p) + hy2(p).

Leitet man die Formel (2) nach p ab, so findet
man

y' (P)

CO

=-5 epxxY(x)dx (3)

y(n)(p) (—1)" ^ e'px x" Y (x) dx
ô

Nehmen wir unter dem Integralzeichen die
Ableitung Y'(x) an Stelle von Y(x), so erhalten wir
durch partielle Integration

e"x Y'(x)dx [e"x Y]~+p\e"x Y dx

e-r* Y dx — Y(0)

Denn für x — oo hat der Klammerausdruck den
Wert 0, wenn die Transformierte von Y existiert.
Setzen wir jetzt statt Y'{x) höhere Ableitungen
unter das Zeichen, so können wir sie mittels der
eben hingeschriebenen Formel schrittweise ersetzen
durch die jeweils vorhergehende und wir gelangen
zur folgenden grundlegenden Formel:

e-Px ym (x) dx p" \ e"x Y (x) dx

_ [p-1 Y (0) + p"'2 Y' (0) + 4- YJgj"] (4)

ganz besonderen Fall verschwindender Anfangs-
dingungen

Y(0) Y'(0) Y" (0) Y<5» 0

hat

^ e'pxY(") (x) dx pn^e-pxY(x) dx p"-Y(p)
o o

Dann ist also die Transformierte der n-ten Ableitung

Y(x) gleich dem p"-fachen der Transformierten

y(p) von Y(x). Der Zusammenhang mit dem
symbolischen Verfahren — vgl. Formel (1) —
springt in die Augen. Er soll im nächsten Abschnitt
näher beleuchtet werden.

Da lim e"px 0
X =T oo

für p 0, wird

1

Py-pxdx -
O

Setzt man p + X an Stelle von p, so wird

e~px • c'AX dx — —

Beide Formeln sind auch gültig, wenn p bzw. p + X

zwar komplex, aber von positivem Realteil sind.
Diese Voraussetzung sichert das Verschwinden der
Exponentialfunktion in eckiger Klammer für x<= cx>.

W eiter findet man durch partielle Integration,
dass

e'px x" dx
e ' x + — \ e'px xn'1 dx,

und da die eckige Klammer für x 0 und x co
verschwindet, erhält man schrittweise

e'px x"(lx — \ e"px x"A dx

e'px dx -
n

n»+i

Setzt man p + X für p, so wird

epx e/X x" dx
(p-j-X)" + I

Auch diese Formel bleibt richtig, wenn der Realteil
eines komplexen p + X positiv bleibt. Wir haben
also zusammenfassend folgende zusammengehörige
Funktionspaare

Primitive Y(x) =1 Transformiertey (p) —
P

» Y(x)=e'%* » y(p)<=——- (5)
p-f-Â

Y(x)=e'^xx" » y(p): (p+xy+i

Sind allgemein Y(x) und y(p) einander entsprechend,

so hat man nach (3) folgende zusammengehörige
Paare

Primitive Y(x) Transformierte y(p)
» xY » —y (6)
» x2Y » +y" usw.

Weiter ist nach Formel (4) py — Y(0) die
Transformierte von Y'(x) und p2y — pY(0) —Y'(0) die
Transformierte von Y"(x). Nach Formel (3) muss
man die Primitiven mit x, x2 usw. multiplizieren
und die Transformierten nach —p fortgesetzt ableiten,

um wieder Paare entsprechender Funktionen
zu bekommen. Es entsprechen deshalb einander
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Primitive Y'
» xY'
» x-Y'

xY"
x-Y"

Transformierte py—Y (0)
» —y—py'
» 2y'+/?y" (6)

p*y-pY(0)-Y'(0)
—pry—2py+ Y(0)
p-y" + 4py' + 2y

4. Anwendung
auf gewöhnliche Differentialgleichungen.

Wir betrachten zunächst als Beispiel die in
Abschnitt 2 symbolisch ge!^t" Differentialgleichung

L -)- RY 1
dx

der wir die Anfangsbedingung Y(0) A auferlegen.

Da nach (4) und (5) den Primitiven Y,

und 1 die Transformierten y, py — A und —dx P
entsprechen, wird aus ihr, wenn wir beiderseits die
Laplace-Transformation anwenden, die algebraische
Gleichung

Lyp — LA-{-Ry — —

die, nach y aufgelöst,

y
P A -(- 1/L

P (P + RjR)
ergibt.

Die erste Ableitung wird hier nicht symbolisch,
sondern wirklich durch das /j-faclie der Funktion
selbst ersetzt. Aber zugleich tritt an Stelle der
Primitiven die Transformierte. In der Tat wird ja eine
Differentialgleichung, trotz Beibehaltung der
Bezeichnung, nach dem Symbolisieren eine neue Funktion

der neuen Variablen p definieren. In den Fällen,

wo der symbolische Weg zum Ziele führt, wird
die an dieser Stelle begangene Konfusion wettgemacht

durch eine weitere «symbolische» Handlung,
den IJebergang von der Funktion von p zur Funktion

von x. Weiter ist zu beachten, dass durch die
d Y

Transformation der Ableitung die Anfangsbe-
dx

dingung Y(0) =A in die transformierte Gleichung
eingebt. Enthielte die Differentialgleichung noch
höhere Ableitungen mit konstanten Koeffizienten,
so würde kraft Formel (4) in die transformierte
Gleichung ein Polynom von p eingehen, dessen
Koeffizienten von den Anfangsbedingungen abhängen.

Beim symbolischen Weg sind diese
Anfangsbedingungen implizite als 0 angenommen. Zieht
man noch in Betracht, dass beim Symbolisieren der
obigen Differentialgleichung die Konstante 1

unverändert bleibt, während sie beim Transformieren in

— übergebt, so kann man sagen, dass die aus der

symbolisierten Gleichung LYp + RY 1 gewonnene

Funktion Y T - — das «-fache der durch
Lp-YR 1

Transformation erhaltenen Funktion y(p) ist, wenn
die Anfangsbedingung 0 ist.

Nachdem wir durch Transformation der
Differentialgleichung y als Funktion von p bestimmen
konnten, haben wir jetzt noch zur bekannten Funktion

(7) die Primitive zu suchen. Mit Rücksicht
auf die additive Eigenschaft der Transformation
liegt es nahe, sie zu diesem Zwecke in Partialbrüche
zu zerlegen. In bekannter Weise erhalten wir dabei

y
1

Rp
1IR
RjL

Nach (5) keimen wir die Primitiven beider
Summanden und haben darum

Y(x)
1

R iÄ-R
Rx
L

Setzt man liier 4^=0, so erscheint die Lösung des
Abschnittes 2 als Sonderfall.

Der hier befolgte Lösungsgang lässt sich allgemein

wie folgt schildern: Gegeben ist eine
Differentialgleichung der Funktion Y vom Argument x.
Durch Transformation wird aus ihr möglicherweise
eine einfachere und lösbare Gleichung zwischen der
Transformierten und dem Argument p. Insbesondere

wird die transformierte Gleichung dank FoG
mel (4) keine Ableitungen mehr enthalten, wenn
die Ableitungen nur als Summanden mit konstanten
Koeffizienten auftreten. Dann kann man diese
gewöhnliche Gleichung zwischen y und p nach y
auflösen und hat y(p) als bekannte Funktion von p
gefunden. Die transformierte Gleichung kann auch
wieder eine Differentialgleichung der transformierten

Funktion y(p) sein. Dies wird z. B. der Fall
sein, wenn die gegebene Differentialgleichung
linear ist mit Koeffizienten von der Form K-xn, wie
Tabelle (6) zeigt. Sind die Koeffizienten oder die
ganze Differentialgleichung komplizierter, so wird
die Transformation möglicherweise undurchführbar
und man wird auf die Methode verzichten. Es ist
aber zu beachten, dass die symbolische Methode
schon in Fällen versagen kann, wo die Transforma-
tionsmetliode anwendbar bleibt. Hat etwa die
gegebene Differentialgleichung von x abhängige
Funktionen als Koeffizienten, so enthält die symbolisierte
Gleichung ausser der Funktion Y und p auch noch
x und es ist durchaus unklar, wie eine solche
Gleichung symbolisch weiter zu behandeln ist.

In allen Fällen, wo die Transformation gelingt,
folgt als zweiter Schritt die Bestimmung der Funktion

y(p), was in den oben betrachteten Fällen auf
die Auflösung einer gewöhnlichen Gleichung oder
einer neuen Differentialgleichung hinausläuft. Jetzt
verbleibt noch die Aufgabe, zu der bekannten
Transformierten y(p) die zugehörige Primitive Y(x) zu
bestimmen. Ihre Lösung, nämlich die Auflösung
der Integralgleichung (2), wird, wie das gewöhnliche

Integrieren, manchmal durch die additive
Eigenschaft der Laplace-Transformation erleichtert.
Denn ist v(p) eine Summe einfacherer Funktionen
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von p, so genügt es, die Primitiven der einzelnen
Summanden zu bestimmen, um in deren Summe die
Primitive von y(p) zu besitzen. Es kommt jetzt
darauf an, eine Sammlung elementarer Funktionen

oo

F(x) anzulegen, für die man^'F (x) dx zu berech-

O

nen weiss. Jedes Integral dieser Art verschafft uns
die Kenntnis einer Funktion und ihrer Transformierten,

bzw. ihrer Primitiven. Einige Beispiele
solcher zusammengehöriger Funktionspaare haben
wir unter (5) im Abschnitt 3 kennen gelernt.
Umfangreichere Verzeichnisse solcher Paare finden sich
am Schlüsse des zitierten Carsonsclien Buches und
in dem Werk von Pierre Humbert: Le calcul
symbolique (Verlag Hermann & Co., Paris 1934), das
eine klare, leichtfassliche und knappe Darstellung
der symbolischen Rechenregeln gibt.

Die in diesem Abschnitt dargelegte Lösung des
einfachen Beispiels ist eine Anwendung des «expansion

theorem» von Heaviside, das im Lichte der La-
place-Transformation auf natürlichste Weise
begründet werden kann. Es bezieht sich auf lineare
homogene Differentialgleichungen n-ter Ordnung
mit konstanten Koeffizienten, also auf Gleichungen
von der Form

a„Yw(x)-{-an.lY^i)(x) + axY' (x) + a0Y(x) 0

(8)

Durch Laplace-Transformation wird aus ihr bei
Anwendung von Formel (4)

a»pn y (p) + an-1 p"'1 y (P) + • • •

-h «ipy(p) + «0y (p) — Pn. i (p) °

wo Pn.iip) ein Polynom höchstens (n-l)-ten Grades
in p ist, das von den Anfangsbedingungen herrührt.
Löst man nach y auf, so erhält man

y (p)
Pn-1 (P)

a„Pn + an-\Pn'1 + -.+aiP + a0

Nun lässt sich eine solche rationale Funktion, deren
Nennergrad den Zählergrad um mindestens 1

übertrifft, in bekannter Weise in Partialbrüche zerlegen.
Sind pv p,, pn die einfachen Nullstellen des Nenners,

so hat die Zerlegung die Form

y (p)
Const Const

P — P i P—P2

Const

P—Pn

Ist eine Wurzel p;- 2- oder fe-fach, so treten noch Sum-
Const Const er/ -1 1-manden r^, -r- auf. Zu jedem dieser

(P-P,)2 (P-Pj)
einzelnen Summanden wissen wir die Primitive zu
finden. Nach (5) wird also im Falle nur einfacher
Nullstellen des Nenners die Differentialgleichung
(8) als Lösung eine Summe von Exponentialfunktionen

haben

Y (x) =2 Const epJ" (9)

Die pj dürfen auch komplex sein. Im Falle
mehrfacher Nullstellen enthält die Lösung noch
Summanden von der Form Const. ePix-x, Const. epj*-x2
usw.

Das klassische Integrationsverfahren für die
Differentialgleichung (8) besteht bekanntlich darin,
die Lösung epx zu probieren, was zu einer algebraischen

Gleichung für p führt. Die so gefundene
allgemeine Lösung hat natürlich die Form (9).
Abgesehen vom Wert des Transformationsverfahrens
als neuer, selbständiger Integrationsprozess, kann
es im Falle einfacher Anfangsbedingungen Rechenvorteile

bieten, da diese Bedingungen sofort berücksichtigt

werden.
Die Differentialgleichung (8) kann nach dem

Transformationsverfahren auch dann behandelt
werden, wenn rechts statt der Null eine Funktion
von x steht, nur muss diese Funktion mittransformiert

werden. Es ist möglich, dass dann y(p) keine
rationale Funktion mehr ist.

5. Reihenentwicklungen.
Wir haben im zweiten Abschnitt eine

Differentialgleichung symbolisch und mittels
Reihenentwicklungen integriert. Den Wahrheitsgehalt dieses
Verfahrens können wir abschätzen, indem wir von
der wiederholt benützten Formel (4) ausgehen. Sie
kann geschrieben werden:

oo

'"!rpx Y (x) dx Y (0) p"1 + Y' (0) p"':

+ Y%i) + \ep*Y\:\ dx
o

Dividieren wir beiderseits durch p"'1 und beachten
wir, dass das Integral zur Linken die Transformierte
y(p) von Y(x) ist, so wird

py(p) Y(0) +Y'(0).
1

v«-i
^

<°> ' „i-i

— [
p"'1

e px Y\:\ dx

Lassen wir n gegen oo streben, so wird aus dem
Ausdruck in eckiger Klammer eine unendliche Reihe.
Strebt dabei von einem genügend grossen p an das

oo

Restglied ——ç ^ epx Y(,"j dx gegen 0, so haben wir
O

für die Funktion py(p) die Entwicklung nach Po-
1

tenzen von — :

P

py(p) Y(0)+Y'(0).— + Y"(0). -+- • • •

Unsere Aufgabe ist, zu der durch Transformation
einer Differentialgleichung gewonnenen bekannten
Funktion y(p) die Primitive Y(x) zu bestimmen.
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yi y-3x +Y"'(0)*T

Wenn nun die ebenfalls bekannte Funktion py in

eine Reibe von Potenzen von — entwickelbar ist,
P

die für genügend grosse p konvergiert, so sind ilire
Koeffizienten eindeutig bestimmt und vermöge der
eben hingeschriebenen Formel sind sie gleich den
Anfangswerten Y(0) aber nur falls das oben
hingeschriebene Restglied für genügend grosse p gegen 0

strebt, wenn n gegen oo geht. Stellt man jener
Entwicklung jene der Primitiven nach Potenzen von x
gegenüber :

Y(x) Y(0) +Y'(O)^- + Y" (0) I*
so erkennt man, dass aus der Entwicklung von py{p)
nach Potenzen von — jene der Primitiven nach Po-

P
tenzen von x hervorgeht, indem man in der ersten
1 xn

ersetzt durch —.
pn n

Wie gesagt ist dieses Verfahren zulässig, falls die
Entwicklung von py für genügend grosse p konvergiert

und das Restglied gegen 0 strebt für n oo.

Schwierigkeiten macht besonders die zweite
Voraussetzung, da sie sich auf die gesuchte Funktion
bezieht. Soll deshalb eine Differentialgleichung
durch Reihen gelöst werden, so wird man py nach

1 1 xn
Potenzen von — entwickeln und dann — durch —.

p pn n
ersetzen. Ist die Reihe py für genügend grosse p
konvergent, so wird die von x abhängige Reihe für
jedes x konvergieren (Caucliy-Hadamardscher Satz
über den Konvergenzradius), also eine Funktion
Y (x) definieren, von der man nachzuweisen bat,
dass für sie das Restglied gegen 0 strebt. Dann ist
man sicher, dass Y{x) der vorgelegten Differentialgleichung

genügt. Ohne sich um das Restglied zu
kümmern, kann man aber auch direkt durch
Einsetzen der Reihe Y (x) in die Differentialgleichung
nachprüfen, ob sie eine Lösung ist. So wird man
insbesondere verfahren, wenn Y (a:) für grosse | x
nicht konvergiert, wenn also py(p) eine divergente
Entwicklung hat.

6. Anwendung
auf partielle Differentialgleichungen.

Die Unbekümmertheit gewisser Symboliker (vgl.
das zitierte Werk von Carson) in der Uebertragung
ihrer Rechenregeln auf partielle Differentialgleichungen

ist unzulässig. Dagegen kann man ohne
weiteres die Laplace-Transformation auf solche
Gleichungen anwenden. Das Verfahren sei an einem
Beispiel erörtert2).

R I (x, t)
8U(x,t)

Sx
su(x,t)! 81 (x, t)

Sx
2) Carson, a. a. O. S. 46/48. Man vergleiche die dortige

undurchsichtige, mehreren Einwänden rufende Behandlung
mit der obigen zwanglosen und klaren Ableitung. Insbesondere

beachte man die unzulässige Behandlung der Anfangsund

Randbedingungen hei Carson.

sind die Differentialgleichungen eines unendlich-
langen, induktionsfreien Kabels mit der Längenkoordinate

0 < x < oo und der Zeit t als Unabhängigen.
I ist der Strom, U die Spannung, R der verteilte
Widerstand und C die verteilte Kapazität. Das
System sei zu integrieren mit den Randbedingungen
1/(0, t) 1, lim U(x, t) =0 gleichmässig für x oo
und der Anfangsbedingung U(x, 0)=0.

Wir wenden die Laplace-Transformation bezüglich

der Zeit t an und bezeichnen die Transformierten
mit i(x,p) bzw. u (x, p). Wegen (4) ist die

SU
Transformierte von gleich pu (x, p)—U (x,0)

St
und da U (x, 0) =0 ist, bat man das transformierte
System

Ri 8 u
ITx p-C-u -

Si
8x

mit den transformierten Bedingungen

u (0, p)

u (oo, p)

^ e'pt • 1 • dt =y
O

OO

lim \ U (x,
X=oo J

f) e'pt dt 0

Indem man die beiden Gleichungen nach x ableitet,
kann man je eine der Funktionen eliminieren und
das Ergebnis ist:

C Rp i
S2 i
Sx2

C R p u —
82u

Tix2

Beide Differentialgleichungen sind zweiter Ordnung
und enthalten nur eine Unabhängige x. Das
allgemeine Integral der zweiten ist bekanntlich

u (x,P) Dj (p) e'VW + D2 (p) e-*V^>

mit Integrationskonstanten D1(p) und D,,(p), die
von p abhängen können. Mit Rücksicht auf die
zweite Randbedingung muss D1 0 sein und die

erste zeigt, dass D.,(p) =—ist. So bekommt man
P

u(x,p) —

und

i(x,p) —

oder

i(x,p)

-x]/CRp

1 Su
R Sx

C

Rp

yCRP -xj/c R p

-x l/C/? p

Vir haben noch die zugehörige Primitive zu suchen.
Diese Aufgabe ist sofort gelöst, wenn man weiss,
dass 3)

>-p' ' dt

|Ar t

e'2l ap

y p

3) Vgl. ("arson, Integraltafel am Schluss des Werkes,
Beispiel (g).
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Setzen wir x [/ Iip 2 ]//./), also l — so

finden wir die Primitive
_

r?CR

/ C e 4

1/tr-- yr~
Man beachte die bedeutende Vereinfachung der
Aufgabe infolge der Transformation, die die
partiellen Differentialgleichungen mit zwei Unabhängigen

in gewöhnliche mit einer überführt.

7. Schlussbemerkungen.
Wenn es zwar gelingt, die transformierte

Gleichung zu lösen, nicht aber zu y (p) die Primitive
Y(x) zu bestimmen, so wird man versuchen, wenigstens

das asymptotische Verhalten von Y(x)
aufzuklären, d. h. das Verhalten der Funktion für x in
der Umgebung von 0 oder oo. Solche Untersuchungen

funktionentheoretischer Natur sind ziemlich
subtil, Ohne auf sie einzugehen, weisen wir darauf
hin, dass sie besonders von G. Doetsch gefördert

Der Verfasser untersucht die Spannungsverhiiltnisse im
Innern eines Bimetallstreifens, leitet Gesichtspunkte für die
Wahl der Metallegierungen ab und berechnet schliesslich
die hochstzulässige Temperatur, Kraft und Stromstärke, die
das Bimetall ohne Schaden noch zu erlragen vermag.

Bimetall wird im Apparatebau gerne zur Messung

und Steuerung thermisch bedingter Vorgänge
verwendet. Die Genauigkeit hängt in erster Linie
von der Reproduktion des Nullpunktes ah. Darunter

versteht man die Fähigkeit, immer wieder nach
erfolgter Belastung und Entlastung, in den Null¬

punkt zurückzukehren. Sie
wird verbessert durch
thermische Behandlung vor dem
Einbau (Alterung) und
durch Vermeidung von
überelastischen Deformationen
während des Betriehes.

In jedem Bimetallkalalog
sind Angaben zu finden, wie
diese künstliche Alterung
durchzuführen ist. Sie
bezweckt, durch Ausglühen
eine Stabilisierung des Zu-

standes und der elastischen Eigenschaften, die
sonst während des Betriebes stattfinden würde1).
Empfehlenswert ist auch, das Bimetall wiederholt
mechanischen Beanspruchungen, die praktisch im
Betrieb vorkommen, zu unterwerfen. Dadurch blei-

') M. J. Colonna-Ceccaldi : Note sur l'utilisation des bi-
lames comme moteur thermique. Electricité, mai 1936.

wurden, dem auch um die Aufdeckung des
Zusammenhanges zwischen Symbolismus und Laplace-
Transform ation besondere Verdienste zukommen4).
Dadurch wurde der Symbolismus seiner Mystik
entkleidet, auf solide Grundlage gestellt und zugleich
verallgemeinert auf Fälle nicht verschwindender
Anfangsbedingungen. Besser als vom symbolischen
Verfahren wird man von der Transformationsmethode

sprechen. Sie ist eine Methode unter vielen
zur Auflösung von Differentialgleichungen. Einer
ihrer Vorteile besteht darin, dass sie die durch die
Anfangsbedingungen eindeutig bestimmte Lösung
ohne den Umweg über das allgemeine Integral
liefert. Dass sie Aufgaben wesentlich zu vereinfachen
gestattet, dürfte besonders das Beispiel von
Abschnitt 6 gezeigt haben.

4) G. Doetsch, Die Anwendung von Funktionaltransformationen
in der Theorie der Differentialgleichungen und die

symbolische Methode, Jahresberichte der deutschen
Mathematiker-Vereinigung, 43. Bd. 1934, Heft 9/12, S. 238 u. f.

G. Doetsch, Sätze von Tauberschem Charakter im Gebiet
der Laplace- und Stieltjes-Transforination, Sitzungsberichte
der Preussischen Akademie der Wissenschaften, math.-phys.
Klasse, 1930. X.

621.315.554

L'auteur étudie les conditions de tension à l'intérieur
d'une lame bimétallique, en déduit des considérations poulie

choix des alliages et calcule les températures, efforts et
courants maximum que peut supporter la lame sans subir
aucun dommage.

ben nur die federnden Deformationen wirksam
(Fig. 1). Wie wichtig eine fachgemässe Alterung
ist, lässt sich im Laufe dieser Untersuchung zeigen.

Es ist selbstverständlich, dass die Temperatur
nicht nur eine Durchbiegung des Bimetalls, sondern
auch innere Spannungen hervorruft, deren
Maximalwerte, wie bereits betont, die zulässigen Grenzen

nicht überschreiten dürfen.
Sie sollen nun unter folgenden Annahmen

berechnet werden:
1. dass auf das Bimetall nur die Temperatur wirkt,
2. dass das Bimetall als einen einseitig eingespannten Balken

angesehen wird,
3. dass das Bimetall bei Raumtemperatur (20° C) spannungslos

und gerade ist, d. h. dass alle Fasern der beiden
Metallschichten gleiche Länge besitzen,

4. dass vor und nach der Deformation ebene Querschnitte
eben bleiben,

5. dass die elastische Linie durch einen Kreisbogen ersetzt
werden darf2),

6. dass das Hooksche Gesetz gültig ist.

Es bedeuten :

die Indices 1 und 2 die Zugehörigkeit der betreffenden
Grössen zu den Komponenten mit dem grössern, bzw. mit
dem kleineren Wärmeausdehnungskoeffizienten,

a die Länge der neutralen Schichten der Komponenten 1

und 2 vor den Erwärmungen,

-) Aciéries d'Iniphy. Note sur les bilames de précision.

Ueber die maximale mechanische, thermische und elektrische
Belastbarkeit von Bimetallen.

Von Enrico Erni, Solothurn.

Fig. 1.

1 federnde Dehnung.
2 bleibende „3 gesamte
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