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künden wieder ein, so dass nur der defekte Strang
ausfällt.

Es ist nun nicht notwendig, dass alle
Transformatorenstationen einer Stadt in den Ring einbezogen

werden; denn solche können auch nach Fig. 5

angeschlossen werden. Sie sind auch so von zwei
Seiten an den Ring angeschlossen und erhalten
wie die Stationen des Hauptringes den Ein- oder
Ausschaltbefehl von zwei Seiten.

Die halbnächtige Beleuchtung ist, wie aus
Fig. 1 hervorgeht, unter Zwischenschaltung einer
Schaltuhr, die das Ablöschen zu irgendeinem
vorgesehenen, von der ganznächtigen Beleuchtung
jedoch unabhängigen Zeitpunkt vornimmt, an
einen andern Pol des Schützes angeschlossen.
Selbstverständlich kann das Schütz auch dreipolig
vorgesehen werden und weitere Beleuchtungsstränge
können an den dritten Pol, d. h. an eine andere
Phase angeschlossen werden, so dass sich die
Belastung auf alle 3 Phasen des Drehstromnetzes
verteilen lässt.

Zur Kontrolle der gesamten Einrichtung ist
noch der Einbau eines Störungsregistrierapparates
10 vorgesehen. Dessen Aufgabe besteht darin, die
Störungen im Strassenbeleuchtungsnetz graphisch

An Hand einfacher Ableitungen wird der Beweis
erbracht, dass unter bestimmten Voraussetzungen ein isolierter
Leiter bei gleicher Strombelastung weniger warm wird als
der gleiche Leiter blank. Ferner werden aus den aufgestellten

Funktionen die markanten Punkte, die für die Praxis von
Wichtigkeit sind, in Gleichungsform herausgezogen und mit
deren Hilfe Kurventafeln aufgestellt.

In der Elektrotechnik und besonders im
Apparatebau ist die Verwendung von isolierten Leitern
ebenso häufig wie diejenige von blanken Leitern.
In Konstrukteurkreisen ist man allgemein der
Auffassung, dass ein isolierter Leiter für gleiche Ueber-
temperatur im Metall immer weniger belastet werden

könne als der gleiche Leiter mit blanker
Oberfläche. Diese Auffassung, so selbstverständlich sie
bei oberflächlicher Betrachtung auch scheinen mag,
stimmt aber nicht unter allen Umständen mit der
Wirklichkeit überein. Es kommt im Gegenteil sehr
oft vor, dass ein isolierter Leiter für gleiche Ueber-
temperatur mehr belastet werden kann als der
gleiche Leiter blank, oder bei gleicher Belastung
eine kleinere Uebertemperatur aufweist. Wenn wir
die Aufgabe näher betrachten, so erkennen wir,
dass das aufgewickelte Isoliermaterial wohl einen
zusätzlichen thermischen Widerstand darstellt; wir
sehen aber auch, dass der äussere Durchmesser und
somit die wärmeabgebende Oberfläche des isolierten

Leiters grösser ist als beim blanken Leiter, was
eine Verkleinerung des thermischen Widerstandes

aufzuzeichnen. Jedesmal, wenn das Kommando
nicht normal durch das gesamte Netz durchgegeben

wurde, spricht das Verzögerungsrelais an und
der Registrierapparat zeigt einen Ausschlag. Es
ist dann Aufgabe des Werkes, sofort der Störung
nachzugehen und sie zu beheben.

4. Schlussbetrachtungen.
Die beschriebene Einrichtung dürfte für viele

Fälle die zweckmässigste und auch die billigste
sein; denn jede Einrichtung mit Steuerdrähten,
überlagerter Tonfrequenz usw. hat viel grössere
Ausgaben zur Folge.

Es ist selbstverständlich, dass solche Steuerungen

auch für die normale, friedensmässige Einschaltung

der Strassenbeleuchtung verwendet werden
müssen, wenn diese im Falle eines Luftangriffes
bereit sein und betriebssicher funktionieren sollen.

Ist für die friedensmässige Einschaltung der
Schaltschritt infolge der zu erwartenden plötzlichen

Belastungssteigerung durch die
Strassenbeleuchtung zu gross, was in grossen Städten der
Fall sein dürfte, so kann derselbe durch Zwischenschaltung

von Verzögerungsrelais in die
Schützenstromkreise auf ein erträgliches Mass vermindert
werden.

621.3.017.7:621.315.5

A l'aide de développements simples, l'auteur prouve que,
sous certaines conditions, un conducteur isolé s'échauffe
moins qu'un conducteur de même section parcouru par un
courant de même intensité. Des fonctions établies, il extrait
ensuite sous forme d'équations les principales relations qui
jouent un rôle dans la pratique et dresse des diagrammes
à l'aide de ces équations.

von der Leiteroberfläche an die Umgebung zur
Folge hat. Je nachdem nun der thermische Widerstand

im Isoliermaterial grösser oder kleiner ist als
die Aenderung des thermischen Widerstandes von
der Leiteroberfläche an die Umgebung, so ist der
gesamte thermische Widerstand des isolierten Leiters

grösser oder kleiner als derjenige des blanken
Leiters.

Obwohl ein blanker Leiter ohne Schaden auf
höhere Temperaturen erwärmt werden dürfte als
ein isolierter Leiter, ist der Vergleich der zulässigen

Belastungen für gleiche Uebertemperaturen
dennoch am Platze, weil zu hohe Uebertemperatur
den Uebergangswiderstand eines angrenzenden
Kontaktes durch Begünstigung der Oxydbildung an
den Kontaktflächen zu sehr vergrössern würde. Aus
diesem Grunde begrenzen verschiedene Landesvorschriften

die zulässige Uebertemperatur von Schienen

und Schaltstücken auf S} •= 35° C.

In den nachstehenden Gleichungen bedeuten:
Q Wärmemenge in Watt'Sekunde (W's).
P Wärmestrom in Watt (W).

Vergleich der Erwärmung von blanken und isolierten
zylindrischen Leitern.

Von W. Brügger, Wettingen.
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Radius in cm.
Durchmesser in cm.
Radialer Isolationsauftrag in cm.
Länge des Zylinders in cm.
Oberfläche des Zylinders in cm2.

& Temperatur in ° C.
& Uebertemperatur in ° C.

t -= Zeit in s.

I —Wärmeleitzahl in Watt/cm10 C.
k spez. Wärme in W ' s/cm:l 0 C.

a Wärmeübergangszahl in W/cm2-° C.

Rl thermischer Widerstand in ° C/W.

Der thermische Widerstand ist diejenige Grösse,
welche man durch Division des Temperaturgefalles
durch den Wärmestrom erhält.

Bei der Bestimmung des thermischen Widerstandes

eines Hohlzylinders gehen wir von der Voraussetzung

aus, dass die Wärme nur in radialer Richtung

fliesse. Wir betrachten einen kleinen
Hohlzylinder vom Radius r, der Wandstärke dr, der
Länge dL. In der Zeit dî tritt dann folgende
Wärmemenge durch die innere Fläche ein:

dÇj — A • 2 • TT • r • dL 8 0
dr

dt

Die durch die äussere Fläche dieses Hohlzylinders
austretende Wärmemenge beträgt:

8
AQ2 — A-2 -tt (r-f-dr) • dL - — ©+—— -dr) • dt

— A • 2 it r • dL • dt •

dr

80

80

8r +

8r
820

— A • 2 ji • dr dL • dt 80
8r

8r2

820

• dr

8r2
• dr

Die Wärmeaufnahme, bzw. Wärmeabgahe dieses
Zylinderelementes beträgt :

dÇj — dÇ2 A-2-jr-dL-dt

(820

Das Glied

\ 8r2

82S

r • dr -f- 8r
dr •

820
dr2

dr2

8r2
dr2 kann wegen seiner. Grössenord-

nung gegenüber den andern beiden vernachlässigt
werden; wir erhalten:

820 80
8r2 8r

d<?i—d(?2 A 2-tt- dr-dL-dt- [r - —= +
Die Wärmeaufnahme lässt sich aber auch durch
folgende Gleichung ausdrücken:

80
dÇj — dQ2 2 -TT • r- dr-dL • fc

8t
dt

Setzt man diese beiden letzten Gleichungen
einander gleich, so ist:

80
8t

A
k

820
8r2

80
~!A

Wenn der stationäre Zustand erreicht ist, wird
80
—-=0; der Temperaturverlauf in Funktion des
8t
Radius ergibt sich dann aus folgender Gleichung:

d2 0 1 d<9 d0
dr2

dann folgt:

wir setzen ,— — x,dr dr

^
In x — In r + ln A; x - r<= A

Für x den Wert A wieder eingesetzt, ergibt:

r • A ; 0 ü A • A • In r+ B.

Allgemein gilt:

P —2 • TT • A-L r

Daraus folgt:

A -

de
dr

—2 • TT• A- L A.

0

Für r — r„ ist

2 • TT L • A

P
2 • tt-L-A

0 0a -
Für r<=ri ist

0 0, —

2 • TT -L-A

P

In r -f- B.

•In r0 + B

2 • TT- L-A
In r, -\-B

Das gesamte Temperaturgefälle in der Zylinderwand

ist
'O'z <== &i — 6a

Aus den beiden letzten Gleichungen erhalten wir
dann:

o _ P ln JG_
2 ~ 2-TT-L-A '

r,

Setzen wir, ähnlich wie beim Ohmschen Gesetz:

P

R„

R„ so folgt:

1

2-jt-L-A In (1)

Man rechnet den thermischen Widerstand von
der Oberfläche eines Körpers an die Umgebung
nach folgender Gleichung:

R'°-^7Y 2-TT-r-L- (2)
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Durch Addition der Gleichungen (1) und (2)
erhält man den gesamten thermischen Widerstand
des isolierten Zylinders zu:

R
1 1

2 -Tz-ra-L-a 2 -tz-L- A ln-^°C/W (3)

Die Wärmeübergangszahl a schliesst die Wärmeabgabe

durch Strahlung und durch Konvektion in
sich; die Intensität der Strahlung ist eine Funktion
des Oberflächenzustandes; rauhe, schwarze Flächen
strahlen mehr Wärme aus als polierte Flächen. Für
unsere Untersuchung kann angenommen werden,
dass die Strahlungsintensität von oxydierten
Kupferflächen gleich derjenigen der Oberflächen
der üblichen Isoliermaterialien ist. Die Wärmeabgabe

durch Konvektion dagegen hängt ab vom
Kühlmittel, von der Grösse und Form der
Kühlfläche, d. h. von der Lage und Grösse der ebenen
Wand, bzw. von der Grösse des Durchmessers bei
zylindrischen Flächen, von der Uebertemperatur
und von der Geschwindigkeit des Kühlmittels relativ

zur Kühlfläche. Im Zusammenhang mit unserer
Untersuchung bleiben alle diese Faktoren
unverändert, mit Ausnahme des Durchmessers, welcher
eine Funktion der Isolationsstärke ist. Da dieser
Einfluss von einem bestimmten Durchmesser an
aufwärts klein ist, unterteilen wir unsere
Untersuchung in zwei Gruppen:
A. Die Wärmeübergangszahl a wird als konstant

angenommen.
B. Die Abhängigkeit der Uebergangszahl a vom

äussern Durchmesser des Leiters wird
berücksichtigt.

A. Die Wärmeübergangszahl a sei konstant.
Da in der Elektrotechnik allgemein mit der

Grösse «Durchmesser» operiert wird, soll in den
folgenden Gleichungen r durch
d Durchmesser des blanken Leiters in cm, und

ra durch
da Aussendurchmesser des isolierten Leiters in cm
ersetzt werden. Berücksichtigt man, dass der
Aussendurchmesser des Rohres

da^=d + 26 ist, wo

ö radialer Isolationsauftrag in cm,

so erhalten wir für den gesamten thermischen
Widerstand eines isolierten Rohres die Gleichung:

Rt

In
/d+2d\

oC/W (4)
tz-L • a (d-f- 2<3) 2-tz-L-A \ d j

Wir untersuchen folgende Fragen:
1. Kann der thermische Widerstand des isolierten

Leiters überhaupt kleiner sein als derjenige des
nicht isolierten Leiters?

Dies ist die wichtigste Frage unseres Aufsatzes.

Hierüber gibt uns der Differentialquotient —für

d '= 0 Aufschluss, denn ein bestimmter Isolationsauftrag

vergrössert die Oberfläche, mit andern
Worten, verkleinert den thermischen Widerstand
prozentual um so mehr, je kleiner der innere
Radius ist, also am meisten, wenn auf einen gegebenen
Leiter noch keine Isolation aufgetragen ist. Durch
Differentiation der Gl. (4) nach ô erhalten wir:

dR, 2,1d<3

und für

TZ-L-a (d-f- 2d)2

0

tz-L-A (d-\- 2 ö)

dR,
d<r TZ-L •d2 + L-A-dTZ

Aus dieser Gleichung ziehen wir folgende
Schlüsse:

a) Wenn der Differentialquotient positiv ist, also
/L d
— so ist der thermische Widerstand des iso-
a 2

lierten Leiters für jeden beliebigen Wert von ô

grösser als derjenige des blanken Leiters. Diese
Bedingung ist um so eher erfüllt, je grösser der
Durchmesser des Leiters ist.

A d
b) Wenn der Differentialquotient 0 ist, also— —

a l
dann ändert der thermische Widerstand bei
kleinem Isolationsauftrag praktisch nicht.

c) Wenn der Differentialquotient negativ ist,
À d
— ~> — dami nimmt der thermische Widerstand
a 2

mit dem Isolationsauftrag ô ab, und zwar so
/i d

lange, bis—= —|- ö wird, was ohne weiteres
cc &

aus der Gleichung des allgemeinen Differentialquotienten

ersichtlich ist. Diese Bedingung ist
leicht möglich für kleine Durchmesser d, kleine
Wärmeübergangszahlen a oder schliesslich grosse
Wärmeleitzahlen A des verwendeten
Isoliermaterials.

2. Bestimmung des Isolationsauftrages d, bei
welchem der thermische Widerstand ein Minimum ist.

Nachdem wir erkannt haben, dass durch das
Isolieren eines Leiters sein thermischer Widerstand
tatsächlich verkleinert werden kann, taucht die
Frage auf, bei welchem Isolationsauftrag ô dieser
Widerstand ein Minimum wird. Nun wissen wir
aber, dass eine Funktion dann ihren Minimalwert
hat, wenn der erste Differentialquotient 0 und der
zweite Differentialquotient positiv ist, also

dR,
d<r TZ -L • A (d

Daraus folgt:

A a

20) TZ-L-a(d-+ 2 ô)2
0

2 ô

d2R,
dT<P"

8

Tz-L'a (d 2 ô)3 tz-L - A (d 2 ô)2
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10-

Setzt man für X den oben erhaltenen Wert ein, so

folgt:
d2 Rt _

8 4

dô2 jt-L-a (d -f- 2 <3)8 tt-L a (d -f- 2 ô)3

positiv.
Da der Isolationsauftrag immer positiv sein muss,
erkennt man ohne weiteres, dass der obige
Ausdruck nur positiv sein kann (denn 1 — y2 <= + y2).
Um den minimalen thermischen Widerstand zu
erhalten, genügt es somit, den Isolalionsauftrag

0 — ~ T (5)
a l

zu machen.

3. Bestimmung des Isolationsauftrages, bei
welchem der thermische Widerstand wieder gleich
gross ist wie beim blanken Leiter.

Bei den meisten praktischen Aufgaben sind das
Isolationsmaterial und die Isolationsstärke 6 durch
die Spannung gegeben; meistens kennt man auch
die zulässige Strombelastung des

in Frage kommenden blanken
Leiters. Unbekannt ist dagegen die
zulässige Strombelastung des
isolierten Leiters, und der Konstrukteur

muss in erster Linie wissen,
ob der vorgesehene Leiter zu reichlich

oder zu knapp ist. Wir wollen
nun die Isolationsstärke 6 max
bestimmen, bei welcher der
thermische Widerstand des isolierten
Leiters gleich gross ist wie
derjenige des blanken Leiters; wenn
dann im einzelnen praktischen
Falle die Isolationsschicht dünner
ist als dmax, so weiss der Konstruk- 0,1d

teur, dass der isolierte Leiter mehr
belastet werden darf als der blanke,
mit andern Worten, dass er keine
zu hohen Erwärmungen zu
befürchten hat, da dem isolierten
Leiter beim ersten Entwurf höchstens

die zulässige Stromstärke des 0,01~

blanken Leiters zugemutet wird. Ist der Isolationsauftrag

grösser als ômax, so wird bei gleicher
Belastung der isolierte Leiter wärmer als der blanke.
Wenn man genau wissen will, wie warm der
isolierte Leiter wird, so muss man den thermischen
Widerstand nach Gl. (4) rechnen und diesen Wert
mit den Ohmschen Verlusten im Leiter multiplizieren.

Für unsere Untersuchung setzen wir:

6 —
5—
4—

/3
0,6-E

0,6-
0,5-

0,4 —

0,3-

0,2—

0,06—
0,05—

0,04—

0,03-

0,02-

0,075

d
cm

—20
15

h10
E-8

—4

—3

?*2—.
=" 7, S

—0,4

0,3

Diese Gleichung ist sehr kompliziert zu
handhaben und gestattet vor allem nicht, ômax allein
auf eine Seite zu bekommen. Sie erlaubt dagegen
die Aufstellung des Nomogrammes Fig. 1 mit den

Veränderlichen — ; d ; —. Wenn der Durch-
a d

messer des Leiters d, die Wärmeleitzahl X des
Isoliermaterials und die Wärmeübergangszahl a
bekannt sind, gestattet dieses Nomogramm eine sehr

2 ô
bequeme Bestimmung von und durch

Multiplikation dieses Wertes mit-^-erhält man dann die
Li

Isolationsdicke ômax.

B. Die Abhängigkeit der Wärmeübergangszalil
vom äussern Durchmesser des Leiters wird

berücksichtigt.
Die Gleichung, welche die Wärmeübergangszalil

in Funktion des äussern Durchmessers angibt, ist

rV
0,15

.0,1

0,06
—0,05
—0,04

—0,02

\ 0,075

0,01

Fig. 1.

Isolationsauftrag 5 max bei welchem der
thermische Widerstand gleich demjeni¬

gen des blanken Leiters ist.
fimax

0,01
h OOS

-0,1
— 0,2

—0,3
— 0,4

—0,5
—0,6

:-/

—2

'-2,5
=—3

3,5

—4

— 5

-9
-10

^max „ X \~d~=f V'«)
für <x konstant.

Rt blank L R, isoliert

jt-L-a-d

+7t-L-a(d-\- 2ômax) 2-jz-L-X
• In (d -f- 2 ömax)

Nach einiger Umformung ergibt sich:

d \ 2 dm4=4" 2 <3„
In 1 (6)

sehr kompliziert. Wenn wir uns dagegen auf Leiter-
Dimensionen von 0,1 cm beschränken, was
besonders im Zusammenhang mit unserer
Untersuchung ohne weiteres zulässig ist, so ergibt
folgende Formel sehr befriedigende Uebereinstim-
mung mit der Wirklichkeit:

konst.
d

a 0,2, wenn d in cm eingesetzt ist. Die Wärme-
übergangszahl a; des isolierten Leiters beträgt
somit :

(d -F 2 Ô -j- 0,2) • d
a' - a' (d + 0,2) • (d + 2 Ô) '

wenn a die Wärmeübergangszahl des blanken Leiters

ist. Die Gleichung für den thermischen Widerstand

lautet dann:
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Rt

+

(d -4- 0,2)

jt • L • a (d -)- 2 ô + 0,2) • d

1 (d + 20
• In C/W2-jt-L-A y d

Der erste Differentialquotient wird:

dRt 2 • (d -f- 0,2)

(8)

dô Ji-L-cc-d(d~\- 2ô+ 0,2)2 jt-L-A (d-f-2ô)

und der zweite Differentialquotient:

d2R,
d ô2^ ~~

8 (d 4- 0,2) 2

w-L- a-d-(d-\- 2 <3 + 0,2)3 jr-L-zl • (d 4-2 d)2

Der thermische Widerstand hat nach früher Ge-
dR, d'2R,

sagtem seinen Minimalwert, wenn t 0 und
do d o2

positiv ist. Aus der ersten Bedingung folgt nach
einiger Umformung:

A
d • (d -f- 2 Ô + 0,2)2

2 - (d + 2 Ô) • (d + 0,2)
(9)

Wir setzen diesen Wert für A in die Gleichung des
zweiten Differentialquotienten ein und erhalten:

8 (d 4- 0,2)d2Rt _dô2 ff-L-a-d-(d+ 2<5-|-Ö,2)3

4 (d + 0,2)

ff-L.a-d.(d + 2ô + 0,2)2.(d + 2 ô)

Diese Gleichung ist positiv, solange (d + 2 <3) > 0,2
ist; daraus folgt, dass Gl. (9) das Kriterium für
den minimalen thermischen Widerstand ist für
äussere Leiterdurchmesser bis zu 0,2 cm hinunter.

Für die Bestimmung des Isolationsauftrages ômax,
bei welchem der thermische Widerstand gleich
gross ist wie derjenige des blanken Leiters, setzen
wir wieder:

Rf blank Rf isoliert

1 d + 0.2

ff • L • a • d

-+

jt-L-a • d (d-I-2 ômax—|— 0,2)

1 L 2 ômo
In 1

2-Tt-L-A V*
1

d

Daraus ergibt sich nach einiger Umformung:

A d „ /, .2 0,

4 ô„
(d —2 ômax+ 0,2) • In 1

d (10)

Diese Funktion ist in Kurventafel Fig. 2 dargestellt;
dort kann für beliebigen Wert des Durchmessers d
des blanken Leiters, der Wärmeübergangszahl a
und der Wärmeleitzahl A der Isolationsauftrag
ômax abgelesen werden.

Gl. (6) kann auch wie folgt geschrieben werden:

Ä
a 4 ôm

(d -1- 2 ômax) • In 1
2 ô„

(6)

Wenn wir Gl. (10) und Gl. (6) in dieser Form
miteinander vergleichen, so erkennen wir, dass für
einen äussern Durchmesser von (d+2 ômax) 4^:2 cm,

A
die Werte —, welche sich aus diesen Gleichungen

ergeben, weniger als 10 % voneinander abweichen.
Die Rechnung nach der einfachem Gl. (6), bzw.

Ii kinaBvajBtaa.iat'Hi iwiiBarl

Fig. 2.

'Isolationsauftrag Smss, bei welchem der thermische Wider¬
stand gleich demjenigen des blanken Leiters ist.

-OD
für <x veränderlich mit dem Durchmesser d

nach dem Nomogramm Fig. 1 ist in solchen Fällen
ohne weiteres zulässig, wenn man bedenkt, dass die
Ungenauigkeit der Werte A und a oft grösser als
10 % ist.

In nachstehenden Tabellen sei noch die
Wärmeübergangszahl a für einige Leiterdurchmesser und
die Wärmeleitzahl A für einige Isoliermaterialien
angegeben.

Wärmeübergangszahlen a
in ruhender Luft für eine

Uebertemperatur von
» 30° C.

Tabelle I.
Wärmeleitzahlen.

Tabelle II.
Leiter-

Durchmesser
in cm

Of

W/cm2 » C
Material X

W/cm-'C

0,01 0,0135 Baumwolle trocken 0,0007
0,02 0,0086 „ impräg. 0,0015
0,05 0,0048 (od. in Oel)
0,1 0,0033 Seide trocken 0,0006
0,2 0,0024 „ imprägniert 0,0014
0,5 0,0017 Papier 0,0013
1 0,0014 Preßspan 0,002
2 0,00127 Bituba 0,0025
5 0,0011 Glimmer 0,0036

10 0,00105 Asbest 0,0019
100 0,0010 Porzellan 0,01

Luft kalt 0,00025
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C. Bestimmung der zulässigen Strombelastung
von Leitern.

Analog wie beim Ohmschen Gesetz gilt für die
Wärmeströmung: Uebertemperatur Wärme-
slrom X thermischer Widerstand

$ P-Rt° C (11)

Die Jouleschen Verluste des Leiters rechnet man
nach der Gleichung

Q-LP 72
q

daraus folgt:

0 P
und

I

W (L in m ; q in mm2)

L
R, »C

1/\ Q-L-R,

(12)

(13)

Wenn die zulässige Strombelastung des blanken
Leiters bekannt ist, so kann für gleiche Uebertemperatur

diejenige des isolierten Leiters nach
folgender Gleichung gerechnet werden:

Loi i.'rt Iblank * VI^-t blank

isoliei
(14)

Beispiel.
Man bestimme den thermischen Widerstand eines

isolierten Kupferbolzens mit folgenden Daten:
Durchmesser des blanken

Bolzens d 2 cm
Radialer Isolationsauftrag (5 1 cm
Aeusserer Durchmesser des

isolierten Bolzens da d + 2d —4 cm
Länge des Bolzens L 60 cm
Wärmeleitzahl von Bituba

nach Tabelle II X =0,0025
Wärmeübergangszahl für d

2 cm nach Tabelle I a =0,00127
Wärmeübergangszahl für da

4 cm (interpol.) a =0,00115
Man bestimme:

1. die zulässige Strombelastung des blanken und
des isolierten Bolzens für eine Uebertemperatur
von # 30° C ;

2. den minimalen thermischen Widerstand und den
zugehörigen Isolationsauftrag;

3. den Isolationsauftrag, bei welchem blanker und
isolierter Bolzen gleich stark belastbar sind.

1. Thermischer Widerstand des blanken Leiters
nach Gl. (1) (2ri=d)

Rt blank -

jz-d-L-a 7z-2 • 60-0,00127
2,09 0C/W

Nach Gl. (13) beträgt der zulässige Strom des blanken

Bolzens:

^blank
XX- q

q-L-R,

30 • -X-202
4

0,02 • 0,6-2,09
613 A.

Der thermische Widerstand des isolierten Leiters
beträgt nach Gl. (8)

2,2
Rut isoliert

7t 60 • 0,00127 • (2 + 2 + 0,2) • 2

4

2 • % 60 • 0,0025
In — 1,83 OC/W.

Den zulässigen Strom des isolierten Leiters rechnet
man nach Gl. (14) zu:

li.nliart Ihl lte,= 613-Vw=^
2. Unter der Annahme, dass a konstant bleibt,

erhalten wir nach Gl. (5) für den minimalen
thermischen Widerstand eine Isolationsstärke:

ô
0,0025
0,00127

— 1 0,97 cm.

Berücksichtigt man die Abhängigkeit des Wertes a
vom Durchmesser, so folgt nach Gl. (9)

0,0025 2. (2 + 2 <5 + 0,2)2

0,00127 2.(2 + 2 0)-2,2

Aus dieser Gleichung erhalten wir:
d l cm.

Beide Berechnungsarten ergeben also praktisch den
gleichen Wert. Zufälligerweise ist dies gerade der
vorgesehene Isolationsauftrag, so dass der minimale
thermische Widerstand

Rt min — 1,83° C/W
beträgt.

3. Unter der Annahme, dass a konstant bleibt,
X

gibt das Nomogramm Fig. 1 für — 1,97 und

d 2 cm den Wert

^
ca. 3,8, so dass dmax — 3,8 cm.

Aus Kurvenblatt Fig. 2 erhalten wir ômax 3,6 cm.

Beide Berechnungsmethoden geben somit wenig
verschiedene Resultate.

Fig. 3.

Thermischer Widerstand und

zulässiger Strom eines Leiters

von 2 cm Durchmesser und

SO cm Länge in Funktion des

Isolationsauftrages <5.

In Fig. 3 sind für einen Bolzen von 2 cm Durchmesser

der thermische Widerstand und der zulässige

Belastungsstrom für ê 30° C in Funktion
des Isolationsauftrages <5 wiedergegeben.
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