Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 26 (1935)

Heft: 12

Rubrik: Mitteilungen SEV

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Technische Mitteilungen. — Communications de nature technique.

Die 5000-kVA-Phasenschieberkondensatorenanlage der Kraftwerk Sachsen-Thüringen A.-G.

621.316.727:621.319.4

Nach Stillegung des Spitzendampfkraftwerkes musste bei diesem Ueberlandwerk, das ein rund 900 km langes 10 kV-Netz betreibt und Fernenergie aus der mitteldeutschen Grossversorgung nach einem kVA-Grundgebührentarif über die beiden 50/10 kV-Fernstromabspannwerke Auma (10 000 kVA) und Gommla (4000 kVA) bezieht, eine 5000 kVA-Blindleistungserzeugeranlage erstellt werden (Wegfall des Phasenschiebens durch die Betriebsmaschine). Hierfür kamen in Frage a) der nur rd. 20 000 RM. kostende Umbau eines Turbogenerators im Dampfkraftwerk Auma in einen 5000 kVA-Synchron-Phasenschieber oder aber b) die Aufstellung einer 10 kV-Kondensatorenanlage gleicher Leistung mit einem Kostenaufwand von rd. 120 000 RM. Bei einer zehnjährigen Abschreibung (Ende des Fernstrombezugsvertrages dem kVA-Grundgebührentarif) des Synchron-Phasenschiebers, d. h. der zu seinem Umbau erforderlichen 20 000 RM. auf 0 RM. (nötig!), der Kondensatoren auf die Hälfte, d. h. auf 60 000 RM. (mit Rücksicht auf die spätere Verwendungsmöglichkeit der Kondensatoren zulässig!) erwies sich zufolge der Verlustbilanz (Verluste des Phasenschiebers gemäss a) rd. 300 kW; Verluste der Kondensatoren gemäss b) nur rd. $0.002 \times 5000 = 10$ kW) die Aufstellung einer Kondensatorenanlage dem Umbau des Turbogenerators wirtschaftlich und, wegen der sonstigen Vorteile der Kondensatoren (Entlastung auch des Mittelspannungsnetzes von Blind-

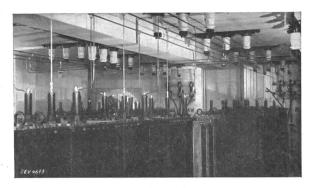


Fig. 1.
3000-kVA-Phasenschieber-Kondensatorenanlage
im 50/10-kV-Unterwerk Auma.

strom durch verteilte Aufstellung der Kondensatoren usw.), auch technisch weit überlegen. Sie ermöglicht während der genannten 10 Jahre eine Ersparnis von rd. 250 000 RM. und gestattet nebenher, auch das 10 kV-Netz wirksam von Blindstrom zu entlasten.

Die im Jahre 1934 aufgestellte Kondensatorenanlage umfasst eine 1000 + 2000 = 3000 kVA-Anlage im Unterwerk Auma (10 bzw. 20 Elemente zu je 100 kVA, Innenraumaufstellung; Fabrikat I, s. Fig. 1), eine 800 kVA-Batterie im Unterwerk Gommla (16 Elemente zu je 50 kVA, Freiluftanlage; Fabrikat II) und eine verteilt im 10 kV-Netz aufgestellte Batterieleistung von 1200 kVA (24 Elemente zu je 50 kVA, Innenraumausführung; Fabrikat II). Die Batterien von 1000 und 2000 kVA in Auma werden durch Vorstufen-Oelschalter (Vorwiderstände von 120 bzw. 60 Ohm pro Phase), die 800 kVA-Batterie in Gommla ebenfalls durch Vorstufen-Oelschalter (45 Ohm pro Phase) und die Einzelbatterien (50 bis 200 kVA) im 10 kV-Netz durch normale Oel-Leistungstrenn- und -Mastschalter geschaltet.

Die Batterien wurden in Elemente von 100 bzw. 50 kVA unterteilt, um auf besondere Reserve-Kondensatoren — das Ausfallen eines Elementes oder selbst mehrerer Elemente fällt überhaupt nicht ins Gewicht — verzichten und vor allem auch später, z. B. nach Umstellung des kVA- in einen kW-Grundgebührentarif mit besonderer Berechnung der Blind-

arbeit, auf eine vollständig verteilte Aufstellung der Kondensatoren (unmittelbar bei den Abnehmern) zukommen zu können. Jedes Element besteht aus einer Vielzahl von Wickeln, die alle besonders abgesichert sind. Für den Anschluss des Ueberstromschutzes und der Strommesser wurden an Stelle von teuren Einleiter-Stabwandlern bei den Batterien in Auma Durchführungs-Querlochwandler mit Parallelwiderständen und Sicherheitsfunkenstrecken, bei der Batterie in Gommla sogenannte U-Rohr-Wandler verwendet.

Die Anlage befindet sich seit Anfang Dezember 1934 in störungslosem Betrieb. Die Spannungskurve des 10 kV-Netzes, die vor Anschluss der Kondensatoren in grösserem Umfange nur die 5. Oberwelle enthielt, ist bei Betrieb mit Kondensatoren (s. Fig. 2) sogar sauberer als zuvor. Eine

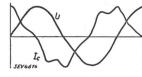
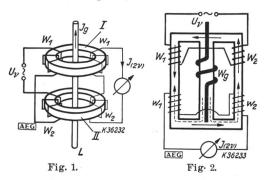


Fig. 2. 10-kV-Spannung U und Strom I_c der 2000-kVA-Kondensatorenbatterie in Auma.

	3. Oberwelle	5. Oberwelle
10 kV-Spannung Kondensator-Strom	1,40 ⁰ / ₀ 4,20 ⁰ / ₀	2,10 ⁰ / ₀ 10,50 ⁰ / ₀


Kunstschaltung (Verstimmung der Netz-Eigenfrequenz auf eine, bzw. die Nähe einer Oberwelle gerader Ordnunszahl) gestattet, einen Teil der Kondensatoren mit wesentlicher Glättung der Netzspannungskurve auch im Netzschwachlastbetrieb eingeschaltet zu lassen und den Fernstrombezugs-Leistungsfaktor auch in dieser Zeit auf rd. 1 zu kompensieren. Der Oberwellengehalt im Erdschlussreststrom des gelöschten 10 kV-Netzes, der vor dem Einbau der Kondensatoren etwa 250 bis 300 % 5. Oberwelle enthielt, ist seit Inbetriebnahme der Kondensatoren auf einen Bruchteil des früheren Oberwellengehaltes zurückgegangen. Aus dieser Erscheinung kann geschlossen werden, dass die Verstimmung der Netz-Eigenfrequenz auf eine, bzw. die Nähe einer Oberwelle gerader Ordnungszahl mit Hilfe von Kondensatoren ein einfaches Mittel bietet, für den Löschvorgang unzulässig hohen Oberwellengehalt im Erdschlussreststrom herabzumindern. Die Studiengesellschaft für Höchstspannungsanlagen, Berlin, hat die Vorgänge beim Ein-, Aus- und Parallelschalten der Kondensatoren, auch mit öllosen Schaltern, im Februar 1935 mit dem Kathodenstrahloszillographen untersucht. Ueber das Ergebnis dieser Untersuchungen wird auf der VDE-Jahresversammlung in Hamburg Bericht erstattet. (ETZ 1935, Heft 18, S. 501.) H. Schulze, Auma.

Ein neues Verfahren zur transformatorischen Gleichstrommessung.

Die Vorteile, die es bietet, Ströme zu messen, ohne das Messinstrument galvanisch mit dem stromführenden Leiter zu verbinden, sind bekannt. Sie sind besonders dann wesentlich, wenn es sich um Hochspannungskreise, um grosse Stromstärken oder um die Messung von Korrosionströmen in Kabelmänteln und Rohrleitungen handelt. Bei Wechselstrom sind transformatorische Messungen mit Messwandlern oder mit dem Dietze-Anleger üblich. Von einem neuen Verfahren zur transformatorischen Messung von Gleichstrom ist nachstehend die Rede 1).

Zur transformatorischen Gleichstrommessung wird ein Eisenkern um den stromführenden Leiter geschlossen und der magnetische Zustand dieses Kerns als Kriterium für den zu messenden Strom herangezogen. Dabei ist das neue Verfahren durch die Anwendung einer Frequenzvervielfachung gekennzeichnet: Der zu messende Gleichstrom ruft eine zusätzliche Magnetisierung in zwei wechselstromgespeisten magnetischen Kernen hervor; der dabei entstehende Oberwellenstrom wird als Mass für den zu messenden Gleichstrom benutzt.

Fig. 1 zeigt das Schema eines derartigen Gleichstrom-Einleiterwandlers. L ist der Leiter, durch den der zu messende Gleichstrom I_0 fliesst. Um L sind die beiden magnetischen Kerne I und II mit den Wicklungen W_1 , W_2 , w_1 und w_2 gelegt. W_1 und W_2 sind entgegengesetzt gepolt, weisen aber gleiche Windungszahlen auf und werden von der Hilfswechselspannungsquelle $U_{\rm v}$ gespeist. Die magnetischen Kerne I und II sind einander gleich, ebenso die beiden Wicklungen

 w_1 und w_2 , die in übereinstimmendem Sinne hintereinander geschaltet sind. Ist L stromlos, so sind die in den Wicklungen w_1 und w_2 induzierten Wechselspannungen einander entgegengesetzt gleich, so dass das Messinstrument keinen Ausschlag zeigt. Sobald jedoch durch L ein Strom fliesst, werden die Spannungen an den beiden Sekundärwicklungen verzerrt, infolge der Gleichstrom-Vormagnetisierung der Kerne. Es zeigt sich, dass die Grundwellen der Frequenz der Hilfswechselspannungsquelle sich in den Sekundärwicklungen weiterhin aufheben, dass die zweiten Harmonischen dagegen sich addieren und einen Strom im Messinstrument ergeben, da die Phasenverschiebung der Spannungen an w_1 und w_2 für die Grundfrequenz 180°, bezogen auf die doppelte Frequenz somit 360° beträgt.

Der Vorteil der Verwendung der zweiten Harmonischen besteht darin, dass die Bestimmung der Richtung des Gleichstromes möglich ist, was mit den bisherigen Methoden nicht gelang. Kehrt I_0 seine Richtung um, so erleidet die zweite Harmonische eine Phasenverschiebung um 180°, welche, mit einer zweiten Hilfswechselspannung von der Frequenz der zweiten Harmonischen festgestellt, die Bestimmung der Richtung des Gleichstromes gestattet. Aber auch in noch einfacherer Weise ist bei dem neuen Verfahren die Bestimmung der Stromrichtung möglich.

Der in Fig. 1 gezeigte Einleiterwandler hat den Vorzug, dass er ähnlich einem Dietze-Anleger konstruiert um die Gleichstromleitung gelegt werden kann, so dass es nicht nötig ist, den Stromkreis zum Anbringen des Strommessers zu unterbrechen. Weiterhin gibt es noch Mehrleiterwandler gemäss dem Schema Fig. 2. Diese kommen auch zur transformatorischen Gleichspannungsmessung in Frage, wobei dann die Wicklung W_g eine Spannungswicklung ist, welche über einen Widerstand an den Polen der zu messenden Gleichspannung liegt. Bei gleichzeitiger transformatorischer Gleichstrom- und -spannungsmessung können die den Sekundärwicklungen der beiden Wandler entnommenen Wechselströme einem Wattmeter zugeführt und so zur transformatorischen Gleichstrom-Leistungsmessung herangezogen werden, ebenso zum Betrieb von Zählern und Rückstromrelais, weil bei Umkehr der Gleichstromrichtung die zweite Harmonische von der erwähnten Phasenverschiebung betroffen wird.

Besondere Bedeutung hat die transformatorische Messung von Korrosionströmen in Kabelmänteln und Rohrleitungen. Die elektrolytische Korrosion, von der Kabelmäntel und Rohrleitungen in der Nähe der Gleisanlagen elektrischer Gleichstrombahnen (besonders in feuchtem Erdreich) betroffen werden, ist nur dann rechtzeitig zu erkennen, wenn die betreffenden Kabelmäntel und Rohre von Zeit zu Zeit auf das Vorhandensein von Korrosionströmen hin geprüft werden. In erster Linie interessiert dies für die gegen Mantelschäden besonders empfindlichen Oel- und Druckkabel. Um die Korrosionströme in einem Kabelmantel direkt zu messen, ist es nötig, die äussere Kabelumhüllung bis zum Freiwerden des Bleimantels zu entfernen und den Bleimantel zu unterbrechen, um das Messinstrument einschalten zu können. Mindestens muss der Mantel freigelegt und mit Anschlußschellen versehen werden (Kompensationsverfahren). Die transformatorische Methode dagegen gestattet die Bestimmung der Korrosionströme (Stromstärke und richtung) ohne jeden Eingriff am Kabel. Nötig ist nur, dass während der Messung der Betriebsstrom unterbrochen wird.

Bemerkenswert sind die Methoden zur Feststellung der Richtung der Korrosionströme bei transformatorischer Messung. Bei dem einen Verfahren ist das Messinstrument (vgl. Fig. 1) ein Gleichstromsystem mit Einweggleichrichter. Dadurch fliesst durch w_1 und w_2 ein Gleichstrom, der je nach der Polung des Gleichrichters die Gleichstrommagnetisierung der Kerne durch I_q unterstützt oder ihr entgegenwirkt, also eine grössere oder kleinere Sekundärwechselspannung ergibt. Aus der Polung des Gleichrichters, bei der sich der grössere Ausschlag einstellt, kann so auf die Richtung des gemessenen Gleichstromes geschlossen werden. Eine andere transformatorische Korrosionstrom-Messeinrichtung arbeitet nach einem Kompensationsverfahren. Dabei trägt der Wandler eine wei-

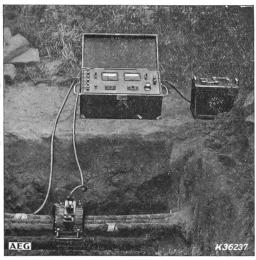


Fig. 3.

tere Wicklung, durch die ein Gleichstrom geleitet wird, der so zu regeln ist, dass er die durch $I_{\mathfrak{g}}$ verursachte Magnetisierung der Kerne kompensiert, dass also der Strom der doppelten Frequenz ein Minimum ist. Der Kompensationsstrom ergibt dann unter Berücksichtigung der Daten des Wandlers den Korrosionstrom. Die Richtung des Korrosionstromes ist ebenfalls durch die des Kompensationsstromes bestimmt. Als Wechselstromquelle dient bei derartigen transportablen Apparaten zur transformatorischen Gleichstrommessung entweder ein Einankerumformer oder ein Selbstunterbrecher in Eichhornscher Summerschaltung. Die nötige Energie wird einer Akkumulatorenbatterie entnommen. Der ringförmige Kern der Korrosionstromwandler ist zweiteilig, so dass er leicht um ein verlegtes Kabel oder Rohr geschlossen werden kann. Fig. 3 zeigt eine solche Korrosionstrom-Messeinrichtung betriebsfertig aufgebaut. Das abgebildete Gerät arbeitet nach dem zuletzt beschriebenen Kompensationsprinzip; den Wechselstrom liefert eine Summerschaltung. Erwähnt sei noch, dass bei Ausführung der transformatorischen Korrosionstrommessung eine Unterbrechung des Betriebsstromes im Kabel überflüssig ist, wenn es sich um ein symmetrisch belastetes Drehstromkabel handelt.

¹⁾ K. Rottsieper, Neues Verfahren zur transformatorischen Messung von Gleichstrom, AEG-Mitt. 1935, Heft 3.

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

Schirmwirkung metallischer Hüllen gegen magnetische Wechselfelder.

621.3.013.7:621.396.621.551:621.319.74

Die Lösung des Problems, irgendwelche elektrische Gebilde durch metallische Schirme gegen fremde Wechselfelder zu schützen, hat als Ziel die Beantwortung der Frage nach sachgemässer Dimensionierung des Schirmes. Gegeben ist die benötigte Abschirmwirkung; gesucht der quantitative Zusammenhang zwischen Schirmwirkung und Bemessung der Hülle, unter Berücksichtigung der Materialkonstanten und der Frequenz des Störfeldes.

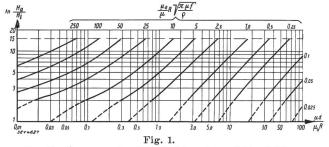
Solange die Frequenz nicht so hoch liegt, dass durch die Verschiebungsströme im umgebenden Dielektrikum merkliche Ströme im Schirm fliessen, ist die Schirmwirkung einer Metallhülle gegen elektrische Felder rein elektrostatischer Natur. Es genügt dann, die magnetischen Felder folgendermassen zu betrachten.

I. Abgeschirmter Innenraum.

Heinrich Kaden erzielt sehr brauchbare Resultate von weitreichender Allgemeingültigkeit, indem er verschiedene geometrisch einfache, geschlossene oder bis ins Unendliche reichende Hüllen zugrunde legt und für diese die Maxwellschen Differentialgleichungen streng integriert. Behandelt sind: 1. zwei parallele unbegrenzte Platten (Plattenabstand A, Plattendicke d, Ha und Hi magnetische Feldstärken im Aussenraum und zwischen den Platten, parallel zu den Platten gerichtet). 2. Unendlich langer Hohlzylinder (Radius R, Wandstärke d, magnetische Feldstärken parallel zur Axe). 3. Hohlkugel (Radius R, Wandstärke d, äusseres Feld ohne Anwesenheit der Schirmhülle homogen). Setzt man allgemein d << A, R, und speziell für die Permeabilität der Hohlkugel $\mu = \mu_0$ (d. h. kein ferro-, para- oder diamagnetisches Material) voraus, so ergibt sich für das Verhältnis der Feldstärkenbeträge bei merklicher Schirmwirkung (ohne Rücksicht auf den zeitlichen Phasenunterschied) in allen drei Fällen ein Ausdruck von der Form

$$\left(\frac{H_{\mathbf{a}}}{H_{\mathbf{i}}}\right)^{2} = \left(\frac{\mu_{0}}{\mu} \frac{p}{2 d} X\right)^{2} (\mathfrak{Cos} 2 p - \cos 2 p) + \left(\frac{\mu_{0}}{\mu} \frac{p}{2 d} X\right) (\mathfrak{Sin} 2 p - \sin 2 p) + \frac{1}{2} (\mathfrak{Cos} 2 p + \cos 2 p).$$

Mit der Frequenz f und dem spezifischen Widerstand ϱ des Hüllenmaterials ist $p=d\sqrt{\pi\mu f/\varrho}$. Für X hat man folgende Grössen einzusetzen: 1) Platten, X=A; 2) Hohlzylinder, X=R; 3) Hohlkugel $X=(\frac{2}{3})$ R. Wird p gross (starke Stromverdrängung), so gilt der obige Ausdruck bei der Hohlkugel angenähert auch für $\mu = \mu_0$. Als Mass der Schirmwirkung wird an Stelle von Ha/H1 zweckmässig die Felddämpfung ln (Ha/Hi) eingeführt.

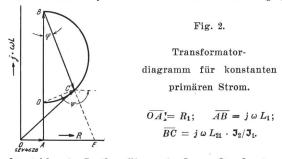

Die erstaunliche Tatsache, dass sich bei gleichem Durchmesser und gleicher Wandstärke zwei so verschiedene Körper wie beispielsweise der unendlich lange Hohlzylinder und die Hohlkugel in ihrer Schirmwirkung nur um 0,4 Neper unterscheiden, lässt den Schluss zu, dass die Gestalt der Schirmhülle quantitativ von unwesentlichem Einfluss ist. Diese wichtige Erkenntnis vereinfacht die Bestimmung der Wandstärke einer Schirmhülle ganz beträchtlich. Man braucht nämlich die Hülle, deren Hauptmasse ja durch die Ausdehnung des zu schützenden Körpers gegeben sind, nur näherungsweise durch einen der drei hier behandelten Ersatz-schirme zu ersetzen. Die Wandstärke der technischen Hülle muss dann gleich der Wandstärke des äquivalenten Ersatzschirmes sein. Für niedere Frequenzen (p < 1) kommt als Schirmhüllenmaterial nur Eisen in Frage (magnetostatische

Zur raschen Bestimmung der Wandstärke d dient die Kurvenschar Fig. 1. Man berechnet zunächst

$$\begin{split} \frac{\mu_0}{\mu} \ R \sqrt{\frac{\pi \mu f}{\varrho}} &= \frac{\mu_0}{\mu} \, \frac{R}{d} \cdot p \\ &\cong \, 2 \cdot 10^{-2} \, R \, [\mathrm{cm}] \sqrt{\frac{f \, [\mathrm{s}^{\text{-}1}]}{\frac{\mu}{\mu_0} \cdot \varrho \left[\frac{\mathrm{m}}{2 \, \mathrm{mm}^2}\right]}}, \end{split}$$

 $egin{pmatrix} \mu \ \mu_0 \end{bmatrix}$ Permeabilität der $\left\{ egin{matrix} \mathrm{H\"{i}ille} \ \mathrm{Luft} \end{matrix}
ight\}$, und erhält aus der gewünschten Grösse der Schirmwirkung In (H_a/H_l) durch Projektion auf die Abszisse den Zahlenwert $\mu d/(\mu_0 R)$, aus welchem sich d leicht errechnet.

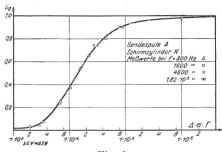
Damit ist das Schirmproblem für zahlreiche Fälle der Schwachstrom- und Hochfrequenztechnik generell gelöst. Sehr oft, besonders in der Messtechnik, stellt sich aber das Problem in räumlich reziproker Form. Es handelt sich dann



Zur Bestimmung der Wandstärke einer Schirmhülle.

nicht wie bisher darum, einen Körper gegen ein äusseres Feld zu schützen, sondern umgekehrt um Abschirmung des umgebenden Aussenraumes gegen das störende Wechselfeld eines elektrischen Gebildes. Der praktisch wichtigste Fall ist hier die Abschirmung des Aussenraumes gegen das Feld einer Spule.

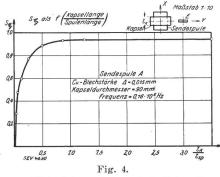
II. Abgeschirmter Aussenraum.


N. Hillers setzt als Quelle des Störfeldes eine zylindrische Spule voraus, umgibt diese mit einem konzentrischen Metallzylinder als Schirm und untersucht die Dimensionierungsfragen experimentell. Er behandelt die Anordnung als Lufttransformator und findet einfache, anschauliche Gesetzmässigkeiten. Der Schirmzylinder wirkt als Kurzschlussring (Se-

kundärwicklung). In ihm fliesst ein Strom 32, der im wesentlichen zum Spulenstrom 31 gegenphasig verläuft, und dessen Feld 1) innerhalb der Spule das Feld schwächt, d. h. die Induktivität verkleinert (innere induktive Rückwirkung), 2) zwischen Spule und Schirm das Feld vergrössert, und 3) ausserhalb des Schirmes das Feld verkleinert (äussere Rückwirkung; Schirmwirkung des Kurzschlussringes). Aeussere und innere Rückwirkung sind untrennbar miteinander verknüpft.

 $\dot{\Phi}_{12} = I_1 \cdot L_{12}$ sei der vom Strom I_1 erzeugte, die Sekundärspule umschlingende Fluss; $\Phi_2 = I_2 \cdot L_2$ der von I_2 allein erzeugte Fluss. Bildet man das Verhältnis von Restfeld zu Feld ohne Abschirmung, d. h. $\vartheta_{\Phi} = \frac{|\Phi_{12} + \Phi_2|}{|\Phi_{12}|}$, wo Φ_{12} und

 Φ_2 vektoriell zu addieren sind, so stellt $S_{\mathcal{O}}=1-\vartheta_{\mathcal{O}}$ einen brauchbaren Integralwert der Schirmwirkung dar. $\vartheta_{\mathcal{O}}$ heisst «Durchlässigkeit». Am Impedanzkreis des Transformators (Fig. 2) ist bei konstantem \mathfrak{J}_1 die Strecke $BC=\mathrm{j}\omega L_{21}\cdot\mathfrak{J}_2/\mathfrak{J}_1$ ein Mass für I_2 , also auch für Φ_2 . Im Kurzschluss geht BC


Die Abhängigkeit der Schirmwirkung $S_{\overline{O}}$ vom Produkt {Blechstärke (mm) × Leitwert $\begin{pmatrix} \sigma_{\mathbf{C}u} = 55.5 \\ \sigma_{\mathbf{Z}u} = 16.6 \end{pmatrix}$ × Frequenz (s-1)}

in BD über; dann ist $\Phi_2 = -\Phi_{12}$, d. h. DB entspricht mass-stäblich Φ_{12} . Der geometrischen Summe $\Phi_{12} \xrightarrow{} \Phi_2$ entspricht demnach DC. Also wird $\vartheta_{\mathcal{O}} = \sin \varphi$ (Fig. 2), und die Schirmwirkung $S_{\mathcal{O}} = 1 - \sin \varphi$. Bekanntlich gilt am Impedanzkreis $\operatorname{tg} \varphi = R_2/(\omega L_2)$. Daraus folgt bei hohen Frequenzen für die Schirmwirkung $S_{\mathcal{O}} = (\omega L_2 - R_2)/(\omega L_2)$, ein sehr einfacher Ausdruck. Im Kurzschluss $(R_2 = 0)$ wird $S_{\mathcal{O}} = 1$.

Die Schirmwirkung ist durch Angabe des wirksamen Widerstandes R2 und der wirksamen Induktivität des Schirmes

vollständig beschrieben.

Auf dieser Grundlage ergibt sich für die Schirmwirkung als Funktion des Produktes aus Blechstärke Δ , spez. Leitwert σ und Störfrequenz f die Kurve Fig. 3. Sie besagt: die Schirmwirkung $S_{\mathcal{O}}$ bleibt konstant, wenn $(\Delta^{i} \cdot \sigma^{i} f)$ konstant bleibt. Grundsätzlich wäre es für die Schirmwirkung am günstigsten, den Schirmzylinder sehr eng um die Spule zu legen. Praktisch hätte das aber eine zu grosse innere Rückwirkung auf die Spule zur Folge. Für die Wahl des Schirmzylinderdurchmessers D_2 kommt es also darauf an, welche innere Rückwirkung man zulassen kann. Um den Schaden zu überblicken, der durch die Abschirmung eintritt, muss man ungefähr die Streuung kennen; denn diese ist die Masszahl der induktiven Rückwirkung, wenn die Anordnung nahezu im Kurzschlusspunkt (Fig. 2, Pkt. D) arbeitet, was bei hohen Frequenzen immer zutrifft. Wie der Versuch bestätigt, gilt angenähert die Gleichung $(1-L_{12}/(L_1L_2))=1-(F_1/F_2)$,

Die äussere Rückwirkung bei veränderlicher Kapsellänge. $(S_{\bf 5}$ Schirmwirkung, bezogen auf die Feldstärke ${\bf 5}$ in der Axe.)

wobei die linke Seite die Streuung und F_1 , bzw. F_2 die Querschnittsflächen von Spule, bzw. Schirmzylinder bedeuten. Praktisch wählt man meistens F_1/F_2 zwischen 0,5 und 0,3. Fig. 4 zeigt, dass der Schirmzylinder mindestens so lang sein soll wie die abzuschirmende Spule; anderseits wird durch sehr lange Schirmzylinder für die Schirmwirkung nicht viel gewonnen.

Fig. 5 bringt die Resultate der Untersuchung an einer Anordnung mit zwei übereinander liegenden konzentrischen Zylinderschirmen (Durchmesser D_2 und D_3). Kurve I ist experimentell gewonnen und zeigt ϑ_{Φ} als Funktion des Verhältnisses D_3/D_2 für $D_2 =$ konstant; Kurve II stellt als Produkt der Durchlässigkeit jedes Einzelschirmes die resultierende Durchlässigkeit bei Anwesenheit beider Schirme dar 1). Mehrfache Abschirmung ist wirksam, wenn auf möglichst lose Kopplung der Einzelschirme untereinander geachtet wird.

Je grösser die Abstände, desto loser die Kopplung. Schliesslich kann es zweckmässiger werden, an Stelle von Mehrfachabschirmung die Störfeldquelle lediglich einfach ab-

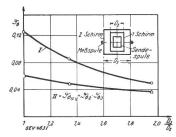


Fig. 5.

Mehrfache Abschirmung, D_3 ist veränderlich. Sendespule A. Kurve I: Messwerte bei $f=800/\mathrm{s}$. Schirme: $D_2=9$ cm konstant, $\Delta=1$ mm; $D_3=\mathrm{variabel}$, $\Delta=0.5$ mm. Kurve II: Maximal erreichbare Schirmwirkung.

zuschirmen und dafür weitere Hüllen in extrem loser Kopplung um jene Gebiete des Aussenraumes zu legen, die besonderen Schutz nötig haben. Dann geht die Hülle für abgeschirmten Aussenraum über in eine solche für abgeschirmten Innenraum, womit ein Zusammenhang zwischen den beiden Schirmarten angedeutet ist. Auch eine Hohlkugel für Abschirmung des Innenraumes weist eine Rückwirkung gegen das äussere Störfeld auf. War dieses nämlich ursprünglich homogen, so verzerrt die schirmende Hohlkugel das Aussenfeld genau so wie ein schwingender Dipol in ihrem Mittelpunkt bei Abwesenheit des Schirmes. (— Heinrich Kaden, Hochfrequenztechn. u. Elektroakustik, Bd. 40 [1932], H. 3, S. 92, und Siemens Veröff. a. d. Geb. d. Nachrichtentechn., Bd. 2 [1932], 5. Folge, S. 311; N. Hillers, Telefunken-Ztg., Bd. 13 [1932], H. 62, S. 13.)

Experimentelle Untersuchungen über den beim Peilen störenden Nachteffekt.

621.396.677:621.396.663.0046

Peilungen mit gewöhnlicher Rahmenantenne oder Kreuzrahmen und Goniometer zeigen besonders nachts grobe Fehlweisungen und typische Trübungen des Minimums. Meist treten gleichzeitig starke Energieschwankungen (Fadings) auf.

 $E.\ T.\ Eckersly^2)$ erklärte diesen störenden Nachteffekt an Hand der Darstellung Fig. 1. Nach seiner Theorie über-

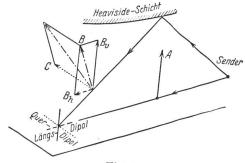


Fig. 1.

Empfang der Komponenten A, B, C durch Längs-, Hoch- und Querdipole.

lagern sich am Empfangsort mindestens zwei auffallende Wellen: die direkte Bodenwelle mit der annähernd vertikal polarisierten elektrischen Feldstärke \boldsymbol{A} und eine irgendwie polarisierte Raumwelle, deren elektrische Feldstärke immer zerlegt werden kann in die normal polarisierte Komponente \boldsymbol{B} und die abnormal polarisierte Horizontalkompo

¹⁾ Bei günstigster Anordnung der Schirme. 2) Radio-Rev., Bd. 2 (1921), S. 60 und S. 231.

nente C. Bodenwelle und Raumwelle verlaufen wesentlich in derselben Vertikalebene. An den Fehlweisungen (Peilstrahlschwankungen) ist allein die C-Komponente schuld.

Durch Gehörpeilungen konnten Ekkersly und andere einen teilweise gesetzmässigen Verlauf der Peilstrahlschwankungen feststellen. Damit war die Theorie im Umriss bestätigt.

Neuerdings hat G. Borkowetz zur genaueren Untersuchung des Nachteffektes ein automatisches Registrierverfahren ausgearbeitet, das, frei von jeder subjektiven Beeinflussung, bis zu 24 Peilungen pro Minute laufend ausführt und aufzeichnet. Sein Apparat (Fig. 2) besteht zur Hauptsache aus einem chemischen Funkbildschreiber, kombiniert mit einem automatisch um 180° (oder 360°) periodisch hin und her schwenkenden Rahmen einer Peil-Empfangseinrichtung. Jedesmal wenn der Rahmen durch das Empfangsminimum läuft, wird ein kurzer Strich 3) quer auf das elektrochemische Registrierpapier geschrieben. Den Registrierstrom liefert das Gleichstrom-Zusatzgerät (4). Seine erste Röhre wirkt als Gleichrichter und Verstärker. Sie durch V_1 so vorgespannt,

die Peilstationen mit einem Abstand von etwa 1,5 λ (λ = 1635 m) hintereinander, in der Richtung auf den Sender, oder senkrecht dazu, so kann sich derselbe Nachteffekt an

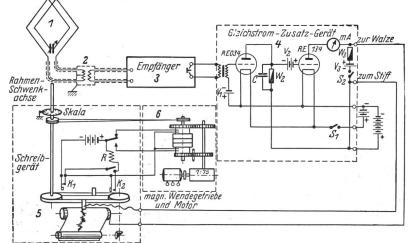


Fig. 2.

Schaltbild einer Peilregistrierstation.

1 Rahmenantenne, 2 Ankopplung am Super 3, 4 Gleichstromzusatzgerät zur Empfangsstromumkehr, 5 Bildfunkempfänger, 6 Zwangsläufige Steuerung für Rahmenschwenkung, Registrierstift und Registrierstreifenvorschub.

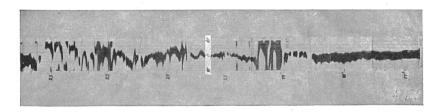
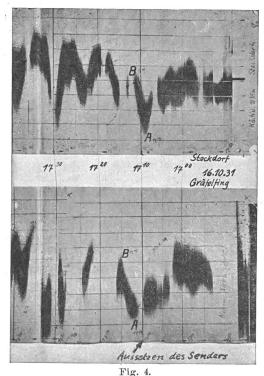


Fig. 3.

Beispiel für den gewöhnlichen Verlauf der Peilstrahlschwankungen des Senders Königswusterhausen (1634,9 m), registriert bei München am 8.4.1932; Registrierdauer

7 Stunden; Vorschub ca. 4 mm/min.


beim Empfang Null, also im Minimum, kein Anodenstrom fliesst. Während normalem Empfang jedoch erzeugt der Anodenstrom am Widerstand W_2 einen Spannungsabfall, der die zweite Röhre (Umkehrrohr) stark negativ vorspannt, d. h. blockiert. Sobald der Rahmen durch sein Empfangsminimum läuft, hört diese Blockierung auf, und es erfolgt ein Stromstoss über Schreibstift und Walze, der durch die positive Vorspannung V_2 noch verstärkt wird. Ein Motor mit magnetischem Wendegetriebe dreht den Rahmen hin und her und besorgt gleichzeitig zwangsläufig den Vorschub des Registrierstreifens.

Borkowetz hat mit mehreren solchen Geräten etwa 106 Einzelanpeilungen von Rundspruchsendern registriert. Fig. 3 ist ein typisches Registrierstreifenbeispiel für lange Wellen (1400 bis 2000 m). Die Peilstrahlschwankungen setzen abends manchmal schon 2 Stunden vor Sonnenuntergang ein und jeden Tag zu ganz anderer Zeit, woraus man schliesst, dass sich die massgebenden Faktoren des Nachteffektes von Tag zu Tag stark ändern. Der Verlauf der Schwankungen entbehrt im einzelnen zu allermeist jeglicher Regelmässigkeit. Nur an einigen sehr kalten Wintermorgen wanderte der Peilstrahl regelmässig in gleicher Richtung um mehrmals 360°, was nach Eckersly durch Höhenänderung der Heavisideschicht zu erklären ist. Registriert man gleichzeitig zwei Sender ähnlicher Wellenlänge, die praktisch am gleichen Ort stehen (beispielsweise Paris Radio 1724 m und Paris Eiffel 1446 m), so ist der Kurvenverlauf gänzlich verschieden. Bei kürzeren Wellen (260 bis 680 m) erfolgen die Peilstrahlschwankungen nachts so schnell, dass zu ihrer Registrierung ein besonderes Schnellpeilgerät für 153 Peilungen pro Minute nötig war. Ihr genauer Verlauf ist mit Gehörpeilung überhaupt nicht zu verfolgen.

Ein besonders interessantes Resultat fand Borkowetz durch simultane Registrierung ein und desselben Senders mit mehreren planmässig verteilten Peilstationen. Liegen nämlich

3) Je kürzer der Strich, desto schärfer das Minimum, und umgekehrt.

den einzelnen Registrierstellen sukzessive zeitlich verschoben einstellen. Es kommt also vor, dass der Nachteffekt über eine gewisse Bodenfläche wandert, was mit einer Minimalgeschwin-

Die zeitliche Verschiebung der Peilschwankung A, B um etwa 4 mm ist durch 10 s langes Aussetzen des Senders um 17¹⁰ unmittelbar bewiesen.

digkeit von 60 km pro Stunde vor sich geht. Ein typisches Beispiel zeigt Fig. 4. Hier hatten die Peilstationen 4 km Abstand; die zeitliche Verschiebung der Stellen AB beträgt von einem Registrierstreifen zum andern etwa 4 Minuten. An manchen Abenden fehlt die Wanderung des Nachteffektes

gänzlich. Sie ist auch im Laufe eines Abends nicht konstant und kann allmählich auf Null zurückgehen.

Je weiter man mit den Peilstationen auseinanderrückt, desto verschiedener verläuft der Nachteffekt, bis schliesslich bei 15 λ Entfernung (ca. 25 km) jegliche Aehnlichkeit aufhört.

Ergänzend hat A. Hagen die Zusammenhänge zwischen Peilstrahlund Energieschwankungen sowie den scheinbaren Einfallwinkel der Raumwelle untersucht. Er benutzte dazu Geräte nach Fig. 2, neigte aber den Rahmen und veränderte systematisch den Neigungswinkel. Der kleinere Peilfehler tritt fast immer in jener Minimumstellung auf, wo die Rahmenebene vom Sender fortgeneigt ist. Die Raumwelle scheint nahezu senkrecht einzufallen; der Einfallwinkel ist aber keineswegs konstant. Mit drei aufeinander senkrecht stehenden Dipolantennen (siehe Fig. 1) wurde gleichzeitig mit dem Peilminimum die Energie der Einzelkomponenten registriert. Auf die C-Komponente reagiert lediglich der Querdipol. Das Resultat zeigt Fig. 5. Um 20 Uhr 45 erscheint gleichzeitig mit der beginnenden Peilstrahlauswanderung die

C-Komponente, während die Energie von Längs- und Hochdipol abnimmt. Spezialantennen, welche die C-Komponente nicht zur Wirkung kommen lassen (Adcock, Marconi)⁴), ergeben daher auch nachts relativ gute Peilergebnisse.

Auf einer vollkommen leitenden Fläche muss der elektrische Feldvektor einer einfallenden Welle senkrecht stehen; unmittelbar über dieser Fläche können sich daher keine anormal polarisierten Felder ausbilden. Hagen stellte über einer 190 m² grossen Fläche aus verlötetem Zinkblech und Drahtgeflecht eine registrierende Peilstation auf, und zur Kontrolle in 150 m Abstand eine zweite ohne Metallfläche.

Tatsächlich bewirkte die Metallfläche eine Verringerung der Peilfehler um 12 bis 18 %. (— G. Borkowetz, Hochfrequenztechn. u. Elektroakustik, Bd. 44 (1934), H. 5, S. 174; A. Hagen, Hochfrequenztechn. u. Elektroakustik, Bd. 44 (1934), H. 6, S. 181.)

H. B.

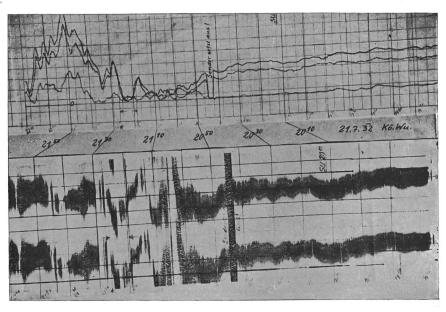


Fig. 5.

Energie- und Peilregistrierstreifen zeigen den Uebergang vom Tag zur Nacht. Mit dem Absinken der Energie in den 3 Dipolen nach 2050 treten grosse Peilfehler auf. Schwenkbereich des Rahmens 360°.

Kleine Mitteilungen.

Vortrag über Probleme der kürzesten Radiowellen. Wir erinnern daran, dass Herr Prof. Dr. F. Tank am Montag, den 17. Juni 1935 im Rahmen des Vortragszyklus für Ingenieure der Physikalischen Gesellschaft Zürich im grossen Hörsaal des Physikalischen Institutes der ETH, Gloriastrasse 35, einen Experimentalvortrag über Probleme der kürzesten Radiowellen hält, siehe Bull. SEV 1935, Nr. 10, S. 274. Wir machen besonders unsere in Hochfrequenztechnik interessierten Mitglieder und übrigen Leser auf diese Veranstaltung aufmerksam.

Wirtschaftliche Mitteilungen. — Communications de nature économique.

Aus den Geschäftsberichten bedeutenderer schweizerischer Elektrizitätswerke.

Elektrizitätswerk Luzern-Engelberg A.-G. pro 1934. (Stromproduzierendes Werk.)

	1934 kWh	1933 kWh
Total abgegebene Energie	52 497 070	$49\;358\;132$
davon in eigenen Anlagen hydrau-		
lisch erzeugt	45 468 830	43 077 432
von den CKW bezogen	5 723 040	5 909 000
von der Bürgenstockbahn bezogen	$301\ 300$	$267\ 000$
von der Steinindustrie Rozloch AG.		
bezogen	$1\ 003\ 900$	104 700
Die Abgabe verteilt sich auf:		
das ElektrWerk der Stadt Luzern	31 287 020	30 412 700
die CKW	10 502 000	8 362 000
das eigene Verteilgebiet, einige		
Grossabonnenten, Leitungs- und		
Transformatorenverluste	10 708 050	10 583 432

Anschlusswert im eigenen Detailver- teilgebiet auf Jahresende (ohne Un-	kW	kW
terwerk für EWL und CKW)	$7\ 229$	6 812
Die gesamten Betriebseinnahmen betrugen	Fr. 1 256 762	Fr. 1 249 613
abgabe	1249716	$1\ 243\ 520$
Die Betriebsausgaben inkl. Steuern, Konzessionsgebühren usw. betrugen	706 607	681 335
Ausserdem für die Abschreibungen auf den Anlagen	300 000	300 000 ,
Der Reingewinn betrug wovon 276 000 Fr. (wie im Vorjahr) verwendet wurden zur Ausrichtung einer Dividende von 6 % (Vorjahr 6 %) an die Prioritäts- und Stammaktien.	298 030	294 753
Der Buchwert der Aktiven beträgt .	5 338 039	5 260 406

⁴⁾ Vergl. Bull. SEV 1935, Nr. 8, S. 209.

Elektrizitätswerk der Stadt Luzern pro 1934. (Stromverteilendes Werk ohne Eigenproduktion.)

	1934 kWh	1933 kWh
Bezogene Energie	32 043 330	31 020 990
Anschlusswert auf Jahresende	kW 50 271	kW 47 752
	Fr. '	$\mathbf{Fr.}$
Die gesamten Einnahmen betrugen .	$4\ 803\ 372$	4587903
wovon die Einnahmen aus Energie-		
abgabe	3 436 580	3 342 446
Ausserdem Einnahmen an Zinsen, Di-		
videnden usw	239 910	242 538
Die gesamten Ausgaben betrugen	3 047 343	2 894 445
wovon für Energiebezug	721973	$714\ 421$
Ausserdem wurden aufgewendet für Zinsen, Abschreibungen und Ein-		
lagen in den Erneuerungsfonds	352 845	354 894
Der an die Stadtkasse abgelieferte		
Reinertrag beläuft sich auf	1 643 094	1 581 101
Der Buchwert der Aktiven beträgt wovon 4139000 Fr. den Wert des Aktienanteils am Luzern-Engelberg-	5 752 459	5 639 162
Werk darstellen.		

Miscellanea.

Persönliches.

(Mitteilungen aus dem Leserkreis sind stets erwünscht.)

Prof. Dr. Milan Krondl. Herr Dr. M. Krondl, Ingenieur im Studienbureau der Maschinenfabrik Oerlikon, hat den ehrenden Ruf erhalten, den Lehrstuhl des verstorbenen Professors Sumec für theoretische Elektrotechnik an der Technischen Hochschule in Brünn zu übernehmen. Herr Prof. Dr. Krondl hat dieses Amt auf den 1. Januar 1935 angetreten. Wir freuen uns sehr über diese Berufung eines unserer Mitglieder auf einen der bedeutendsten Lehrstühle für theoretische Elektrotechnik.

Hescho. Die Hermsdorf-Schomburg-Isolatoren-Gesellschaft, Hermsdorf (Hescho), teilt uns mit, dass sie ab 1. April 1935 ihre Schweizer Vertretung der Eisen und Metall A.-G., Zürich, anvertraute. Nach dem Tod des bisherigen Vertreters, Herrn Rob Kuster, sen., ist dessen Sohn, Herr Rob. Kuster, jun., in die Eisen und Metall A.-G. eingetreten, wo er die Geschäfte der Hescho betreut.

Die Firma Nicolet & Co., Zürich, Fabrikation elektrischer Apparate, ist gemäss Handelsamtsblatt vom 18. Mai 1935 mit Aktiven und Passiven an die Firma Otto Knöpfli, Ing., vorm. Nicolet & Co., Zürich 4, übergegangen.

Kleine Mitteilungen.

Verband Deutscher Elektrotechniker (VDE). Der VDE hält seine 37. Mitgliederversammlung vom 20. bis 23. Juni in Hamburg ab.

Zahlen aus der schweizerischen Wirtschaft (aus «Die Volkswirtschaft», Beilage zum Schweiz. Handelsamtsblatt).

(440 %DIO TOMORITANI DOMAGO EUM DOMAGIE, HUMADIGAMEDIACE).									
No.		Aı	ril						
NO.		1934	1935						
1.	Import)	120,1	109,2						
	(Januar bis April) In 106 Fr.	(472,9)	(402,3)						
	Export	70,0	68,3						
	(Januar bis April))	(269,5)	(268,4)						
2.	Arbeitsmarkt: Zahl der Stel-	(20),0)	(200,1)						
2.	lensuchenden	54 210	72 444						
3.	Lebenskostenindex) Juli 1914	130	127						
٥.	Grosshandelsindex = 100	90	87						
	Detailpreise (Durchschnitt von	30	0,						
	34 Städten)								
	Elektrische Beleuchtungs-	44 (0.3)	40 (07)						
	energie Rp./kWh	44 (88)	43 (87)						
	Gas Rp./III = 1000	27 (127)	27 (127)						
,	Gaskoks Fr./100 kg	6,37 (130)	6,17 (126)						
4.	Zahl der Wohnungen in den								
	zum Bau bewilligten Gebäu-								
	den in 28 Städten	911	675						
	(Januar bis April)	(3472)	(1844)						
5.	Offizieller Diskontsatz %	2	2						
6.	Nationalbank (Ultimo)								
	Notenumlauf 106 Fr.	1388	1319						
- 2	Täglich fällige Verbindlich-								
	keiten $10^6\mathrm{Fr}$	405	289						
	Goldbestand u. Golddevisen $10^6\mathrm{Fr.}$	1637	1372						
	Deckung des Notenumlaufes								
	und der täglich fälligen								
	Verbindlichkeiten 0/0 Börsenindex (am 25. d. Mts.)	91,28	85,32						
7.	Börsenindex (am 25. d. Mts.)								
	Obligationen	104	91						
	Aktien	122	106						
	Industrieaktien	159	167						
8.	Zahl der Konkurse	63	71						
	(Januar bis April)	(318)	(303)						
	Zahl der Nachlassverträge	30	33						
	(Januar bis April)	(121)	(113)						
9.	Hotelstatistik: von 100 verfüg-	, , ,	,						
	baren Betten waren Mitte								
	Monat besetzt	29,8	30,2						
2		-							
10.	Betriebseinnahmen aller Bah-	Im 4. 0	Quartal						
10.	nen inkl. SBB	1933	1934						
	aus Güterverkehr .)	56 973	54 511						
	(Erstes bis viertes	30 713	04011						
	Overtal)	(217 745)	(216 053)						
	1 1 1 1000 \$	51 685	48 314						
	(Erstes bis viertes	31 000	30 014						
	à	(224.058)	(220 064)						
, 4	Quartal))	(224 030)	(220 004)						

Unverbindliche mittlere Marktpreise

je am 20. eines Monats.

		Mai	Vormonat	Vorjahr
Kupfer (Wire bars) . Banka-Zinn Zink — Blei — Formeisen Stabeisen Ruhrnußkohlen 30/50 Saarnußkohlen 35/50 Belg. Anthrazit Unionbriketts Dieselmotorenöl (bei Bezug in Zisternen) Benzin Rohgummi	Lst./1016 kg	84.50 92.50	$\begin{array}{c} 35/10/0 \\ 226/0/0 \\ 13/2/6 \\ 12/10/0 \\ 84.50 \\ 92.50 \\ 35.20 \\ 35.20 \\ 32.50 \\ 52.50 \\ 36.50 \\ \hline 75 \\ 136.50 \\ 5^3/4 \end{array}$	$\begin{array}{c} 36/5/0 \\ 232/15/0 \\ 14/12/6 \\ 11/0/0 \\ 91.75 \\ 100 \\ 35.20 \\ 32.50 \\ 42.05 \\ 36.50 \\ 83.50 \\ 116.50 \\ 6^{1}/_{6} \end{array}$

Bei den Angaben in engl. Währung verstehen sich die Preise f. o. b. London, bei denjenigen in Schweizerwährung franko Schweizergrenze (unverzollt).

Energiestatistik

der Elektrizitätswerke der allgemeinen Elektrizitätsversorgung.

Bearbeitet vom Eidg. Amt für Elektrizitätswirtschaft und vom Verband Schweizerischer Elektrizitätswerke.

Die Statistik umfasst die Energieerzeugung aller Elektrizitätswerke für Stromabgabe an Dritte, die über Erzeugungsanlagen von mehr als 300 kW verfügen. Sie kann praktisch genommen als Statistik aller Elektrizitätswerke für Stromabgabe an Dritte gelten, denn die Erzeugung der nicht berücksichtigten Werke beträgt nur ca. 0,5 % der Gesamterzeugung.

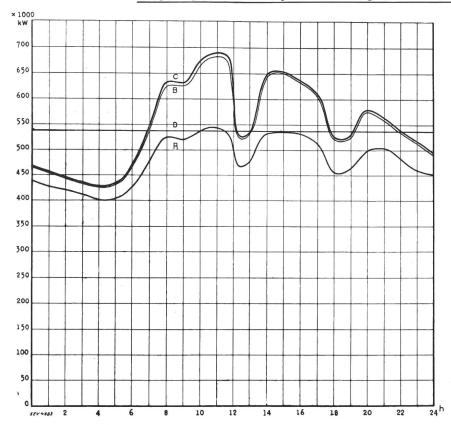
Nicht inbegriffen ist die Erzeugung der Schweizerischen Bundesbahnen für Bahnbetrieb und der Industriekraftwerke für den eigenen Bedarf. Die Energiestatistik dieser Unternehmungen wird jährlich einmal in dieser Zeitschrift erscheinen.

	Energieerzeugung und Bezug										Energieerzeugung und Bezug								Speich	herung			
Monat	Hydrai Erzeu		Thern Erzeu				Ene Ein	rgie- fuhr	Erzei	tal igung Bezug	Ver- ände- rung gegen Vor-	der Si	einhalt peicher m sende	im Be mo — Ent	erung erichts- nat nahme füllung	Ener ausi	_						
	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	jahr	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35						
				iı	n Million	nen kW	h				0/0		iı	n Millio	nen kW	h							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18						
Oktober	331,4	374,2	0,6	0,5	5,1	2,7	_	_	337,1	377,4	+12,0	483	503	- 2	- 5	77,7	106,3						
November .	331,8	349,1	1,3	2,0	1,7	1,9	0,6	2,6	335,4	355,6	+ 6,0	460	475	- 23	- 28	74,2	85,2						
Dezember .	347,0	344,9	3,2	1,9	5,4	3,0	1,4	3,6	357,0	353,4	- 1,0	374	441	- 86	- 34	81,1	87,5						
Januar	338,4	371,0	3,0	2,1	8,8	2,5	1,7	3,1		150	+ 7,6		338	- 90	-103	86,7	94,8						
Februar	299,1	332,3	1,9	1,4	4,5	2,2	2,5	2,5	308,0	338,4	+ 9,9	198	292	- 86	- 46	75,4	87,1						
März	317,6	369,6	1,6	0,5	3,4	1,9	0,7	1,8	323,3	373,8	+15,6	156	245	- 42	- 47	75,0	108,5						
April	320,5	355,6	0,3	0,2	0,7	1,9	_	_	321,5	357,7	+11,3	169	251	+ 13	+ 6	87,8	104,4						
Mai	345,8		0,3		8,0		-		354,1			231		+ 62		108,5							
Juni	353,9		0,4		7,5		_		361,8			320		+ 89		118,5							
Juli	363,2		0,3		7,8		_		371,3			429		+109		122,1	5						
August	354,7		0,2		7,8		_		362,7			477		+ 48		111,9							
September .	360,3		0,6		7,5				368,4			508		+ 31		121,2							
Jahr	4063,7		13,7		68,2		6,9		4152,5			-		_		1140,1							
Okt.—April .	2285,8	2496,7	11,9	8,6	29,6	16,1	6,9	13,6	2334,2	2535,0	+ 8,6					557,9	673,8						

1	Verwendung der Energie im Inland																
	Haus	1-14				nische,	Ueber	schuß-			Verlus	uste und Inlandverbra			rau ch in	au ch inkl. Verluste	
Monat		nd	Indu	strie	u. ther	mische ven- gen¹)	Elel	rie für ktro- sel²)	Bah	nen	der Sp	rauch eicher- pen ⁸)	Oh Übers energi Speiche	chuss- e und	energ	chuss- ie und	ände- rung gegen
	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	1933/34	1934/35	Vor- jahr ⁵)
							i	n Millio	nen kW	'h							0/0
1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16	17	18
Oktober	101,9	107,6	48,4	50,5	20,0	19,9	19,2	17,8	20,9	22,4	49,0	52,9	227,0	243,8	259,4	271,1	+ 4,5
November .	109,9	112,4	48,9	50,3	17,9	19,2	14,6	13,5	21,1	23,4	48,8	51,6	236,5	248,1	261,2	270,4	+ 3,5
Dezember .	125,6	116,0	51,5	47,0	14,8	15,5	8,6	11,8	24,5	23,4	50,9	52,2	264,0	246,6	275,9	265,9	- 3,6
Januar	121,2	122,3	50,1	49,2	13,7	17,5	8,5	15,3	22,8	24,7	48,9	54,9	254,1	263,5	265,2	283,9	+ 7,1
Februar	102,5	104,3	46,4	44,2	13,6	15,9	6,9	17,4	20,8	21,5	42,4	48,0	223,1	228,6	232,6	251,3	+ 8,0
März	106,2	106,5	47,0	44,8	17,1	16,6	12,2	23,5	21,2	22,0	44,6	51,9	230,5	234,0	248,3	265,3	+ 6,8
April	91,2	95,6	45,7	43,5	17,3	20,1	18,7	23,1	16,1	18,6	44,7	52,4	205,4	214,8	233,7	253,3	+ 8,4
Mai	92,3		49,0		19,0	(-7-7	19,9	, , ,	16,5		48,9	(7,0)	214,8		245,6	(00)07	
Juni	89,6		49,7		19,9		18,2		17,0		48,9		214,4		243,3		,
Juli	89,2		49,6		21,1		18,0		18,2		53,1		217,6		249,2		
August	93,7		48,9		21,0		19,2		18,1		49,9		218,9		250,8		
September .	93,1		48,0		20,2		19,0		17,0		49,9		, 216,8		247,2		
Jahr	1216,4		583,2		215.6 (51,6)		183,0		234,2		580,0 (54,7)		2723,1		3012,4 (289,3)		
Okt.—April .	758,5	764,7	338,0	329,5	114,4 (28,2)	124,7 (27,5)		122,4 (122,4)	147,4	156,0	329,3 (18,8)	363,9 (31,9)	1640,6	1679,4	1776,3 (135,7)	1861,2 (181,8)	+4.8 $(+34.0)$

In den statistischen Angaben sind berücksichtigt die schweiz. Restquote des Kraftwerkes Albbruck-Dogern ab 1. Dez. 1933, «Dixence» ab 4. Nov. 1934 (Speicherung schon ab 12. Aug. 1934), Klingnau ab 3. Febr. 1935.

1) Die in Klammern gesetzten Zahlen geben die ohne Lieferungsverpflichtung, zu Preisen für Ueberschussenergie, abgegebene Energiemenge an.


2) d. h. Kessel mit Elektrodenheizung.

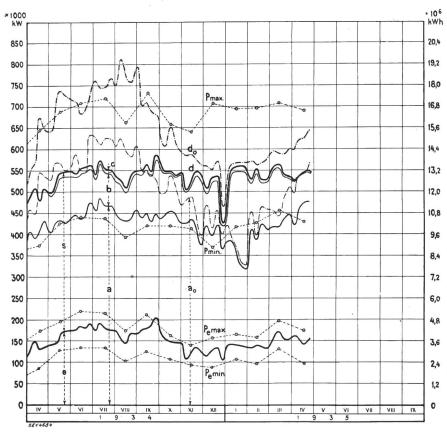
3) Die in Klammern gesetzten Zahlen geben den Verbrauch für den Antrieb von Speicherpumpen an.

4) Die in Klammern gesetzten Zahlen geben die ohne Lieferungsverpflichtung, zu Preisen für Ueberschussenergie, abgegebene Energiemenge und den Verbrauch der Speicherpumpen an.

5) Kolonne 17 gegenüber Kolonne 16.

Tagesdiagramm der beanspruchten Leistungen, Mittwoch, den 17. April 1935.

Legende:


1. Mögliche Leistungen:	108 kW
Laufwerke auf Grund der Zuflüsse (O-D)	541
Saisonspeicherwerke bei voller Leistungs- abgabe (bei max. Seehöhe)	555
Thermische Anlagen bei voller Leistungs- abgabe	100
Total	1196

2. Wirklich aufgetretene Leistungen:

- O-A Laufwerke (inkl. Werke mit Tages- und Wochenspeicher)
- A-B Saisonspeicherwerke
- B-C Thermische Werke, Bezug aus Bahn- und Industrie-Kraftwerken und Einfuhr.

3. Energieerzeugung:	10 ⁶ kW
Laufwerke	. 11,
Saisonspeicherwerke	. 1,
Thermische Werke	
Erzeugung, Mittwoch, den 17. April 1935	,
Bezug aus Bahn- u. Industrie-Kraftwerke und Einfuhr	
Total, Mittwoch, den 17. April 1935	. 13,
Erzeugung, Samstag, den 20. April 1935	. 9,
Erzeugung, Sonntag, den 21. April 1935	. 8,

Produktionsverhältnisse an den Mittwochen von April 1934 bis April 1935.

Legende:

- 1. Mögliche Erzeugung (nach Angaben der Werke)
- ao in Laufwerken allein
- d₀ in Lauf- und Speicherwerken, unter Berücksichtigung der Vermehrung durch Speicherentnahme und Verminderung durch Speicherauffüllung (inkl. 2c).
- 2. Wirkliche Erzeugung:
- a Laufwerke
- h Saisonspeicherwerke
- c Thermische Werke, Bezug aus Bahn- und Industrie-Kraftwerken und Einfuhr
- d Gesamte Erzeugung + Bezug aus Bahn- und Industrie-Kraftwerken + Einfuhr
- 3. Verwendung:
- s Inland
- e Export
- Maximal- und Minimalleistungen an den der Monatsmitte zunächst gelegenen Mittwochen:

 $\begin{array}{c} P_{\text{max}} \ \text{Maximalwert} \ \} \ \text{der} \ \text{Gesamtbelastung} \ \ \text{aller} \\ P_{\text{min}} \ \text{Minimalwert} \ \} \ \text{Unternehmungen zusammen} \end{array}$

 $P_{e\ max}$ Maximalwert der Leistung der $P_{e\ min}$ Minimalwert Energieausfuhr

NB. Der linksseitige Maßstab gibt für die Angaben unter 1 bis 3 die durchschnittliche 24stündige Leistung, der rechtsseitige Maßstab die entsprechende Energiemenge an.

Literatur. — Bibliographie.

621.3:69

Nr. 1064

Elektrizität und Bauen. Ein Elektrohandbuch für Bauleute und Bauende. Bearbeitet im Auftrage und unter Mitwirkung der Geschäftsleitung der «Elektrowirtschaft». Von Karl Grütter. 162 S., A., 123 Fig. Verlag: «Elektrowirtschaft», Zürich 1. Preis: Fr. 6.50.

Ein Buch mit dem Zwecke des vorliegenden ist sehr zu begrüssen: Es will Bauherren und Architekten einführen in das, was bei Bauten mit Bezug auf die elektrischen Einrichtungen zu wissen, vorzubereiten und zu beachten ist. Sehr richtig sagt schon ein Satz des Vorworts, dass sich «Bauherr und Architekt» um diese Dinge «leider häufig erst kümmern, wenn der Bau bereits weit vorgeschritten ist». Dass manche Bauherren, die wenig Neigung für Technisches haben, nicht von vornherein genügend Einsicht in diese Sache haben können, ist natürlich. Wenn sie indessen auch nicht alle dieses, übrigens nicht sehr dicke Büchlein völlig studieren, sondern sich nur einige wichtige Punkte daraus merken, so wird dies schon manchen sonst später auftretenden Verdruss ersparen. Dagegen ist von den Architekten zu erhoffen und zu erwarten, dass das Buch zu ihrem gründlich konsultierten ersten Ratgeber werde. Der projektierende Architekt muss heute bei Bauten jeder Art über viel mehr wichtige Techniken orientiert sein als früher. Leider mangelt unsern technischen Schulen, auch den höchsten, eine wirklich den heutigen Anwendungen entsprechende, orientierende Einführung in die elektrischen Installationen. Spezialist in allem kann der Architekt unmöglich sein; so wie er etwa für Eisenbetonfragen oder Heizung gleich zu Anfang des Projektierens (wie im Kapitel des Buches über die Projektierung gesagt wird) Spezialisten beizieht, so soll er auch für die elektrischen Einrichtungen unabhängige Fachleute beiziehen. Ueber die allgemeinen Möglichkeiten dieser Technik und ihre Ausführungsarten im Zusammenhang mit den Bauarbeiten und die dazu nötigen Vorbereitungen muss er aber selber orientiert sein. Diese Dinge vermittelt ihm das vorliegende Buch in vorzüglicher Weise. Wir möchten eigentlich den hierauf speziell bezüglichen III. Teil des Buches «Projektierung und Ausführung» als den in diesem Sinne wichtigsten bezeichnen, der nach seiner Bedeutung gegenüber den andern Teilen an Umfang eher etwas zurücktritt. Der II. Teil: «Elektrische Installationen» gibt davon eine ausführliche Darstellung aller Teile, von den Hausanschlüssen und Leitungen bis und mit den Apparaten; er macht Angaben über die Bemessung der Anschlüsse und Leitungen, über die verschiedenen allge-meinen Anordnungen für die Verteilung in grösseren Objekten, die zweckmässigen heutigen Leitungsmaterialien und Bauweisen und gibt überall wichtige und nützliche Winke, besonders im Sinne der Berücksichtigung zukünftiger weiterer Bedürfnisse. Er ist durch zahlreiche, gut gewählte Bilder unterstützt und zeigt, besonders wichtig für den Architekten, wie für den Leitungsbau vor Ausführung gewisser anderer Bauarbeiten zu sorgen ist. Es wird auf die Normalien und die Verwendung von Material mit dem Qualitätszeichen des SEV und dessen Installationsvorschriften aufmerksam gemacht, auf die Besonderheiten in feuchten und nassen Räumen und die so wichtigen Erdungs-Anordnungen. (Diese Teile sind von den Technischen Prüfanstalten des SEV durchgesehen worden.) Von den vorgebrachten Zahlenangaben dürfen einige, z. B. diejenigen über Strombelastung von Leitungen, selbstverständlich nicht so aufgefasst werden, als ob der Nichtelektriker sie unmittelbar selber zu Berechnungen richtig zu verwenden verstünde; sie dienen der Orientierung. Insbesondere diejenigen über nötige Raumabstände geben dem Architekten wertvolle Anhaltspunkte über den zu beschaffenden Raum. Das letzte Kapitel dieses Teils: «Elektrische Einrichtungen in Wohn- und Arbeitsräumen» führt, unterstützt von vielen Abbildungen, für alle vorkommenden Raumarten und Benützungszwecke alles das auf, was für sie an «Elektrischem» in Betracht kommen kann, und gibt dazu die zweckmässigen Bauarten an, bis zum «vollelektrischen Haus». Dieser Teil zeigt die praktische Benützung der im I. Teil einzeln geschilderten «Elektrischen Anwendungen». Unter diesem Titel sind alle heutigen Verwendungen, wie Kleingeräte, Motoren, elektrische Küche, Heisswasserversorgung, Wascheinrichtung und Raumheizung erläutert und in den zugehörigen modernen Apparaten einlässlich beschrieben und illustriert. Dazu sind nützliche und wichtige Zahlen über Leistungs-, Energie- und Raum-Bedarf gegeben. Angenehm berührt, dass nirgends Fabrikations-Firmen hervorgehoben sind. Das erste Kapitel dieses Teils, bearbeitet von der «Zentrale für Lichtwirtschaft» in Zürich, enthält, ausgehend von den wissenschaftlichen Grundlagen und Definitionen 1), eine sehr eingehende Behandlung der elektrischen Beleuchtung, der dazu verwendeten Leuchtmittel, der verschiedenen Lampenarten, mit Zahlenangaben über die optischen und konstruktiven Verhältnisse. Es bespricht besonders auch die zweckmässige und wirtschaftliche Gestaltung der Beleuchtung für die vorkommenden Fälle. Gegenüber der leider auch in bedeutenden Gebäuden immer noch anzutreffenden Art, die Beleuchtung nur nach dekorativen Gesichtspunkten und ohne Rücksicht auf die für den Bauherrn wichtige Zweckmässigkeit und Wirtschaftlichkeit einzurichten, wird dieses Kapitel besonders gut wirken können, wenn es von den Betreuern der Beleuchtung studiert und beherzt wird. -

Im ganzen: Ein gutes und sehr nützliches Buch, demgegenüber wir für eine zweite Auflage, die wir ihm wünschen, im allgemeinen nur den Rat hätten, es durch Weglassung von diesem und jenem, was schliesslich doch erst für den Spezialisten in Betracht kommt, etwas zu verkürzen, damit es von denen, die es angeht, eher gelesen und zu ihrem geistigen Eigentum wird.

.¹) In einer späteren Auflage sollte die Definition des Lichtstromes korrigiert werden: Der Lichtstrom ist eine Leistung, keine Energie.

Normalien und Qualitätszeichen des SEV.

Qualitätszeichen des SEV.

Qualitätskennfaden des SEV.

Gemäss den Normalien zur Prüfung und Bewertung von Materialien für Hausinstallationen und auf Grund der mit Erfolg bestandenen Annahmeprüfung steht folgenden Firmen für die nachstehend aufgeführten Fabrikate das Recht zur Führung des SEV-Qualitätszeichens, bzw. des SEV-Qualitätskennfadens zu.

Von den für die Verwendung in der Schweiz auf den Markt gelangenden Objekten tragen die Kleintransformatoren das vorstehende SEV-Qualitätszeichen, die isolierten Leiter den gesetzlich geschützten SEV-Qualitätskennfaden, welcher an gleicher Stelle wie der Firmenkennfaden angeordnet ist und auf hellem Grunde die oben angeführten Morsezeichen in schwarzer Farbe trägt. Die Schalter, Steckkontakte, Schmelzsicherungen und Verbindungsdosen tragen ausser dem vorstehenden SEV-Qualitätszeichen auf der Verpackung, oder auf einem Teil des Objektes selbst, eine SEV-Kontrollmarke (siehe Veröffentlichung im Bull. SEV 1930, Nr. 1, S. 31).

Schmelzsicherungen.

Ab 1. April 1935.

Busovis A.G., Fabrik elektrischer Artikel, Binningen/Basel.
Fabrikmarke:

Einpoliges Sicherungselement für Schraubsicherungen 500 V, 60 A (Gewinde E 33).

Ausführung: Sockel und Berührungsschutzkragen aus Porzellan.

Type Nr. 1659: ohne Nulleiter-Abtrennvorrichtung, mit Anschlussbolzen.

Carl Maier & Co., Fabrik elektr. Apparate, Schaffhausen.

Fabrikmarke:

Einpoliges Einbausicherungselement mit Gewinde SE 21 für 250 V, 15 A.

Verwendung: zum Einbau in Kastenschalter, Sicherungskasten usw.

Ausführung: Porzellansockel, mit Hartpapierunterlage, mit Nulleiterabtrennvorrichtung.

Ab 15. April 1935.

AEG Elektrizitäts-Aktien-Gesellschaft, Zürich (Vertretung der Allgemeinen Elektricitäts-Gesellschaft, Berlin).

Fabrikmarke:

AEG 💮

Ein, zwei- und dreipolige Aufbau-Sicherungselemente für Schraubsicherungen für 500 V, 25 A (Gewinde E 27). Ausführung: Sockel und Deckel (rechteckig) aus Porzellan. einpolig zweipolig dreipolig

Type Nr. 282132/II Tn 282132/III Tn 282132/III Tn ohne Anschlussbolzen, mit Nulleiter-Abtrennvorrichtung.

» » 282132/I 282132/II 282132/III ohne Anschlussbolzen, ohne Nulleiter-Abtrennvorrichtung.

» > 282232/I Tn
 mit Anschlussbolzen, mit Nulleiter-Abtrennvor-

richtung.

>> 282232/I

mit Anschlussbolzen, ohne Nulleiter-Abtrennvor-

richtung.
Einpolige Aufbau-Sicherungselemente für Schraubsicherungen, für 500 V, 25 A und 60 A (Gewinde E 27 und E 33).
Ausführung: Sockel (quadratisch) und Berührungsschutzkragen aus Porzellan.

Type Nr. 282202: mit Gewinde E 27 » 282203: mit Gewinde E 33 ohne Nulleiter-Abtrennvorrichtung, mit Anschlussbolzen.

Einpolige Einbau-Sicherungselemente für Schraubsicherungen für 500 V, 60 A (Gewinde E33).

Ausführung: Sockel aus Porzellan (ohne Kappe, für Einbau).

Type Nr. 282303: mit Gewinde E 33, ohne Nulleiter-Abtrennvorrichtung, ohne Anschlussbolzen.

Verbindungsdosen.

Ab 1. April 1935.

Progress A.-G., Fabrikation und Vertrieb elektrotechnischer Artikel, Basel.

Fabrikmarke:

SIMPLEX

Spritzwassersichere Verbindungsdosen für 500 V, 25 A. Verwendung: in trockenen, nicht staubigen Räumen, bzw. in staubigen, feuchten oder nassen Räumen, wenn das Gehäuse mit isolierender Vergussmasse ausgefüllt wird. Ausführung: Gehäuse aus Grauguss mit keramischem Klemmeneinsatz (max. 4 Klemmen).

Type Nr. Gr. II/3 Gr. II/4 Gr. II/5 Gr. II/6

Rud. Schmidt, Fabrik elektrotechn. Artikel, Stein (Aarg.). Fabrikmarke: R.S.

Gewöhnliche Verbindungsdosen für 500 V, 25 und 60 A. Verwendung: in trockenen, nicht staubigen Räumen. Ausführung: Blechkasten mit eingebauten, durch eine Metallschiene lose geführten einzelnen Klemmeneinsätzen. Keramische Klemmenkörper.

Listen Nr.	Anzahl Klemmen	Nennstromstärke A	Deckelgrösse mm
2360	3	25	105×105
2361	4	25	105×105
2362	5	25	140×140
2363	6	25	140×140
2364	7	25	160×160
2365	8	25	190×165
2367	3	60	140×140
2368	4	60	140×140
2369	3	60	160×160
2370	4	60	160×160
	4	60	
2371	1	25	140×140
	4	60	
2372	1	25	160×160
	4	60	
2373	2	25	190×165
	4	60	
2374	3	25	190×165

Klemmeneinsätze für 500 V, 25 A bzw. 60 A.

Verwendung: für gewöhnliche und staubsichere Verbindungsdosen.

Ausführung: aufschraubbare keramische Sockel mit eingekitteten U-förmigen Klemmen, mit Spannkappe und je zwei Madenschrauben.

Listen-Nr. 390 b: 25 A-Klemmeneinsatz. 391 b: 60 A-Klemmeneinsatz.

Oskar Woertz, Elektrotechnisches Material und technische Spezialitäten, Basel.

Fabrikmarke:

Verbindungsdosen für 500 V, 15 bis 60 A.

Ausführung:: Quadratischer Blechkasten mit auswechselbaren keramischen Klemmeneinsätzen (beliebige Kombinationen möglich).

Verwendung: in trockenen, nicht staubigen Räumen.

Nennstromstärken: 15, 25, 35 und 60 Å. Kastengrössen: 115 × 115 mm,

160 × 160 mm. Klemmeneinsätze für gewöhnliche, staub-, feuchtigkeits- und spritzwassersichere Verbindungsdosen für 500 V, 15 bis

Ausführung: Aufreihbare Klemmeneinsätze mit U-förmigen, in Steatitkörpern mit Trennwänden durch Metallbolzen befestigte Klemmen.

Verwendung: In den örtlichen Verhältnissen entsprechenden Dosen in trockenen, staubigen, feuchten und nassen Räumen.

Type Nr.

165	Einzelklemme	für	15	A,	weiss	glasiert
166	»	>>	15	A,	gelb	>>
167	>>	>>	25	A,	weiss	>>
168	>>	>>	25	A,	gelb	>>
169	»	>>	35	A,	weiss	>>
170	>>	>>	35	A,	gelb	>>
171	>>	>>	60	A,	weiss	>>
172	»	>>	60	A,	gelb	>>
175	Doppelklemme					
	(Nulleiterklemme)	>>	35	A,	weiss	>>
176	"	"	35	Δ	gelh	"

Vereinsnachrichten.

Die an dieser Stelle erscheinenden Artikel sind, soweit sie nicht anderweitig gezeichnet sind, offizielle Mitteilungen des Generalsekretariates des SEV und VSE.

Totenliste.

Am 24. Mai d. J. starb im Alter von 50 Jahren Herr Robert F. Stockar, Oberingenieur und Prokurist der Maschinenfabrik Oerlikon, Mitglied des SEV seit 1924. Von 1921 bis 1928 war Herr Stockar Mitglied der Kommission des SEV und VSE für die Revision der bundesrätlichen Starkstromvorschriften, Gruppe elektrische Bahnen.

Wir sprechen der Trauerfamilie und der Maschinenfabrik Oerlikon unser herzliches Beileid aus.

Ein Nachruf folgt.

Am 5. Februar d. J. starb in Davos Herr *Hugo Neitzsch*, Elektrotechniker, Mitglied des SEV seit 1922.

Wir sprechen der Trauerfamilie unser herzliches Beileid

Elektroschweisskurs des SEV in der Westschweiz.

Auf vielseitigen Wunsch veranstaltet der SEV in Lausanne einen Elektroschweisskurs in französischer Sprache. Dieser Kurs wird vom 12. bis zum 14. Juni in der Gewerbeschule in Lausanne abgehalten. Kursleiter ist wieder Herr Dipl.Ing. A. Sonderegger, früher Werkstättedirektor der Escher-Wyss A.-G. Für die praktischen Uebungen stehen die neuesten Maschinen- und Apparatetypen der führenden schweizerischen Firmen zur Verfügung; die Teilnehmer haben Gelegenheit, mit allen Typen zu arbeiten.

Der Kurs bezweckt, Ingenieure, Konstrukteure, Betriebsleiter, Werkmeister, Gewerbetreibende und Vorarbeiter mit einigem theoretischen Verständnis in die Möglichkeiten und

Aus den praktischen Uebungen der Elektroschweisskurse des SEV.

in die Kunst der elektrischen Lichtbogenschweissung einzuführen. Drei Halbtage werden Vorträgen des Kursleiters und drei Halbtage praktischen Uebungen gewidmet sein. Es finden auch Diskussionen und Fragebeantwortungen statt.

Zur Deckung der Unkosten wird ein Kursgeld von Fr. - erhoben.

Nähere Auskunft erteilt das Generalsekretariat des SEV und VSE, Seefeldstrasse 301, Zürich 8, das auch Anmeldungen bis zum 8. Juni entgegennimmt. In der Anmeldung ist Beruf und Stellung im Beruf anzugeben, damit beim Kurs auf die besonderen Bedürfnisse der Teilnehmer nach Möglichkeit Rücksicht genommen werden kann.

Ausserdem machen wir auf eine Diskussionsversammlung über Elektroschweissung aufmerksam, welche Samstag, den 15. Juni in der Universität Lausanne stattfinden wird. Sie wird vom Schweizerischen Verband für Materialprüfungen der Technik in Verbindung mit der Fachgruppe des SIA für geschweisste Eisenkonstruktionen durchgeführt. Kurze Referate von Fachleuten werden die Diskussionen einleiten. Beginn der Veranstaltung: 9 Uhr 30.

Plenarversammlung der Internationalen Beleuchtungskommission.

Die 9. Plenarversammlung der Internationalen Beleuchtungskommission findet vom 2. bis 10. Juli 1935 in Berlin und Karlsruhe statt. Interessenten erhalten nähere Mitteilungen beim Generalsekretariat des SEV und VSE.

Am 1. Juli veranstaltet die Deutsche Lichttechnische Gesellschaft zu Ehren der ausländischen Teilnehmer eine Festsitzung im grossen Physikalischen Hörsaal der Technischen Hochschule Berlin. An dieser Festsitzung werden am Vormittag Vorträge gehalten werden, die der Bedeutung der Physiologie des Sehvorganges für die neuzeitliche Lichttechnik gewidmet sind; es werden sprechen: Prof. Dr. O. Kroh, Tübingen: «Ueber die anthropologischen

Grundlagen der Lichttechnik».

Prof. Dr. R. G. Weigel, Karlsruhe: «Untersuchungen über die Sehfähigkeit im Natrium- und Quecksilberlicht, ins-

besondere bei der Strassenbeleuchtung». Priv.-Doz. Dr. W. Arndt, Berlin: «Ueber die Grenzen der Sichtbarkeit von Lichtern».

Am Nachmittag ist die Behandlung der Beleuchtung als Faktor der modernen Energiewirtschaft vorgesehen, und zwar wird diese in folgenden Vorträgen erörtert werden:

Dir. Dr. J. Adolph, Berlin: «Die Befriedigung des Lichtbedürfnisses als Wirtschaftsfaktor».

B. Seeger, Berlin: «Bedeutung und Entwicklung des elektrischen Lichtverbrauchs in Europa».

Dir. Dipl.-Ing. H. Müller, Hamburg: «Stand der Gas-Strassenbeleuchtung und ihr Einfluss auf die Wirtschaftlichkeit der Gaswerke».

Plenarversammlung 1935 der Commission Electrotechnique Internationale.

Die Plenarversammlung 1935 der CEI findet vom 18. bis 29. Juni im Haag und in Brüssel statt. Interessenten erhalten nähere Auskunft beim Generalsekretariat des SEV und VSE.

Literatur über die Elektrowirtschaft anderer Länder.

Die Handelsabteilung des Eidg. Volkswirtschaftsdepartementes schickt uns gelegentlich Berichte über die Elektrowirtschaft anderer Länder. Diese Berichte stehen unseren Mitgliedern auf Wunsch zur Verfügung. Der letzte eingegangene Bericht handelt von der elektrochemischen und elektrometallurgischen Industrie in Norwegen.

Mitteilung über den Zahlungsverkehr Schweiz-Deutschland.

Als Entgelt für die Ueberlassung von Patent-, Lizenz- und ähnlichen Schutzrechten zur Begleichung von Patentgebühren und Patentannwaltskosten und zur Erfüllung von Verbindlichkeiten aus Marktschutzabkommen und Kartellverträgen aller Art, aus Marken- und Firmenrechten und aus ähnlichen Rechtsverhältnissen bzw. ideellen Leistungen werden schweizerischerseits namhafte Beträge an deutsche bzw. in Deutschland geschäftlich tätige Personen und Firmen geschuldet.

Die Schweizerische Verrechnungsstelle macht darauf aufmerksam, dass gemäss den geltenden Bestimmungen des deutsch-schweizerischen Verrechnungsabkommens vom 17. April 1935 alle Zahlungen dieser Art ausnahmslos clearingpflichtig sind. — In Zweifelsfällen sind die Zahlungspflichtigen gehalten, sich zwecks Auskunftseinholung rechtzeitig an die Schweizerische Verrechnungsstelle, Zürich, Börsenstrasse 26, zu wenden. Es wird ferner daran erinnert, dass der Verrechnungsstelle kraft der ihr gegenüber bestehenden Auskunftspflicht das Recht zusteht, sich mittels Rückfragen und Bücherrevisionen von der Richtigkeit der ihr gemachten Angaben und der korrekten Erfüllung der Clearingverpflichtungen zu überzeugen.

Anfragen betreffend Bezugsquellen.

(Antworten an das Generalsekretariat des SEV und VSE, Seefeldstrasse 301, Zürich 8, erbeten.)

26. Man sucht die Adresse von Schweizer Firmen, welche Thermoelemente zum Laden von Akkumulatoren herstellen. 27. Im Bull. SEV 1935, Nr. 8, S. 185, wurde ein Bericht aus Amerika über «Nicht feuergefährliche Isolierflüssigkeiten» veröffentlicht. Wir suchen nun die Adresse von Lieferanten von Pentachlor-Diphenyl oder Aroclor.