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Mittwoch, 24. April 1935

La courbe d’échauffement exacte et universelle.

Par R. Jaques, Aix-les-Bains.

Le calcul pratique des échauffements nécessite souvent
la connaissance de la courbe d’échauffement exacte. La courbe
classique ne permet cependant pas de tenir compte des facteurs
qui varient avec la température, tels que le coefficient de
transmission de la chaleur, ou la résistivité du cuivre. L'au-
teur décrit la construction de courbes qui répondent a ces
exigeances. Puis il montre comment, pour un mode de re-
froidissement déterminé, il n’est besoin de tracer une fois pour
toutes qu'une seule courbe-type qui, moyennant un diagramme
fort simple, interprétera tous les problémes courants de
Péchauffement des machines électriques. Des cycles complexes
peuvent ainsi étre facilement résolus.

L’étude de l’échauffement des machines élec-
triques et des transformateurs travaillant en sur-
charge ou avec de fréquentes variations de charge,
au moyen des formules connues, demande de mul-
tiples opérations si I'on veut suivre les variations
progressives de la température avec une précision
suffisante. C’est le cas surtout dés que I’échauffe-
ment ne suit plus exactement la courbe classique

définie par la formule 9 =¥ (1— e‘?t), p- ex.
pour le refroidissement naturel d’un appareil. Pour-
tant, lorsqu’il s’agit d'un cycle de charges imposé,
il est indispensable, pour le constructeur aussi bien
que pour ’exploitant, de suivre la courbe de tem-
pérature a travers tout le cycle pour se rendre
compte ou se trouve la meilleure solution des pro-
blémes qui se posent.

Si les courbes de température sont assez faciles
i construire pour le cas classique ot le coefficient
de transmission de la chaleur reste constant, il n’en
est plus de méme lorsqu’il varie avec la tempéra-
ture. Nous nous proposons dans cette étude d’indi-
quer la construction de courbes universelles qui,
établies une fois pour toutes, seront applicables
telles quelles a tous les cas de la pratique, et cela
avec une précision rigoureuse quelle que soit la
loi de I’échauffement. Ces courbes nous permet-
tront de tenir compte également d’autres facteurs
qui varient avec la température, tel que p. ex. la
résistivité du cuivre, dont la variation entraine une
variation des pertes.

621.3.017.7

Zur Berechnung von Erwirmungen elektrischer Maschinen
ist in der Praxis oft die Kenntnis der genauen Erwirmungs-
kurve nétig. Die Kurve der klassischen Erwirmungsgleichung
erlaubt jedoch nicht, denjenigen Grossen Rechnung zu tragen,
welche mit der Temperatur dndern, z. B. der Wirmeiiber-
gangszahl, oder dem Kupferwiderstand. Im folgenden wird
die Konstruktion von Kurven abgeleitet, welche alle diese
Einfliisse beriicksichtigen. Ferner wird gezeigt, wie, fiir eine
bestimmte Kiihlungsart, ein- fiir allemal eine Kurve gezeich-
net werden kann, die mit Hilfe eines einfachen Diagrammes
die Losung aller praktischen Erwirmungsprobleme der elek-
trischen Maschinen ergibt. Komplizierte Erwirmungszyklen
kénnen damit leicht gelost werden.

A. Courbe pour un coefficient de transmission
de la chaleur constant.

On a I’équation classique
t
9 = 8 1—e T) @)

$ étant I’échauffement qui s’établit aprés un temps
t, 9. la température finale pour une durée indé-
finie du régime, T la constante de temps.

Cette équation permet de tracer la courbe
d’échauffement bien connue.

A chaque cas qui se présentera avec un 4., ou
un T différents correspondra une autre courbe. Ce-
pendant toutes ces courbes peuvent étre réduites
en une seule; autrement dit, nous pouvons dessiner
une courbe qui 2 elle seule représentera la courbe
d’échauffement pour n’importe quel. cas, -quitte a
conformer chaque fois les axes du systéme des co-
ordonnées aux nouvelles données. o

A cet effet nous écrirons I’équation (1) sous la
forme suivante

A . 1

S 3
;
9,

(1 i)

et nous tracerons la courbe dans un systéme de co-

o : t i

ordonnées rectilignes ayant pour absclsses—fet pour
e B o

ordonneesﬂ— (fig. 1). Dans le quadrant I du sys-

téme figure un rayon ¢ portant une graduation en
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degrés de température, et dans le quadrant III un
rayon ¢ portant une graduation en heures, établie

. NPT
a la méme échelle que la graduation de - sur I'axe
X. Parallé¢lement a I’axe X nous tracerons une ho-
s .Y
rizontale gg_ par le point o—= 1.

Le point d’intersection du rayon } avec gy_ mar-
quera sur la graduation une température qui sera,
par hypothése, la température finale ¢¥.. du ré-
gime; alors, une horizontale par un point P quel-
conque de la courbe indiquera sur le rayon ¢ la
température instantanée 1, tandis que la verticale

e t
par P indiquera sur I'axe X la valeur du 7 corres-

pondant, puis sur le rayon ¢ directement le temps
t,, étant entendu que ce rayon devra former avec

1
T

Nous allons exposer ci-aprés I'établissement et
I'utilisation pratique d’un diagramme, illustré par
un exemple.

On travaillera avantageusement avec un gra-
phique omnibus qu’il suffira de compléter, dans
chaque cas, par les deux rayons 9 et ¢ qui feront
fonction d’axes des coordonnées pour la lecture de
la courbe. Ce graphique omnibus contiendra (voir
le tracé en traits pleins de la fig. 2) les axes du
systéme cartésien, X et Y, portant les graduations
Y

Paxe X un angle § dont le cosinus soit égal

1
oM “
\ -
9 Ve 4
¥ 0. e ] 108 _ ____ -
08 '
0,4 \
Oz 2
L2 3 4 T
[0 3V(] i X
i

SEVHSHS
Fig. 1.

Courbe d’échauffement pour un coefficient de transmission
de la chaleur constant.

indiquées dans la figure. L’échelle qui convient le
mieux pour la graduation ¢ est, pour nos besoins,
celle choisie dans la fig. 2,011 le point T 1 coincide
avec la division N=250. S’il y a lieu on inscrira
une deuxiéme échelle. Des cercles concentriques
établiront la graduation collective pour tous les
rayons ¢} et £, Aprés cela on inscrira la courbe uni-
verselle suivant I’équation (1), avec son asymp-
tote, savoir I'horizontale gy__. _
Munis de ce graphique omnibus nous allons
maintenant étudier divers problémes de la pratique.

a) Echauffement pendant une surcharge (fig. 2).

- Supposons qu’un transformateur d’une puissance
nominale de 5000 kVA ait en pleine charge des per-
tes fer de 18 000 W et des pertes cuivre de 54 000 W
que le refroidissement du transformateur soit artifi-
ciel, p.ex. par circulation d’huile dans un réfrigérant

r g 1
4
'}\ BN

9, i _— b

/

]
]
1
1

80 70 60 50 40 30 20 10 O
SEV45He

Fig. 2.
Construction
du diagramme
de I’échauffement.

a eau, et établi pour un échauffement de I’huile de
50° au-dessus de la température de I’eau, en marche
continue a pleine charge. Quelle serait la tempé-
rature finale de I'huile pour une surcharge de 20 %,
et pour combien de temps pourra-t-on admettre
cette surcharge, en partant du régime a pleine
charge, sans que I’échauffement de I’huile dépasse
60°? On désirerait avoir une courbe de I’échauf-
fement en fonction du temps.

Le poids total sans huile est de 8700 kg, le poids
de T'huile 2700 kg. On en calcule la capacité de
chaleur & C=0,12-8700 + 0,5 - 2700 = 2400 Wh
par degré.

Les pertes totales en marche normale sont:
P,=18000 + 54 000 =72 000 W, et pour la sur-

charge
P;=18 000 + 78 000 = 96 000 W.

¥, désignera la température normale de ’huile
correspondant a la dissipation des pertes normales
P, (ici 50°).

On détermine ¢, et T définis par

P, c P,
k> T'=x K=5 @

ou K est le coefficient de transmission de la chaleur,
pour toute la surface contribuant au refroidisse-
ment, en watts par degré.

On trouve d. = 66,5° et T = 1,67. Les points
d’intersection des cercles graduateurs pour & = 66,5°

et t=1,67 avec gy__resp. la verticale par—,_;—1 =1
fixent les axes ¢ et t.

On veut limiter I’échauffement a 60°; nous trou-
vons sur le diagramme qu’a l’intervalle 50°—60° de
I’axe # correspond la portion E,, — E; de la courbe,
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et l’intervalle t;,—t;, de 1’axe t. Ce dernier me-
sure un temps ¢ = 1,6 heure.

Pour donner la courbe d’échauffement demandée
il ne reste qu’a reproduire la portion E,,— E,, de
la courbe & une échelle appropriée.

Le diagramme a sur le calcul I'indiscutable avan-
tage de permettre de se rendre compte immédiate-
ment du résultat a attendre d’un changement de K
ou de C.

Dans les figures qui suivent nous n’avons plus
représenté les parties du graphique omnibus qui ne
sont pas nécessaires aux explications.

b) Refroidissement et service intermittent (fig. 3).

Pour la courbe du refroidissement pur, c’est-a-
dire aprés coupure de toute charge productrice de
chaleur, on a la formule classique

¢ 190
19= 1908—7 ou —«— = ln—ﬁ~ (3)

Cette courbe sera inscrite dans le graphique de
la méme maniére que la courbe d’échauffement
vue au chapitre a).

Pour I’étude du service intermittent les deux
courbes — échauffement et refroidissement — se

Y

)
_______ % & |
) Y] |
’ ] \ H
! i 1
/ : i i
[ . T
I ! H
S 60 50 40 30 20 10 0 X
SEvases :
’ 1 |
1 '
)
rI :
Fig. 8. !
1
Diagramme pour un i
:
service intermittent. ) N

trouveront inscrites dans un méme diagramme
(fig. 3).

Supposons que le transformateur de notre
exemple ait a supporter un fonctionnement com-
portant une surcharge de 20 % entrecoupée d’inter-
valles de repos complet (la température maximum
admise dans I’huile est de 60°) et que la durée de la
marche en surcharge soit de 2 heures.

Les axes ¢ et ¢ sont construits comme il a été dit
au chapitre a). On tire ensuite ’horizontale 60° —
E,,, la verticale E;, — £, 'on fait ¢, —1t, égal
2 heures, puis on tire la verticale t,— E, et I'hori-
zontale E, — 9,. Il résulte une température 4, =
45°, jusqu’a laquelle il faut laisser le transformateur
se refroidir. Le temps nécessaire a ce refroidisse-
ment est mesuré sur I’axe ¢ entre les verticales R, —
t, et Ryo— 1t égal a V5 heure. E,—E,, et R, —
R, sont les portions de courbes correspondant aux
périodes d’échauffement et de refroidissement.

¢) Refroidissement durant une charge réduite, fig. 4.

Cycle de charges alternantes (service périodique),
fig. 5. '

En désignant par P, les pertes pour la marche a

charge réduite, et par ¢, la température finale aprés
une durée indéfinie de cette charge, on a

dd

ce qui donne comme solution

t Vo— 9,
T =y )
Cette équation est semblable a celle du refroi-
dissement pur (éq. 3), il suffit de remplacer dans

y |

"04 of N
S B | A = -
t’rT ! * ¢
{ a
cette derniére ¢, par J,— 9, et ¥ par J—4,, pour
pouvoir utiliser la méme courbe.
Dans la fig. 4 la courbe 2 est identique a la
courbe 1, mais décalée de ¥, dans le sens des or-

données. La courbe 2 réalise dans sa partie des-
sinée en trait gros, en adoptant la nouvelle origine

O, I’équation LA ln% = lnf;—:;'. Dans la dif-

T 04

Z -t :
férence desT pour deux points quelconques de la

Fig. 4.

Refroidissement
aprés une réduction

de charge.

sevodeo

courbe la position de l’origine O’ sur I'axe X’ n’in-
tervient pas. Mais rappelons que nous avons affaire

) e

HE
o, 60 50 40 30 20 10 O [
JEVesHT :
i
|

Fig. 5.

Echauffement et @
refroidissement pour
un service périodique. N

ici avec une particularité de la courbe logarith-
mique, de sorte que ce procédé n’est pas applicable
sans autre a d’autres courbes.

Nous allons appliquer ce résultat a notre exemple
(fig. 5). Supposons qu’aprés une marche pendant
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un certain temps a 6000 kVA la charge se trouve
réduite a 4000 kVA. Les pertes qui étaient de 96
kW pour 6000 kVA ‘deviennent 18 + 34,5=—152,5
kW pour 4000 kVA. La température maximum ad-
missible dans ’huile étant 60°, la température finale
pour une marche de durée indéfinie a 4000 kVA

serait 9, — X ou K= % , soit 36,5°.
n

Nous réunissons de nouveau la courbe de refroi-
dissement avec la courbe d’échauffement dans un
systéme d’axes commun, mais en décalant la courbe
de refroidissement parallélement a elle-méme jusqu’a
ce que l’axe de ses abscisses se trouve a la hauteur
du point 9, de I’axe ), — cet axe ayant été repris
de la fig. 2, de méme que l'axe z. — Dans cette
position réciproque des courbes, les conditions de
marche peuvent étre aisément contrélées.

En tirant I’horizontale par ¢, = 60" et une hori-
zontale i quelconque, on délimite les portions de
courbes E,,—E; et R,—R;, et 'on obtient le
temps nécessaire pour les parcourir en 5 et tg. La
durée de la marche a 6000 kVA devant étre de
2 heures, la position de I’horizontale i est détermi-
née par tz; puis tp indiquera la durée minimum de
la marche a 4000 kVA nécessaire pour ne pas dé-
passer 60° durant le cycle. A la fin de cette période
on a la température ; = 45,5".

B. Courbe d’échauffement pour un coefficient
de transmission de la chaleur variable avec la
température.

La courbe d’échauffement classique que nous
venons d’étudier ne convient plus dés que le coef-
ficient de transmission de la chaleur n’est pas cons-
tant. Dans ce qui suit nous allons étendre notre
étude aux cas ou ce coefficient varie en fonction
de la température.

Nous allons d’abord déduire les formules qui
vérifient cette condition.

Tandis que pour un coefficient constant nous
avions I’équation différentielle classique

do
P=C—5— +Kk? (5)

il nous faudra écrire, pour un coefficient variable
en fonction de la température

P=c‘;—f+uf(ﬁ)ﬁ (6)

Cette forme fondamentale de I’équation diffé-
rentielle de I’échauffement est valable pour tous
les régimes; elle se spécialise sous les formes énu-
mérées ci-dessous pour les trois cas que nous avons
déja distingués plus haut.

dd

our une période d’échauffement
p p y

1L 0=C%+uf(0)19

pour une période de refroidissement pur,
1L P, — c‘;—f 4ok f () 9

pour une période de refroidissement sous une
charge réduite, ou a vide aprés une marche en
charge.

Les équations I et III ont la méme forme, mais
a Pintégration leurs solutions deviendront diffé-
rentes I’'une de l'autre, parce que le rapport de la
température instantanée a la température finale
qui constituera la variable indépendante, est pour

I, <1 et pour I, > 1.

d) Courbe d’échauffement (équation I).

Nous introduirons, dans les développements qui
suivent, deux termes de référence analogues a ceux
employés dans les formules classiques de I’échauffe-
ment, savoir ¢Joo qui est la température finale pour
une durée indéfinie du régime envisagé, et T qui
est la constante de temps. Mais cette dénommée
constante de temps, qu'il faut définir par T =— =

K

qu(ﬁ)’ n’a plus a présent une valeur constante tout
le long de 1’échauffement, mais elle est une fonc-
tion de la température. Nous définissons comme
constante de temps, pour les besoins de notre
courbe, la valeur bien déterminée subsistant a la
température finale oo, et posons

C P,
Tw=m etﬁw=m (7)

En développant 1’équation I et en introduisant
les relations (7), il vient

t dx
T = Sl——_FW avec F (x) < 1, 8)
0} 9 £ ()
ou x — IetF(x) == m
Cette intégrale n’a une solution définie que pour
certaines formes de la fonction F(x). On obtient
2
par exemple avec F(x) —x*—= (%)
¢ dx

Par contre l'intégrale (8) peut en principe tou-
jours étre résolue par un développement en série.
F(x) étant < 1, on a

Srf_;(;) = Sﬂ ~+F () +[F @2+ [F @)+ ..) d=

Ce développement est valable pour une fonction
F(x) < 1 quelconque. Pour une fonction de la
forme F(x) = x* on a
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X

t

“T‘=S(1 + 2% o a%% 4 23 4 ) d

H
et I’on obtient finalement

t v} 1 9\~
T—w=79:<1+m(ﬁ> +

() Tl T+ -) o

La série converge trés rapidement pour de faibles

valeurs de w—, mais pour les valeurs plus élevées

19@0
on aura avantage a utiliser le théoréme des accrois-
sements finis.
Nous allons indiquer la marche a suivre pour le
calcul, avec ¢ =1,25 a titre d’exemple.

\1,25
On a avec F(x) =a'® = <ﬂi)

t _ 0( 1 0 1,25 1 [(19)1,25]2
T = 9. 1+rzs(m) +t35|\o2) |

1 19 1,253 1 19 1,25 n
m[(ﬁ) }+"'+n-1,25+1[(ﬂ) ]+R)

(9bis)
En vue de se rendre compte de la grandeur de
Perreur possible, lorsque la série est arrétée avec le

L K i )“J” on détermine 1
m ﬂ P mine la va-

leur limite de R, qui est trouvée
19 %

a7

n-a—+1|\9. ' 1 i ol
(5-)

1950
c’est-a-dire que l'erreur est plus petite que le der-
nier membre dont il a été tenu compte, multiplié

Quatre membres de la série suffisent pour cal-
t
Too

membre

R <

culer —a 0,1 % prés, si a= 1,25 et cela pour des

9
valeurs de -— allant jusqu’a 0,5. Pour les valeurs

Vise
plus élevées nous aurons recours au théoréme des
accroissements finis.

étant une fonction f <—), on a

t

T e
b} ) 0]

(e +a5) = £ (5)+

(D 9 9
£ (E+ Q-AK).%_N.

Sur I’étendue de la courbe qui pratiquement
nous intéresse, on obtient une précision suffisante
en admettant pour @ la valeur !/2, & condition que

v : iq ;
les espaces Ag_ soient suffisamment réduits. Mais
oo

nous pouvons aussi déterminer la valeur exacte de

. .. V)
0, ce qui nous permettra de choisir les Aﬁ—é notre
gré. o

En écrivant, pour abréger, h pour A%,etxpour
gy o
f(x+h—fx) =F(x+60-hh
en introduisant (éq. 8) les fonctions

dx
tx) = Sl—F(x) -

il suit

f(x+h —-f(x) =

dx 1
f’ T | o
Sl—x"‘ et f'lx 1=y

1
1—(x+6h~>

En différentiant cette équation selon x, on obtient

! 1 1
f(x+h)_f(x)='1_(x+h)a —]__xcv =
(x + Ohyx—1 d(Oh)
“D=(+ 6P (1 _dx—) h

les intervalles h sont momentanément présumés

5 s 3 dh R
égaux, pour éviter un membre avec ——; du méme
dx
d (Oh), . o . ;
devient négligeable; son influence, mi-
dx ©
nime, est d’ailleurs facile a contréler en fin de cal-
cul. De ce fait I’équation se réduit a

fait

(x + h)* — x> _ a(x+0Oh~!
M—+m]Q—x*)h  [1—(x+Oh~]

Pour éliminer la différence (x + h)*— x* qui se
compose de deux valeurs sensiblement égales, on

peut écrire (x + h)* sous la forme x“(l—{—%)a Ce

o Y B . h
terme peut trés bien étre remplacé par x* ( 1+ a—)
X

étant donné que la valeur de — ne dépassera guére
X

un dixiéme. Il suit

xa(1+a£> — X
X

a x"‘—l(l + (@—1) %)

)
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1

efraed i
.

2
1- x“(l-’r—a@—h)}
X

h
La valeur du terme 1+ (¢—1) @7 est trés voi-

sine de 1 pour les valeurs que peuvent prendre ici
les éléments a, @ et h. On peut le négliger et
I'on obtient aprés quelques transformations

. 1 — x>
O =a—)(a—1)a avec a = ——— (10)
x“ o —
X
Cette expression peut étre encore transformée
avantageusement. A cet effet on la mettra sous la

forme
2
2£L_<£?>=_l
a a a

Les valeurs de @ se trouvant assez voisines de
I, pour des espaces h pas trop grands, on posera

9 .

08 hl- 0"‘” Lt Fig. 6.

o7 1058 Valeurs de @ dans le théoréme
06 =001 des accroissements finis,
oS A apgliqué'au calcul de la courbe
SEViSes 4 Xff_} d’échauffement, pour o = 1,25.

©®=0,51 @ ce qui permet d’augmenter notable-
ment la précision du calcul. Il vient

(2¢-—1) @ — O2 = 0,25

© est négligeable par rapport aux autres ter-
mes, ce qui fait obtenir finalement

6 = B R et ® = 0,546’

8 (a— 0,5) (1)

Dans la fig. 6 la valeur de @ est représentée en
fonction de x pour plusieurs valeurs de h.

La courbe d’échauffement ainsi calculée pour
a=1,25 est représentée dans la fig. 7. A titre de

4 4 { -
4 2 \ Fig. 7.
26 \. 125 Courbes
24 d’échauffement et de
22 \ refroidissement pour
20 10 \ un coefficient de
v P~ transmission de la
i N1 | chaleur variable avee
16 oﬁ% ~} la température

14 04 *22x kY suivant la loi
12 02 / = \ K=x (i)“'l

In

L 3 T 1

SEVASH T

comparaison ont été également inscrites dans cette
figure les courbes pour ¢=2 et pour a =1, cette
derniére étant la courbe d’échauffement classique.

L'utilisation de la courbe est illustrée par la
fig. 8.

Exemple: Soit a construire un transformateur
de 400 kVA destiné a un réseau de traction. La
température ambiante peut atteindre 50°; on admet
pour la marche a pleine charge un échauffement

+

S ~.
4 7060%7403020 10 O]

SEVes50

Fig. 8. c
Diagramme de
I’échauffement pour 10
un coefficient de
transmission de la |
chaleur variable avec |
la température. ,.:\

limite de I'huile de 40°. Le transformateur devra
pouvoir supporter une surcharge de 50 % pendant
2 heures sans que I’échauffement de I’huile dépasse
50°. Le refroidissement sera naturel.

Le projet fait ressortir des pertes fer de 2,8 kW
et des pertes cuivre de 5,7 kW, soit des pertes totales
de 8,5 kW en marche normale. Les pertes totales
résultent a 15,6 kW pour la surcharge de 50 %.
On a calculé une capacité de chaleur de 820 watt-
heures par degré.

L’échauffement final que I’huile atteindrait
aprés une durée indéfinie de la surcharge se cal-
cule a

P\L 15,6 \**
— S | — i : — 0
”‘”‘(ﬂ) ’9"—<8,5> 10 =65

Le cercle graduateur 65° marque sur gg..le point
Hoo; le rayon que I'on fait passer par Joo constitue
I'axe ¢ (fig. 8).

D’autre part on a

P, 15600 ,
K. = g = 240 W/degré et
Cc 820
Tw=K=m=3,42h.
Le point d’intersection du cercle graduateur ¢ =
3,42 avec la verticale% =1 fixe l'axe t. La forte

obliquité de l'axe t le rend incommode pour les

constructions a effectuer. Par contre le point d’in-
. ; t :

tersection du cercle avec la verticale =23 fournit

T

t i
I’axe - sur lequel on pourra porter plus aisément

3
les valeurs de ¢ a I’échelle 153.
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Notre courbe universelle pour o=1,25 repré- t 9
sente, avec les axes ¢ et ¢ que nous venons de cons- T= 35 = 1 pour o = 2 (L4ter)

truire, le régime exact de la température.

Nous aurons, en partant de la température ini-
tiale 9 =—40° sur ’axe ¢, le point E,;, de la courbe
et de la le point t,, sur 'axe t. Nous avancons sur
I’axe t d’un intervalle z,, — t, =— 2 heures. Au point
t, correspondra le point E, de la courbe et le point
P, sur ’axe 9. ¢, indique une température de
53,5°. Nous constatons que dans notre projet I'échauf-
fement limite se trouve dépassé et qu’il est a re-
manier. Mais grice a notre diagramme nous pou-
vons aussi nous rendre compte immédiatement pen-
dant quelle fraction de temps la température se
trouverait au-dessus de la limite.

Des relations géométriques entre les données qui
interviennent dans 1’échauffement sont esquissées
en traits mixtes, a 1’aide desquelles on suit aisément
I’effet d’'un changement de ces données.

e) Courbe de refroidissement.
L’équation différentielle II du refroidissement
pur était

dd

nous introduisons la constante de temps valable a
la température initiale ,, savoir

C
T, = m (12)
et obtenons
f@) dv
avec les symboles
9 0@
* =3 W= grey
il vient
t dx i«
To —S F (%) sou F(x) < 1 (13)

pour les fonctions de la forme F(x) — x* que nous
avons 4 considérer ici, la solution est donnée par

t 1 1 1 (1 _1>
To—a—l x|, a—1 \x*"1

soit pour x ———

0

t 1 (190)"‘—_11
T, ~ o«—1|\9

Pour les deux cas ¢ =1,25 et a =2 que nous
avons choisis comme exemples dans le cadre de cette
étude, ’équation (14) devient

t oS
T():tl(]/ﬂ

(L4)

— 1) pour « = 1,25 (14bis)

o=
%=

I1 est a remarquer que la courbe de refroidisse-
ment n’est plus, ici, I'image réfléchie de la courbe
d’échauffement, tel que cela se présente, comme on
sait, pour les courbes classiques (voir la fig. 7).

Faisant suite a notre dernier exemple, nous vou-
lons examiner jusqu’a quelle température le trans-
formateur se refroidira pendant 3 heures de repos.

Her

J
AR
e b\

YA
" 1
't | '
," : 2 =7
60 50 40 30 20 10 O :
SEV4SST T
0
Fig. 9.
Diagramme du = )
refroidissement pour )
un coefficient de NS
transmission de la 3R
chaleur variahble avee
la température.

La température maximum atteinte était 53,5°. Le
cercle graduateur pour ¢ = 53,5°, coupe gy_ en 9,
(fig. 9). O — 9, fera fonction d’axe de température
pour la période de refroidissement ?).

L’axe ¢ du temps se construit par

19" x—1
To=T1. ( 00)

Iindice n désignant le régime normal. Nous trou-
vons aprés 3 heures de refroidissement une tempé-
rature 9, = 23,5°.

f) Refroidissement durant un régime a charge
réduite. — Service périodique.

En partant de I’équation III que nous avons éta-
blie pour ce cas, et qui dans sa forme était analogue
a I'équation I, nous pouvons adopter le dévelop-
pement suivi pour cette derniére, et obtenons

dx

1oF @) mais avec F(x) > 1,

(15)

ot T, est la constante de temps a la température
finale ¥,, vers laquelle tend le régime a charge ré-
duite, et ou
) I £ (9)
= —Qg F = -
= T =)

1) 11 est a noter que ’axe O—Jo est le seul axe de tem-
pérature qui puisse convenir pour le refroidissement a partir
d’une température %o, et non p. ex. 'axe # [E] qu’on avait
pour I’échauffement. Cet axe ne peut étre utilisé que pour
les courbes ot a =1.
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Pour amener I'intégrale a une solution analogue
a I, nous substituons —a x. Avec F(x) = x> nous
Yy

obtenons alors

B4t

1 1 1
. | 2 o—1 3 —1
[a—ly“ LTS CANR Pi i ‘*’]

Yo

soit avec y — Yy
vec y = —3
t 1 (0,)“—1 1 (19,>°‘
~ L g1 Ry R
T. a—1\ 9 14 al 0
— a_
1 19’201 1 '19r 3o
« \9)t e o)t
142 143
a— a-1
1 9,\"%
(7) 7+ x
1+n
a_

1+a—1
1 ﬂr 20 1 ﬁr 3o
@ <7>+ @ (W) i
142 0 143 0
a—1 a—1
1 9,\"%
(3) R
1+n 0
a—1
)
. 1 VA K2
ou R <—_T (f) EAY (16)
11+n 1—(—’)
a— 9
pour R, on a le terme analogue avec — .

o

La courbe se calcule de la méme maniére que
la courbe d’échauffement, elle se trouve également
représentée dans la fig. 7. Cette courbe est établie
pour 9, =50, et cela en faisant entrer dans le calcul
la premiére seulement des deux composantes de
I’équation (16). En effet, la deuxiéme composante,
qui n’est autre chose que la constante de I'intégrale,
se trouve annulée d’elle-méme pour un nouvel axe
des ordonnées que I'on fait passer par le point de

; 0}
la courbe qui correspond a—", ou ¥, est la tempé-
0
rature initiale.

La courbe peut étre utilisée pour n’importe
quelle valeur de ¢,, bien qu’elle soit établie pour
%, =50. Il suffit de multiplier les valeurs de 9 par

s car on ai’ 20 90
9,’ 9 9 50 — 97
9,

r
trouve ainsi un point ¢ de la courbe qui corres-

, Cest-a-dire qu’on

pond au rapport donné — .

9

s'effectuera automatiquement sur le diagramme.

Cette multiplication

Exemple: Supposons que le transformateur de
I’exemple cité plus haut doive supporter exception-
nellement un régime forcé, alternant entre 2 heures
de pleine charge et 2 heures de surcharge de 50 %
(fig. 10).

Les axes ¢ et t pour la période d’échauffement
en surcharge ont été construits précédemment dans
la fig. 8 et peuvent étre reportés de la.

La température finale en pleine charge, qui sera
désignée par 9,, était 40°. Nous tracons I’horizon-
tale r par le point ¢, =40 situé sur 'axe ¥ et pla-

70 60 50 40 30 20 10 O
sEvessz

Fig. 10.

Diagramme du service périodique pour un coefficient
de transmission de la chaleur variable avec la température.

" cons la courbe R,; du refroidissement en charge en

face de la courbe d’échauffement et a telle hauteur
que son axe Xp se couvre avec I’horizontale ,. Celle-
ci coupe le cercle graduateur 50 en H. Si nous
tracons un rayon O H et projetons sur lui horizon-
talement ’axe ¢, nous pourrons y lire les tempé-
ratures ¢ multipliées par%, c’est-a-dire par Eh I
r
nous suffira donc d’incliner I'axe Y, de la courbe
de refroidissement jusqu’a étre parallele a2 O H, en
donnant une rotation au diagramme du refroidisse-
ment autour du centre Op, pour mettre I'échelle de
la courbe R, en harmonie avec 1’échelle des tem-
pératures lues sur I'axe 9.

L’axe t pour le refroidissement sera construit

avec T,:K£ = L&—l Dans le cas présent
- x(3)
¥,
on a ¥, =1,

Le tracé en pointillé de la fig. 10 représente le
cycle recherché. La température oscillera entre 47°
et 55,8°.
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C. Les courbes d’échauffement qui tiennent
compte de la variation des pertes cuivre en
fonction de la température.

La résistivité du cuivre des enroulements et avec
elle les pertes cuivre varient selon une fonction
presque linéaire de la température, exprimée
sous la forme py=yp0, (1+a, ).
cuivre deviennent

Py="r, (1ta,9) (17)

o a, est le coefficient de température du cuivre
pour la température de base b°,

P, sont les pertes cuivre a la température b°,
Py les pertes cuivre a la température (b + 9)°.
Nous avons a considérer

1° le refroidissement direct du cuivre dans le
milieu refroidissant qui le baigne,

2" le refroidissement de ce milieu lui-méme
a) véhiculant des pertes cuivre seulement,
b) véhiculant des pertes cuivre et des pertes
fer, ces derniéres étant constantes.

Nous examinerons en premier lieu le cas 1° qui
constitue un cas élémentaire, pour lier ensuite les
autres cas au premier par de simples relations.

Cas I°. Le refroidissement du cuivre dans son
milieu refroidissant est exprimé par 1’équation

Py = P,(1+a,9) = C %+ w £ (9) 9

s)

b est ici la température du milieu refroidissant
baignant les enroulements, ¢ 1’échauffement du
cuivre au-dessus de b.

Nous définissons de nouveau la température fi-
nale et la constante de temps a la température
finale:

_ P. P,(1+4a,9.) _c C
U = K. xf () et T T K. xf(d.)
(19)

nous développons d’aprés (18) en introduisant (19),
f(0u)Vos  14a,0 f (V) dd

£ 0 Tha. — 1= t@mo a1
avec les symboles

0 9 £() _ 14-4a,0

X = K’ F (X) —ﬁoof(ﬁoo)’ d)(x) - 1_|_ab19w (20)
il vient

t _g d x
T. ) @ (x) — F(x)

Cas 2° a. Dans le cas que nous allons étudier ci-
apres, I’échauffement ¢ sera celui du milieu refroi-
dissant au-dessus de la température ambiante —

9 N 5 B B
p. ex. dans le cas d’un transformateur a bain d’huile
celui de T'huile; dans le cas d’une machine munie
d’un circuit de ventilation fermé, celui de I’air au-

(21

Dés lors les pertes

dessus de la température du réfrigérant d’air —.
Le cuivre se trouvera porté a un échauffement 9,
au-dessus du milieu refroidissant — mettons ici de
I’huile —, soit & + ¥, au-dessus de ’'ambiance. On
aurait, en conséquence, i remplacer dans I’éq. (21)

_ 1+a9 B
le terme @ (x) —mpar un terme @ (5) _—
11‘:;: (oz‘giii) pour pouvoir appliquer ici cette

équation. Désirant cependant conserver la forme
simple de @ (x), nous prendrons comme tempéra-
ture de base pour les pertes cuivre non pas I'am-
biante, mais ’ambiante plus ¥,,... Ce faisant nous
convenons que le cuivre se trouve a son échauffe-
ment final J,,.. au-dessus de ’huile pendant toute
la période considérée. En effet, en raison de I'ordre
de grandeur trés différent des constantes de temps
pour I’échauffement de I’huile d’une part et celui
du cuivre d’autre part, on peut étudier ces échauffe-
ments indépendamment 'un de I’autre.

Dans des cas spéciaux, ou les deux constantes de
temps seraient du méme ordre de grandeur, on
pourra le plus souvent exprimer (¢ + &) par une
fonction approchante de ¢, et écrire @ (&) =
1+ a9
1+ao9 (I)

suivent, en conséquence.

, en modifiant les développements qui

Cas 2° b. Lorsque les pertes se composent de
pertes fer qui sont constantes et de pertes cuivre,
variables avec la température, nous formons le rap-
port: pertes cuivre sur pertes totales, pour une
température de base b°,

Pcu—b
Py = —— (22)
P,
les pertes totales pour une température ¢ devien-
nent alors

Py=P, (1 + pya,9) (23)
Nous obtenons ici également
t d x .
T =Sm, mais avec @ (x) =
1+ p,a, v _9f()
TLpa 0. s 0 Tl et F(x) = NI 02 (24)

c’est-a-dire nous possédons avec ces équations (24)
la formule généralisée pour les trois cas considérés.

Nous mettons @ (x) sous une forme plus com-

mode
_ 1_(1 _ i) Py
Vo) Py @y Ve +1

qui devient, en introduisant le symbole

14-p,a,?

20 =14 pa,oe

g = Po @ Voo
Po @ Ve +1

D (x)=1—(1—x)p

(25)
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Avec une fonction F (x) = x* nous avons finale-
ment

LE _S d x
T. ) 0—x*)—(1-x3
S dx 1 (26)
1— x~ 1 1—x ]
[ "1’
Le facteur = 1y (x) est pratiquement
1——* 5

1— x~
constant sur de larges étendues de x, pour des f
allant jusqu’a 0,4, valeur rarement atteinte. Nous
écrirons donc

t
T = BS (27)
ou la constante B qui remplace y (x) sera calculée
pour un x moyen de I’étendue envisagée.

On apercoit tout de suite 'avantage de cette for-
mule qui permettra d’utiliser les mémes courbes
que nous avons établies plus haut sans avoir tenu
compte de la variation des pertes cuivre avec la
température et pour lesquelles nous avions

t dx
T. ) 1—x~
Cette variation se traduira
premiérement par une augmentation de J..,
deuxiémement par une apparente augmentation de

la constante de temps qui devient B - T...
On a pour la détermination de 9.,

1+ pyap s
1+ pyap 0,

1900 o —1
K"(E)

ou P, sont les pertes totales du régime envisagé,
calculées avec la résistivité du cuivre a la tempé-
rature 9,

¥, est la température normale a la charge nor-
male,

9. désignant la température finale du régime,
calculée comme au chapitre d sans tenir compte
de la variation de la résistivité, il vient, en intro-
duisant

1—x~

F, (n)

(19&)“_ 1+ ps ap Vs
19—0,0 - 1 _'—pb ap ﬂn

On aura avantage a établir un tableau donnant

J.. en fonction de .. et de p;, ou bien de relever
Jo sur un abaque qu’il est facile de construire

d’aprés (28).

(28)

On dispose encore des formules

o lipade <ﬂw)°‘_*1 P,
Poo_P{n)]-_"Pbabﬁ,, etKN_Kn 7’7 = 19_50(29)
pour calculer T°°=K£' La multiplication de T.,

- par B se traduira par une simple rotation de I'axe ¢.

Notons qu’a p; et a, calculés pour la température
de base b définie pour chacun des cas 1° et 2°, on
peut substituer sans grande erreur p, et a,, valeurs
correspondant a la température de marche normale
pour laquelle sont données les garanties de 1’ap-
pareil.

Ce que nous venons d’exposer pour I'échauffe-
ment est valable dans le méme sens pour le refroi-
dissement sous une charge réduite; il n’y a qu’a rem-
placer J. dans les formules par ¥,.

D. Comparaison des méthodes de calcul en
usage.

Afin de fixer les idées sur les erreurs qui peu-
vent résulter de I'application des différentes mé-
thodes de calcul en usage qui négligent I'influence
de ’'un ou 'autre des facteurs variables avec la tem-

lf.;!d /

200
200

Fig. 11.
’ Comparaison des diverses

méthodes de calcul de la
Pl
// ’ P,

température finale.
100 A = L8
4 2 Foo =9 (55) .

1 Foo =1

150

50 100 150 2
SEV 4553 vb}f'

pérature, nous avons établi ci-aprés un tableau
comparatif des résultats obtenus avec elles d’une
part, et avec les formules exactes d’autre part.
Déja la fig. 11 représente, en fonction de la réelle
température finale oo, courbe 1: la température
finale ., (, — 1) calculée d’aprés la formule clas-

sique 9. = 9, %, courbe 2: la température finale

Voo (w =125) calculée en tenant compte de la varia-
tion du coefficient de transmission de la chaleur

. P 0,8 .
d’aprés la formule .. = 9, -2 ) pour le refroidis-
p \p )P
n
sement naturel, courbe 3: la température finale J.
réelle en tenant compte, en outre, de la variation

de résistivité du cuivre et calculée d’aprés la for-
P, \%8 1+Pbab?9w L
mule 19°°= 19,, (17’1> [m %, avec p, = 0,75

et a, = 0,0034. Nous constatons les divergences no-
tables qui apparaissent dans le calcul de la tempé-
rature finale.

d
Le tableau I se rapporte au calcul de d—f, c’est-

a-dire de laugmentation de température en de-
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grés par minute, pour l’huile d’un transforma-
teur soumis a une surcharge aprés une marche con-
tinue a pleine charge. Elle a été calculée, premiére-
ment, pour le début de la surcharge ot ¥ = 50°, et
deuxiémement lorsque ’échauffement de 1’huile a
augmenté de 10°, donc 9 = 60°.
Données:
Echauffement de I’huile en marche normale ¢, ==
50°,
Température ambiante 40°,
Rapport pertes cuivre sur pertes totales, a 75°, p,, =
0,75,
Pertes cuivre pour une surcharge de 25 % =— 1,56 X
pertes normales,
b=10"1,56%8 + 40° = 54°

du cuivre 10°),

(échauffement normal

formules classiques, donne des résultats absolument
erronés. On calculerait avec elle des durées de sur-

charge admissibles qui seraient trop fortes de plus
de 50 %.

Les résultats se révélent analogues pour le calcul
de P’échauffement du cuivre.

E. Conclusion.

Le fait d’introduire comme constante de temps
dans les équations de I’échauffement une valeur in-
variable qui est celle existant & la température fi-
nale, permettra de tenir compte d’'une fagon géné-
rale des variations soit des pertes, soit du coefficient

1 de transmission de la chaleur, en fonction du temps
ap = m‘z 0,00347, 1 aussi bien qu’en fonction de la température, sous la
’ ——1 | forme suivante
Py =0,74, calculé au moyen de la relation®?
1 1 det dx
=1+ q, (75—0). Pas T.. & (P)— F(K)
Tableau I.
1 T 111 v
a9 L 1 L B 1 (_0_ o LI ( 9 ) * (1 i)ﬂ Pb @y Joo comme I
ds f; B L i a 0@0) i o Fes L i o Poaoo "I‘l
%, 50 50 50 50
9 50 50 50 30
1 Foo | &
9 9y 1,42 =11 3, 1,42 = 66 9, 1,420 [ﬂ”—‘“] * = 68,5 comme II, 66
> 1 + pb a, ﬁn
9
I 0,705 0,758 0,73 0,758
h 9, \o—1 9, \*%—1
Te T, 7.(52) 1,(52) =T 092 T,
(en minutes) =T, 0,934
dd L 1 1 1
13 Tn-2l Tﬂ-20,7 T“-21,1 i-16
(en degeés/min.)
0 60 ‘ 60 60 60
Do 71 ! 66 68,5 66
192 0,845 ’ 0,91 0,875 0,91
T T, T, - 0,934 T,-0,925 T,
dd 1 1 1 1
1t T, 11 T." 7,18 T, 10,1 T 5,95

I1 appert que si I’élévation de température par
minute est sensiblement la méme au début, pour les
trois méthodes I, IT et III, elle différe de plus en
plus & mesure que la température augmente. Lors-
que, dans le cas présent, I'huile a atteint une tem-
pérature de 60°, on trouve des valeurs trop défavo-
rables de 10 % si I’on calcule d’aprés la formule
classique, et trop favorables de 23 % si 1’on calcule
en tenant compte de la variation du coefficient de
transmission de la chaleur seulement. Mais la mé-
thode IV, que l'on peut également rencontrer en
pratique et qui calcule la température finale en te-
nant compte de la variation du coefficient de trans-
mission de la chaleur, et lui applique ensuite les

Si nous avons p. ex. une charge variable durant
la journée et donnée en fonction du temps. on

écrira pour les pertes F=P, @ (-:—) et on aura
1
t 3 )
() al
T t J
o(g) ()

La solution de l'intégrale sera toujours possible
par une intégration graphique. Mais en général les
courbes traitées dans cette étude suffiront en
pratique.
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