Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 26 (1935)

Heft: 24

Artikel: Der Anschluss von Lichtbogen-Schweissmaschinen

Autor: Werdenberg, W.

DOI: https://doi.org/10.5169/seals-1060348

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

in wesentlich kürzerer Zeit (ca. ½ Stunde) erfolgen kann.

Als Vorteile der geprüften Pilumherde gegenüber den üblichen Herden mit direkt beheizten Kochplatten können hervorgehoben werden:

- 1. Kürzere Kochzeiten für Siedeprozesse.
- 2. Kleiner Anschlusswert (1000 W).
- 3. Wärmereserve bei Unterbruch der Energiezufuhr.
- 4. Der eingebaute Heisswasserspeicher, der einen besonderen Heisswasserspeicher entbehrlich macht.
- 5. Einfache und stufenlose Regulierung der einzelnen Kochstellen.
- 6. Regulierung der Backofentemperatur durch Temperaturregler.
- 7. Verwendungsmöglichkeit des Backofens als Wärmeschrank, ohne direkte Beheizung.

Die Handhabung des Isolierdeckels der Kochplatten könnte erleichtert werden, ferner würde an Stelle der Glimmlampe, die bei der Beheizung der Wärmespeicher leuchtet, ein Temperaturindikator, der den Ladezustand der Speichergefässe erkennen lässt, in der Praxis gute Dienste leisten.

Der Anschluss von Lichtbogen-Schweissmaschinen.

Von W. Werdenberg, Kilchberg.

621.311.152: 621.791.735

Der vorliegende Aufsatz führt zu folgenden Schlussfolgerungen:

- I. Lichtbogenschweisstransformatoren und Schweissumformer dürfen nicht uneingeschränkt an Lichtnetze oder Licht-Kraftnetze (sogenannte Einheitsnetze) angeschlossen werden. Die Schweissumformer liegen gegenüber den Schweisstransformatoren günstiger; sie können in ungefähr der doppelt so grossen Entfernung von der Ortstransformatorenstation als die Schweisstransformatoren angeschlossen werden.
- 2. Die Mehrbelastung der Energieübertragungs-Einrichtungen der Werke durch Einphasen-Schweisstransformatoren ist nur gering; mit Rücksicht auf die Gewinnung von neuen Energieabnehmern sollten daher auch die Schweisstransformatoren zu den normalen Energiepreisen beliefert werden, und es sollten keine oder dann nur kleine Zuschläge verlangt worden
- 3. Der Anschlusswert von Schweissmaschinen wird mit Vorteil als Teil der maximal aufgenommenen Scheinleistung definiert. Bei den heute gebräuchlichen Schweissmaschinen beträgt der Anschlusswert ca. 50 bis 60 % der maximalen, d. h. beim grösstmöglichen Schweißstrom aufgenommenen Scheinleistung.

1. Einleitung.

Die Lichtbogenschweissung macht in den letzten Jahren ausserordentlich grosse Fortschritte, und die geschweisste Konstruktion verdrängt auch in kleineren Betrieben die genieteten Arbeiten immer stärker.

In den meisten Fällen bedeutet der Anschluss einer Lichtbogenschweissmaschine für diese kleinern Werkstätten eine wesentliche Vergrösserung des bisherigen Leistungsbezuges beim Elektrizitätswerk; ein bis zwei kleinere Motoren, gewöhnlich an das allgemeine Lichtnetz angeschlossen, waren bisher die einzigen grössern Verbraucher. Da ein spezielles Kraftnetz gerade in Gegenden mit kleineren Betrieben gewöhnlich nicht zur Verfügung steht, wird der Betriebsleiter des Elektrizitätswerkes Anschluss einer Lichtbogenschweissmaschine untersuchen müssen, ob ein solcher Anschluss an das Lichtnetz oder an das gemeinsame Licht-Kraftnetz ohne besondere Massnahmen noch zulässig ist. Die Zulässigkeit hängt ab von den maximal erträglichen, durch die Schweissmaschine hervorgerufenen Spannungsabfällen und Spannungsschwankungen.

Der grösste Teil der Bezüger verwendet zum Schweissen einen Schweisstransformator, der das Les conclusions de cet article sont les suivantes:

- l° Les transformateurs de soudure et les groupes convertisseurs ne peuvent pas être branchés à volonté sur les réseaux d'éclairage ou les réseaux mixtes (éclairage-force). A ce point de vue, les groupes convertisseurs sont plus favorables; leur éloignement par rapport à la sous-station de transformateurs peut atteindre le double de la distance admissible pour les transformateurs de soudure.
- 2º Le surcroit de charge occasionné aux installations de distribution d'énergie des centrales par les transformateurs de soudure monophasés n'est pas considérable; afin de permettre le branchement de nouveaux abonnés, l'énergie devrait également être fournie à ces transformateurs au tarif normal, sans supplément ou du moins avec un petit supplément seulement.
- 3° On aurait avantage de définir la puissance installée des machines à souder comme étant une partie de la puissance apparente maximum absorbée. Pour les machines à souder modernes, la puissance installée atteint 50 à 60 % environ de la plus forte puissance apparente absorbée, c'est-à-dire quand le courant de soudure est maximum.

Dreiphasennetz immer unsymmetrisch belastet und damit das Netz mehr beansprucht als ein symmetrischer Dreiphasenanschluss gleicher Leistung. Es ist daher zu untersuchen, ob und wie diese Mehrbeanspruchung durch Tarifmassnahmen erfasst werden könnte.

Vielerorts wird kleinern Energiebezügern ein Energiepreis verrechnet, der vom Anschlusswert des Verbrauchers abhängig gemacht wird. Es ist daher wichtig, dass man den Anschlusswert bei allen Fabrikaten nach den gleichen Grundsätzen bestimmt. Nachstehend wird daher versucht, eine allgemein gültige Regelung für die Angabe des Anschlusswertes zu finden.

2. Maximal zulässige Spannungsabfälle und Spannungsschwankungen.

Die anzuschliessende Schweissmaschine darf zusammen mit allen übrigen, an der gleichen Leitung angeschlossenen Verbrauchern keinen grössern als den für die andern Verbraucher zulässigen Spannungsabfall erzeugen. In einem allgemeinen Niederspannungsverteilnetz sind in der Regel die Glühlampen die empfindlichsten Verbraucher. Fig. 1 zeigt den Zusammenhang zwischen Spannung und Lichtstärke bei heute gebräuchlichen Metalldraht-

lampen. Die Kurve wurde an Wendeldrahtlampen und Doppelwendeldrahtlampen von 40 bis 150 W Leistung, bzw. von 40 bis 150 Dlm aufgenommen. Zwischen den einzelnen Lampentypen auftretende Abweichungen der Lichtstärke-Aenderungen waren nicht feststellbar. Die aufgezeichnete Kurve gilt also für alle bei der vorliegenden Untersuchung in Betracht fallenden Lampentypen. Nach Fig. 1 entspricht ein Spannungsabfall von 5 % bereits einer Verminderung der Lichtstärke von ca. 15 %. In

Arten von Lichtschwankungen an einer grössern Zahl von Versuchspersonen durchgeführt 1).

Da nach diesen Versuchen ausser der Raschheit und Grösse der Spannungsschwankung auch die Art der Aenderung (plötzliche oder allmähliche Aenderung) von Bedeutung ist, wurde zuerst die Art der von Schweisstransformatoren und Schweissumformern erzeugten Spannungsschwankungen untersucht, indem die Aenderung der aufgenommenen Ströme von Schweissmaschinen beim Uebergang

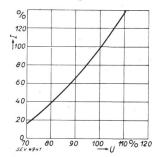


Fig. 1.
Aenderung der Lichtstärke (I)
von Metalldrahtlampen mit der
Spannung (U).

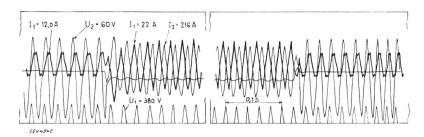
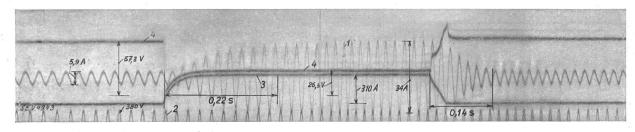



Fig. 2. Stromänderung eines Schweisstransformators bei konstanter primärer Klemmenspannung.

Verteilanlagen, wo durch die Wahl der Transformatoren-Uebersetzungsverhältnisse der Spannungsabfall in den Hochspannungsleitungen mehr oder weniger ausgeglichen wird, sollte daher der Spannungsabfall im Niederspannungsnetz während der Beleuchtungszeit auf keinen Fall mehr als etwa 5 % betragen. Durch Kompensation der Schweissmaschinen (Einbau von Kondensatoren) ist es aber ohne weiteres möglich, die Spannungsabfälle innerhalb dieser Grenze zu halten.

Die durch die Schweissung hervorgerufenen, rasch aufeinanderfolgenden Schwankungen Spannungsabfalles dürfen aber ausserdem nur vom Leerlauf auf maximale Last festgestellt wurde. Die Fig. 2 bis 5 stellen einige der aufgenommenen Oszillogramme dar.

Fig. 2 zeigt die Stromänderung eines Transformators bei konstanter primärer Klemmenspannung, wenn der Transformator kurzgeschlossen wird. Fig. 3 zeigt die Stromänderung eines Schweissumformers bei konstanter Klemmenspannung am Motor, wenn von Leerlauf auf diejenige Belastung gegangen wird, die die grösste Aenderung des Motorstromes hervorruft, was in der Regel beim Kurzschliessen des Sekundärkreises eintritt. Fig. 4 zeigt die Stromänderung beim gleichen Versuch, aber mit

Stromänderung eines Schweissumformers bei konstanter Klemmenspannung am Motor bei Aenderung der Belastung
(Ohmschen Widerstand) von Leerlauf auf Kurzschluss.

Brown Boveri-Umformer, 7 kW: 1 Motor-Strom. 2 Motor-Spannung. 3 Generator-Strom. 4 Generatorspannung.

so gross sein, dass sie den Betrieb der andern Anschlussobjekte, von denen in der Regel die Beleuchtung wiederum am empfindlichsten ist, nicht stören. Für die Beurteilung des Einflusses der Spannungsschwankungen auf die Beleuchtung sind in diesem Falle die subjektiven Empfindungen des Bezügers massgebend. Um festzustellen, was als lästig empfunden wird, wurden von den Elektrizitätswerken des Kantons Zürich im Zusammenhang mit diesen Untersuchungen über die Schweissanlagen auch Versuche mit verschiedenen Grössen und einer Spannung, die mit der Belastung ändert. Fig. 5 zeigt die Stromänderung eines andern Fabrikates bei konstanter Klemmenspannung am Motor.

Man erkennt, dass bei den Schweisstransformatoren eine fast plötzliche Aenderung des Stromes eintritt und dass bei den Schweissumformern die Aenderung nur allmählich und ohne Ueberströme vor sich geht. Die Dauer des Ausgleichvorganges hängt ausser vom Fabrikat auch von den Daten des

¹⁾ Die Versuche und deren Ergebnisse wurden im Bull. SEV 1935, Nr. 22, S. 609, beschrieben.

Energie liefernden Netzes ab; sie ist um so grösser, je grösser der von der Belastung hervorgerufene Spannungsabfall ist. In den praktischen Fällen wird man mit einer Dauer des Ausgleichvorganges von ca. 0,2 bis 0,5 Sekunden rechnen müssen.

Durch die bereits erwähnten Versuche über die zulässigen Lichtschwankungen wurde festgestellt, dass plötzliche, ungefähr 0,5 bis 1 Minute dauernde Spannungsschwankungen bei einer Grösse von etwa 3 % der Nennspannung zu einer Reklamation des zulässiger Spannungsschwankung auch die höchstzulässige Leitungslänge bei verschiedenen Ortstransformatorenleistungen und verschiedenen Leitungsquerschnitten berechnet werden kann.

Da die Spannungsschwankung nur von der Aenderung der Wirk- und Blindströme und nicht von deren absoluten Grösse abhängig ist, so können parallel zur Schweissanlage angeschlossene Verbraucher die von der Lichtbogenschweissung hervorgerufenen Spannungsschwankungen nicht beeinflus-

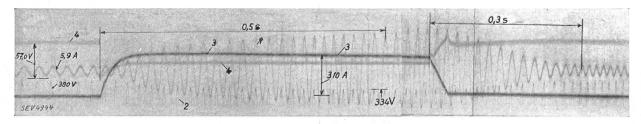


Fig. 4. Wie Fig. 3, aber bei nicht konstanter Motorspannung (ändert mit Belastung).

Lichtbezügers Anlass geben können. Man wird daher beim Anschluss von Schweisstransformatoren, die derartige Schwankungen hervorrufen, höchstens eine Spannungsschwankung von 3 % zulassen können. Die weitern Untersuchungen über die Zulässigkeit des Anschlusses von Schweissumformern sollen allgemein gültig sein; es ist daher mit der ungünstigsten Ausgleichsdauer der Spannungsschwan-

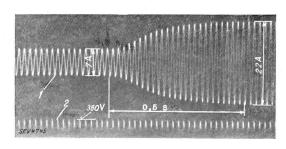


Fig. 5. Wie Fig. 3, aber anderes Fabrikat. Leerlauf-Vollast (240 A Gleichstrom).

kung von ca. 0,2 Sekunden zu rechnen. Nach den vorerwähnten Versuchen ist dann die zulässige Spannungsschwankung ca. 3 %, also gleich wie bei den Schweisstransformatoren.

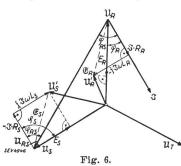
3. Zulässige Entfernungen der Schweissanlagen von den Transformatorenstationen.

Die von den Schweissanlagen hervorgerufene Spannungsschwankung hängt in erster Linie von der Impedanz zwischen Verbraucher und Energiequelle ab. Als Energiequelle kann im vorliegenden Fall, wo es sich nur um geringe Spannungsänderungen handelt, die Primärseite des Transformators in der Ortstransformatorenstation angenommen werden. Die zur Wirkung kommende Impedanz setzt sich daher zusammen aus derjenigen des Ortstransformators und derjenigen der Zuleitung, die proportional der Leitungslänge ist, so dass bei gegebener höchst-

sen. Aus dem gleichen Grunde können auch mit Kondensatoren, die der Verbesserung des Leistungsfaktors der Schweissmaschine dienen, die Spannungsschwankungen nicht vermindert werden. Für die Schweisstransformatoren folgt daraus weiter, dass für die Spannungsschwankung nur die Aenderung des sekundären Schweißstromes massgebend ist, da der Magnetisierungs- und Verluststrom angenähert bei allen Belastungen konstant bleiben.

a) Schweiss-Transformatoren.

Da die Beleuchtung an die Sternspannung angeschlossen ist, darf die Spannungsschwankung zwischen Polleiter und Nulleiter nach den vorangegangenen Ausführungen den Wert von 3 % nicht überschreiten. Ferner ist zu beachten, dass die Schweisstransformatoren in der Regel an die verkettete Spannung angeschlossen werden. In Fig. 6 sind unter dieser Voraussetzung und unter folgenden Annahmen die Spannungsverhältnisse aufgezeichnet:


- 1. Der Schweisstransformator sei zwischen Phase R und S angeschlossen.
- 2. Die Phasenverschiebung zwischen Strom und verketteter Spannung betrage cos $\varphi \sim 0.5$, was angenähert dem in der Praxis vorkommenden Fall entspricht.

Wie aus Fig. 6 hervorgeht, sind die Spannungsabfälle und damit auch die Spannungsschwankungen in den beiden durch den einphasigen Anschluss belasteten Phasen nicht gleich gross. Für die Bestimmung der maximal zulässigen Leitungslänge ist aber der ungünstigste Fall massgebend. Der Spannungsabfall und damit auch die Spannungsschwankung ist in der voreilenden Phase R grösser als in der Phase S.

Der Spannungsabfall E_R ist allgemein für eine beliebige Belastung:

$$E_R = I \cdot R \cdot \cos \varphi_R + I \omega L \sin \varphi_R$$

Die Spannungsschwankung ΔE_R , die beim Uebergang von einem Belastungszustand in einen andern auftritt, ist gleich der Differenz der von den beiden Belastungszuständen hervorgerufenen Spannungsabfälle. Da die grössten Spannungsschwankungen bei den grössten Belastungsschwankungen, also bei der

Aenderung von Leerlauf auf Vollast oder umgekehrt auftreten und nach den vorangegangenen Ausführungen der Leerlaufstrom ohne Einfluss auf die Spannungsschwankung ist, wenn dafür in unserer Gleichung als Vollaststrom der

maximale Schweißstrom eingesetzt wird, so ist die

 $\Delta E_R = I (R \cos \varphi_R + \omega L \sin \varphi_R)$

$$\boxed{l = U^2 \cdot \frac{2\sqrt{3}\frac{\varepsilon}{P_s} - \frac{3}{P_T} \left\{ c\left(\sqrt{3}\cos\varphi_{RS} + \sin\varphi_{RS}\right) + k\left(\sqrt{3}\sin\varphi_{RS} - \cos\varphi_{RS}\right) \right\}}{r\left(\sqrt{3}\cos\varphi_{RS} + \sin\varphi_{RS}\right) + y\left(\sqrt{3}\sin\varphi_{RS} - \cos\varphi_{RS}\right)}}$$

Spannungsschwankung beim Schweisstransformator gleich dem Spannungsabfall, d. h.

wo I dem maximalen Schweißstrom entspricht. Werden folgende Bezeichnungen eingeführt:

- P_T Leistung des Ortstransformators in VA,
- P_S Maximale Schweissleistung des Schweisstransformators in VA,
- Sternspannung des speisenden Netzes in V, \boldsymbol{U}
- Verhältnis der Vollast-Kupferverluste des Ortstransformators zur Transformatorleistung,
- Verhältnis des induktiven Spannungsabfalles des Ortstransformators zur Nennspannung,
- Zulässige Spannungsschwankung in % der Nennspannung U,
- Ohmscher Widerstand pro Phase des Ortstransformators,
- Induktiver Widerstand pro Phase des Ortstransformators.
- Ohmscher Widerstand pro Phase und Meter der
- Induktiver Widerstand pro Phase und Meter der
- Länge der Leitung (Entfernung von der Station) in Metern,

so ist

1.
$$\Delta E_R = \varepsilon \cdot U$$

$$I = \frac{P_s}{\sqrt{3} \cdot U}$$

$$R = l \cdot r + \varrho$$

oder, wenn o durch die Ortstransformatorenverluste ausgedrückt wird:

$$R = l \cdot r + c \frac{3 U^2}{P_T}$$

4.
$$\omega L = l \cdot y + \eta$$

oder, wenn η durch den induktiven Spannungsabfall des Ortstransformators ausgedrückt wird:

$$\omega L = l \cdot y + k \frac{3 U^2}{P_T}$$

Werden diese 4 Ausdrücke in der Gleichung für ΔE_R eingesetzt, so ist

$$\begin{array}{l} \varDelta E_{R} = \\ \frac{P_{S}}{\sqrt{3}U} \!\!\left(\!\!\left(l\cdot r + c\frac{3\,U^{2}}{P_{T}}\!\right)\!\!\cos\varphi_{R} \!+\!\!\left(l\cdot y \!+\! k\frac{3\,U^{2}}{P_{T}}\!\right)\!\!\sin\varphi_{R}\!\right)\!\!\end{array}$$

Unter Berücksichtigung, dass $\varphi_R = \varphi_{RS} - 30^\circ$, und nach Ordnung der Gleichung nach l geht diese

Für die Grössen φ_{RS} , y, c und k werden die in der Praxis vorkommenden Grössen eingesetzt. Der Leistungsfaktor von Schweisstransformatoren auf der Sekundärseite ist etwa 0,5; es sei daher cos φ_{RS} =0,5. Der induktive Widerstand ist für alle in Frage kommenden Niederspannungsleitungen angenähert gleich gross und hat den Wert von rund 0,3 Ohm/km; es ist also $y = 0.3 \cdot 10^{-3} \Omega/m$. Die Volllast-Kupferverluste eines Transformators betragen im Mittel etwa 2,5 %, so dass c = 0.025. Die Kurzschlußspannung der üblichen Transformatoren liegt bei etwa 4,5 %; es ist daher $k \sim 0.045$. Die Gleichung für die zulässige Leitungslänge in Metern heisst dann unter diesen Voraussetzungen:

$$l = \frac{U^2}{r + 0.173} \left(\frac{2 \varepsilon}{P_S} - \frac{0.15}{P_T} \right),$$

wenn r in Ω /km und P_S und P_T in kVA eingesetzt werden. In Tabelle I sind für eine zulässige Spannungsschwankung von 3 % und für verschiedene übliche Nennspannungen, Leiterquerschnitte, Ortstransformatoren-Leistungen und Schweissleistungen die maximal zulässigen Entfernungen von der Ortstransformatorenstation in Metern zusammengestellt. Darnach darf beispielsweise ein Schweisstransformator mit 10 kVA sekundärer Schweissleistung an ein 380/220-V-Netz mit Draht von 8 mm Durchmesser und 80 kVA Transformatorenleistung höchstens in einer Entfernung von 375 Metern von der Transformatorenstation angeschlossen werden. Die Tabelle zeigt ferner, dass eine Vergrösserung der Transformatorenleistung in der Ortsstation über 100 kVA praktisch keine Verbesserung der Spannungsverhältnisse mehr bringt, und dass auch beim Normalspannungsnetz von 380/220 Volt der uneingeschränkte Anschluss von Schweisstransformatoren nicht zugelassen werden kann.

Maximal zulässige Entfernung in Metern der Schweisstransformatoren von der Transformatorenstation, wenn die maximal zulässige Spannungsschwankung 3 % beträgt.

Tabelle I.

Draht	Maximale Schweiss- leistung		_	250/145	Volt	9				380/220	Volt		
Ø		Nennleistung des Ortstransformators in kVA											
mm	kVA	20	40	60	, 80 ,	100	120	20	40	60	80	100	120
8	2 4 6 8 10 12 14 16 18 20	900 300 100 0	1055 450 250 150 95 45 25	1100 500 300 195 140 95 70 50 30 20	1125 520 325 220 160 115 95 75 55 45	1150 540 350 245 185 140 115 100 70 60	1160 560 360 255 195 150 130 110 80 70	2080 695 240 0	2430 1040 590 350 215 105 50	2540 1150 695 455 320 210 160 120 75 45	2590 1200 750 510 375 265 215 175 130 100	2640 1250 800 560 450 320 265 210 165 140	2670 1280 820 590 455 345 295 230 185 155
5,5	2 4 6 8 10 12 14 16 18 20	520 170 60 0	610 260 145 85 55 25 15	635 290 175 115 80 55 40 30 20	650 300 190 125 95 65 55 45 30 25	665 315 200 140 105 80 65 55 40 35	670 320 210 150 115 85 75 60 45	1200 400 140 0	1400 600 340 200 125 60 30 5	1460 660 400 260 185 125 90 70 45 25	1500 690 430 290 215 155 125 105 75 60	1550 725 460 325 245 185 155 125 100 80	1560 740 480 340 260 200 170 135 110 95
4	2 4 6 8 10 12 14 16 18 20	300 100 35 0	350 150 85 50 30 15 10	365 170 100 65 45 30 25 20 10	375 175 110 75 55 40 30 25 20 15	380 180 115 80 60 45 40 30 25 20	385 185 120 85 65 50 40 35 25 25	695 230 80 0	810 345 195 115 70 35 20 5	845 380 230 150 105 70 55 40 25 15	860 400 250 170 125 90 70 60 45 35	880 425 265 185 140 105 90 70 55 45	890 425 275 195 150 115 100 75 60 50

Müssen Schweisstransformatoren in grössern als den hier angegebenen Entfernungen angeschlossen werden, so bleibt mit Rücksicht auf die Lichtabonnenten nichts anderes übrig, als den Energiebezug für die Schweissung während der Hauptbeleuchtungszeiten zu sperren oder die Schweissleistung zu begrenzen. Da aber letztere Massnahme sich nicht immer auf einfache Weise durchführen lässt, so wird man in der Regel zur Installation eines Sperrschalters greifen müssen. Aber auch in diesem Falle ist die zulässige Spannungsschwankung nicht beliebig gross. Sie sollte mit Rücksicht auf die andern Verbraucher nicht grösser als 5 bis 10 % sein.

Tabelle II zeigt die für eine zulässige Spannungsschwankung von 6 % maximal möglichen Entfernungen.

b) Schweiss-Umformer.

Die dreiphasigen Schweissumformer belasten alle drei Phasen symmetrisch; die Spannungsschwankungen sind also auf allen drei Phasen gleich gross, so dass die folgenden Betrachtungen auf eine Phase allein beschränkt bleiben können. Ist

- U Sternspannung des speisenden Netzes in V,
- I aufgenommener Strom der Umformergruppe in A.

- I_a und I_r Wirk-, bzw. Blindkomponenten des Stromes I.
- φ Phasenverschiebung des aufgenommenen Stromes,
- E durch die Umformergruppe hervorgerufener Spannungsabfall in V,
- △E durch Aenderung des Belastungszustandes 1 auf den Belastungszustand 2 hervorgerufene Spannungsschwankung in V,
- ε maximal zulässige Spannungsschwankung in % der Nennspannung U,
- ϱ Ohmscher Widerstand pro Phase des Ortstransformators,
- η induktiver Widerstand pro Phase des Ortstransformators,
- c Verhältnis der Vollast-Kupferverluste des Ortstransformators zur Transformatorleistung,
- k Verhältnis des induktiven Spannungsabfalles des Ortstransformators zur Nennspannung,
- r Ohmscher Widerstand pro Phase und Meter der Zuleitung,
- y induktiver Widerstand pro Phase und Meter der Zuleitung,
- Länge der Zuleitung oder Entfernung der Schweissanlage von der Transformatorenstation in Metern.

Maximal zulässige Entfernung in Metern der Schweisstransformatoren von der Transformatorenstation, wenn die maximal zulässige Spannungsschwankung 6% beträgt.

Tahelle II.

			10.000				Tabelle II.						
Draht	Maximale Schweiss- leistung			250/145	Volt					380/22	0 Volt		
Ø		Nennleistung des Ortstransformators in kVA											
mm	kVA	20	40	60	80	100	120	20	40	60	80	100	120
	2	2110	2260	2310	2340	2350	2360	4860	5210	5320	5380	5420	5430
	4	910	1060	1110	1140	1150	1155	2080	2440	2550	2600	2640	2660
	6	505	655	705	730	745	755	1160	1510	1620	1675	1710	1730
	8	300	455	505	530	545	550	695	1045	1550	1210	1250	1270
	10	180	335	380	405	425	430	415	765	880	935	975	1010
8	12	100	255	300	325	340	350	230	580	695	750	785	805
	14	40	195	240	265	280	290	90	445	555	610	650	665
	16	0	155	200	225	240	250	0	350	460	520	555	575
	18		120	170	195	210	215		280	390	445	480	500
	20		95	140	165	180	190		215	325	380	415	435
	9	1005	1015	1940	3055	1005	1070	2000	2055	2120	21/0	2100	2200
	2	1225	1315	1340	1355	1365	1370	2860	3055	3120	3160	3180	3200
	4 6	525 290	615 3 80	$640 \\ 410$	$\frac{655}{420}$	665 430	670 435	$1230 \\ 680$	1435 890	1500 955	1535 990	$1560 \\ 1010$	$1570 \\ 1020$
	8	175	265	290	305	315	320	410	615	680	715	735	750
	10	105	195	220	235	245	250	245	455	520	550	570	585
5,5	12	60	145	175	190	200	205	135	345	410	440	460	475
	14	25	110	140	155	165	170	55	260	325	360	380	395
	16	0	90	115	130	140	145	0	210	275	310	330	340
	18		70	100	110	120	125		165	230	260	285	295
	20		55	80	95	105	110		125	190	225	245	255
		,											
	2	700	750	765	775	780	780	1610	1730	1770	1785	1800	1805
	4	300	350	365	375	380	380	690	810	845	860	875	880
	6	165	215	235	240	250	250	385	500	535	555	570	575
	8	100	150	165	175	180	180	230	345	385	400	415	420
4	10	60	110	125	135	140	140	140	255	290	310	320	325
	12	35	85	100	110	115	115	80 3 0	195	230	250	260	265 220
	14	15	65	80	90	95 80	95	0	145	185 155	$\frac{205}{170}$	215	190
	16	0	50 40	65	75 65	80 70	80 70	U	115 90	130	145	185 160	165
	18 20		30	55 45	65 55	60	60		70	110	125	140	145
	20		30	40	33	00	UU		10	110	120	140	140

 P_M maximale Leistungsaufnahme des Motors der Umformergruppe in VA,

P_T Nennleistung des Ortstransformators in VA,

so ist allgemein der Spannungsabfall zwischen Phase und Nulleiter:

$$E = I_a (l \cdot r + \varrho) + I_r (l \cdot y + \eta)$$

und die durch die Belastungsänderung des Zustandes 1 auf den Zustand 2 hervorgerufene Spannungsschwankung

$$\Delta E = E_1 - E_2 = (I_{a_1} - I_{a_2}) (l \cdot r + \varrho) + (I_{r_1} - I_{r_2}) (l \cdot y + \eta)$$

Werden die Ströme der beiden Belastungszustände in Teilen des maximalen Stromes I des Motors der Umformergruppe ausgedrückt, indem $I_1 = \alpha I$ und $I_2 = \beta I$ gesetzt werden, so heisst die Gleichung

$$\Delta E = I\{(\alpha \cos \varphi_1 - \beta \cos \varphi_2) (l \cdot r + \varrho) + (\alpha \sin \varphi_1 - \beta \sin \varphi_2) (l \cdot y \eta)\}$$

Werden nun der Strom I durch die maximale Leistung P_M , der Ohmsche Widerstand ϱ durch die

Kupferverluste c und der induktive Widerstand η durch die Kurzschlußspannung k ausgedrückt:

$$I = \frac{P_{\rm M}}{3 \; U}; \;\;\; \varrho \; = \; c \; \frac{3 \; U^2}{P_{\scriptscriptstyle T}}; \;\;\; \eta \; = \; k \; \frac{3 \; U^2}{P_{\scriptscriptstyle T}},$$

so geht die Gleichung für ${}^{\it d}{\rm E}$, wenn nach $\it l$ aufgelöst wird, über in

$$l = 3 U^{2} \cdot \frac{\frac{\varepsilon}{P_{M}} - (\alpha \cos \varphi_{1} - \beta \cos \varphi_{2}) \frac{c}{P_{T}} - (\alpha \sin \varphi_{1} - \beta \sin \varphi_{2}) \frac{k}{P_{T}}}{(\alpha \cos \varphi_{1} - \beta \cos \varphi_{2}) r + (\alpha \sin \varphi_{1} - \beta \sin \varphi_{2}) y}$$

Diese Gleichung kann für die Praxis vereinfacht werden, wenn berücksichtigt wird, dass

- 1. bei allen in Frage kommenden Niederspannungsleitungen der induktive Widerstand y angenähert gleich gross, nämlich etwa gleich 0,3 Ohm/km ist:
- 2. die Vollast-Kupferverluste des Transformators c etwa 2,5 % betragen;
- 3. die Kurzschlußspannung etwa 4,5 % beträgt, also auch $k \sim 4,5$ % ist.
- 4. die grösste, massgebende Spannungsschwankung dann auftritt, wenn von Leerlauf auf die grösste Schweißleistung, die in der Regel bei dem grössten Schweißstrom auftritt, gegangen wird. Die

Maximal zulässige Entfernung in Metern der Schweissumformer von der Transformatorenstation, wenn die maximal zulässige Spannungsschwankung 3 % beträgt.

Tabelle III

Draht	Maximal auf-			250/145	Volt				-	380/22	0 Volt		
Ø	genommene Leistung	Nennleistung des Ortstransformators in kVA											
$_{ m mm}$	kVA	20	40	60	80	100	120	20	40	60	80	100	120
38.5	2 4 6	1990 820 425	2170 990 600	2240 1050 660	2260 1085 690	2280 1110 710	2300 1120 725	4100 1890 980	5000 2290 1380	5150 2430 1520	5200 2500 1600	5250 2540 1630	5300 2570 1670
8	$egin{array}{c} 8 \\ 10 \\ 12 \\ \end{array}$	220 110 30	395 285 205	455 345 270	490 375 300	505 395 315	520 410 330	510 250 75	910 650 470	1050 800 620	1120 870 690	1160 910 725	1200 945 760
	14 16 18 20		140 110 80 45	205 175 140 110	235 205 175 140	250 220 190 155	265 235 205 175		325 255 180 110	470 400 325 255	545 470 400 325	580 510 435 360	620 545 470 400
5,5	2 4 6 8 10 12 14 16 18 20	1130 455 240 125 65 15	1235 565 340 225 160 115 80 65 45 25	1270 600 375 260 195 150 115 100 80 65	1290 620 395 275 215 170 135 115 100 80	1310 625 405 285 225 180 145 125 105 90	1315 635 410 295 235 190 150 135 115 100	2620 1070 555 290 145 40	2840 1300 785 515 370 270 185 145 105 60	2920 1380 865 600 455 350 270 225 185 145	2965 1420 905 640 495 390 310 270 225 185	2980 1440 930 660 515 410 330 290 245 205	3000 1460 950 680 535 430 350 310 270 225
4	2 4 6 8 10 12 14 16 18 20	645 265 135 70 35 10	700 320 195 125 90 65 45 35 25	720 340 215 145 110 85 65 55 45 35	730 350 225 155 120 95 75 65 55	740 355 230 165 125 100 80 70 60 50	745 360 235 170 130 105 85 75 65 55	1485 610 315 165 80 25	1615 735 445 290 210 150 105 80 60 35	1660 785 490 340 255 200 150 130 105 80	1685 805 515 360 280 220 175 150 130	1695 820 525 375 290 235 185 165 140	1710 830 440 385 305 245 200 175 150

beim Anlauf der Umformergruppe auftretende Spannungsschwankung kommt hier nicht in Frage, weil der Anlauf in einem längern Zeitabschnitt nur einmal auftritt, wogegen die Schweissleistung dauernd innert kurzer Zeiten stark ändert und, wie in Abschnitt 2 erwähnt wurde, vor allem rasch aufeinanderfolgende Schwankungen störend empfunden werden. Im allgemeinen beträgt der Leerlaufstrom etwa 15 % des maximal aufgenommenen Stromes. Allerdings hängt diese Zahl vom Fabrikat ab, so dass die im folgenden bestimmten Werte der zulässigen Entfernungen nicht für alle Fälle gelten; sie geben aber, da der Unterschied zwischen den einzelnen Fabrikaten nicht gross ist, doch ein ungefähres Bild über die Zulässigkeit des Anschlusses von Schweissumformern.

In der weitern Berechnung wird also a=0,15 und $\beta=1$ eingesetzt. Der Leistungsfaktor beträgt bei den heute gebräuchlichen Umformergruppen im Leerlauf etwa cos $\varphi_1=0,3$ und bei maximaler Belastung etwa cos $\varphi_2=0,85$. Die maximale Leistung ist nicht identisch mit der Nennleistung; im Abschnitt 5 wird gezeigt, dass auch kein eindeutiger Zusammenhang zwischen der Nennleistung und der maximalen Leistung besteht. Die zulässige Leitungslänge kann daher nicht in Abhängigkeit der Nenn-

leistung der Umformergruppe aufgetragen werden. Die zulässige maximale Entfernung ist dann ca.

$$l = \frac{3 \ U^2}{0.8 \ r + 0.12} \left(\frac{\varepsilon}{P_{M}} - \frac{0.046}{P_{T}} \right),$$

wenn r in Ω /km und P_M und P_T in kVA eingesetzt werden.

In der Tabelle II sind die für eine zulässige Spannungsschwankung von 3 % maximal zulässigen Entfernungen aufgetragen. Man ersieht daraus, dass beispielsweise eine an ein 380/220-Volt-Netz mit 8 mm & Draht und einer Transformatorleistung von 40 kVA anzuschliessende Umformergruppe mit einer maximalen aufgenommenen Leistung von 12 kVA noch in 470 m Entfernung von der Transformatorenstation angeschlossen werden kann.

Auch hier bringt eine Vergrösserung der Ortstransformatorenleistung über 100 kVA nur unbedeutende Verbesserungen in den Spannungsverhältnissen.

Müssen Schweissumformer mit grössern als den hier angegebenen Entfernungen an das Licht- oder das kombinierte Licht-Kraftnetz angeschlossen werden, so können zwei Wege zur Erreichung der Anschlussmöglichkeit beschritten werden. Entweder wird der Gebrauch des Schweissumformers wie beim Schweisstransformator während der Beleuchtungszeit gesperrt, oder der Schweissumformer wird so gebaut, dass der Ausgleichvorgang seiner Spannungsschwankungen grösser wird, womit alsdann nach den bereits erwähnten Versuchen über zulässige Spannungsschwankungen auch die Grösse der zulässigen Schwankung ansteigt.

Ein Vergleich dieser zulässigen Entfernungen mit denjenigen für Schweisstransformatoren lässt erkennen, dass der Anschluss von Umformergruppen in einem grössern Gebiet möglich ist. Die maximal zulässigen Entfernungen der Umformergruppen betragen rund das Doppelte der zulässigen Entfernungen von Schweisstransformatoren.

Da diese Werte aber nur unter verschiedenen, vom Fabrikat abhängenden Voraussetzungen gefunden worden sind, sind diese Längen nicht ohne weiteres in der Praxis brauchbar. Man wird vor der Verweigerung eines Anschlusses zuerst die massgebenden Daten des Fabrikates feststellen müssen.

4. Einfluss einphasiger Belastungen auf Drehstromnetze.

Die einphasigen Anschlüsse von Schweisstransformatoren verursachen im Drehstromnetz eine unsymmetrische Belastung; dadurch wird die maximale Belastbarkeit der Ortstransformatoren und der Uebertragungsleitungen verkleinert, d. h. bei gleichbleibender Erwärmung des Transformators und gleich bleibendem Spannungsabfall ist eine grössere symmetrische Belastung in kVA möglich als bei unsymmetrischer Belastung. Da von verschiedenen Seiten immer wieder die Ansicht geäussert wird, dass diesem Nachteil durch Verwendung eines sog. Spannungsteilers abgeholfen werden könne, sei auch hier kurz festgestellt, dass durch den Spannungsteiler weder an der Belastbarkeit noch am Spannungsabfall, noch an den Verlusten etwas gewonnen werden kann. Die Nutzlosigkeit des dreiphasigen Anschlusses eines Einphasentransformators wurde in E. u. M. 1933, Heft 28, von K. Widmann auf einfache Weise dargelegt. Ferner untersuchte H. Hafner im Bull. SEV 1933, Heft 1, den Spannungsteiler-Anschluss eingehend und zeigte auch, dass der Einfluss der unsymmetrischen Belastung auf parallel angeschlossene Verbraucher sehr gering ist; diese letzteren Einflüsse werden daher hier nicht weiter berücksichtigt.

Es soll nun untersucht werden, welche Drehstromleistung in kVA der Einphasenleistung entspricht, wenn die Transformatoren und Leitungen in beiden Belastungsfällen gleich beansprucht sein sollen. Da es sich in der vorliegenden Untersuchung nicht um eine allgemeine unsymmetrische Belastung handelt, sondern um eine Belastung, die sich zusammensetzt aus einer symmetrischen Drehstromlast und einer Einphasenlast, so ist nur der Fall zu untersuchen, wo zwei Ströme des Drehstromnetzes stets gleich gross sind. Es wird ferner der Einfachheit wegen angenommen, dass die Leistungsfaktoren der dreiphasigen und der einphasigen Belastung

gleich gross seien. Durch diese Annahme wird das Resultat unserer Untersuchung nicht zugunsten der unsymmetrischen Belastung verschoben, da bei dieser Annahme der grösstmögliche Strom und die grösstmöglichen Verluste in der Uebertragungseinrichtung auftreten.

a) Belastbarkeit mit Rücksicht auf Verluste.

Es soll bestimmt werden, welcher Drehstromleistung die Einphasenleistung entspricht, so dass bei symmetrischer und unsymmetrischer Belastung die Verluste gleich gross ausfallen. Die Verluste sind vor allem bestimmend für die Belastbarkeit der Transformatoren, da diese durch die höchstzulässige Erwärmung begrenzt wird. Zur Bestimmung des Verhältnisses der Drehstromleistung zur Einphasenleistung bei gleicher Beanspruchung des Transformators nehmen wir an, dass der Transformator auch bei unsymmetrischer Belastung bis zur Erreichung der maximal zulässigen Totalverluste belastet werden könne. Obwohl dies in Wirklichkeit nicht möglich sein wird, gibt das auf dieser Annahme errechnete Resultat trotzdem annähernd Aufschluss über den Einfluss der einphasigen Belastungen.

Es werden folgende Bezeichnungen in die Rechnung eingeführt:

P symmetrische Belastung in kVA,

P_A Drehstromteil der unsymmetrischen Belastung in kVA.

P∼ Einphasenteil der unsymmetrischen Belastung in kVA = Leistung des Schweisstransformators,

I Ströme.

 ϱ Ohmscher Widerstand pro Phase der Uebertragungseinrichtung,

P_v Totale Verluste der Uebertragungseinrichtung,

$$x = \frac{P_{\sim}}{P_{\Delta}}$$

$$y = \frac{P - P_{\perp}}{P_{\sim}}$$
 als Mass der Mehrbelastung durch

Einphasenanschluss gegenüber reinem Drehstrom-Anschluss.

Bei symmetrischer Belastung sind die totalen von der Belastungsart abhängigen Verluste

$$P_{v} = 3 I^{2} \cdot \rho$$

und bei unsymmetrischer Belastung

$$P_{v} = 2 (I_{1} + I_{2})^{2} \cdot \varrho + I_{1}^{2} \cdot \varrho$$

Da die Verluste bei beiden Belastungsarten gleich gross sein sollen, so ist

$$3I^2 = 2 (I_A + I_{\sim})^2 + I_A^2$$

Werden die Ströme durch Leistungen ausgedrückt, so geht diese Gleichung über in

$$P^2 = 2\left(\frac{P_{1}}{\sqrt{3}} + P_{2}\right)^2 + \frac{P_{1}^2}{3}$$

Werden nun in diese Gleichung die Ausdrücke von x und y eingeführt, so geht diese über in

$$y = \frac{\sqrt{2\left(\frac{1}{\sqrt{3}} + x\right)^2 + \frac{1}{3}} - 1}{x}$$

In Fig. 7 ist der Zusammenhang zwischen x und y aufgetragen. Man erkennt daraus, dass der Einphasenanschluss in bezug auf Verluste und Belast-

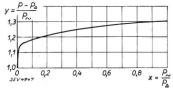


Fig. 7.

barkeit des Transformators praktisch einem Drehstromanschluss von etwa dem 1,25fachen Wert des Einphasenanschlusses entspricht.

b) Belastbarkeit mit Rücksicht auf Spannungsabfall.

Es soll bestimmt werden, welcher Drehstromleistung die Einphasenleistung entspricht, so dass bei symmetrischer und unsymmetrischer Belastung der Spannungsabfall gleich gross ausfällt.

Der Spannungsabfall ist in erster Linie bestimmend für die Belastbarkeit der Leitungen.

Werden ausser den unter Abschnitt a) aufgeführten Bezeichnungen noch folgende Zeichen eingeführt:

E =Spannungsabfall,

Z = Impedanz der Uebertragungseinrichtung, so ist bei symmetrischer Belastung die absolute Grösse des Spannungsabfalles

$$E = I \cdot Z$$

Bei unsymmetrischer Belastung ist die absolute Grösse des Spannungsabfalles unter der bereits erwähnten Voraussetzung, dass der Leistungsfaktor des Drehstromteiles und des Einphasenteiles gleich gross sei:

$$E = I_{\mathcal{A}} \cdot Z + I_{\sim} \cdot Z$$

Da beide Spannungsabfälle gleich gross sein sollen, so ist

$$I \cdot Z = I_{A} \cdot Z + I_{\sim} \cdot Z$$

Wird diese Gleichung durch Leistungen ausgedrückt, so geht sie über in

$$P = P_A + \sqrt{3} \cdot P_{\sim}$$

In diese Gleichung werden nun die Ausdrücke für x und y eingeführt; sie lautet dann:

$$v = \sqrt{3}$$

d. h. also, dass der Einphasenanschluss in bezug auf Spannungsabfall einem Drehstromanschluss von 1,7fachem Wert des Einphasenanschlusses entspricht.

c) Tarifmassnahmen.

Das einphasige Anschlussobjekt beansprucht also die Energieübertragungseinrichtungen wie eine

Drehstromlast von 1,25fachem bzw. 1,7fachem Wert

der einphasigen Leistung.

Soll der Bezüger für diese Mehrbeanspruchung durch den einphasigen Anschluss das energieliefernde Werk entschädigen, so ist der die festen Kosten der Erzeugungs- und Uebertragungseinrichtungen enthaltende Teil des Energiepreises entsprechend zu erhöhen. Dabei ist aber zu berücksichtigen, dass die Mehrbeanspruchung um so kleiner wird, je näher man der Energiequelle kommt; denn das Verhältnis zwischen Einphasenlast und Drehstromlast wird kleiner. Praktisch wird eine Mehrbeanspruchung durch die Einphasenlast auf der Hochspannungsseite des Netzes bedeutungslos sein. Die Erhöhung des Anteiles der festen Kosten am Energiepreis wird daher nur vom Anteil der Ortstransformatorenstationen und Ortsnetze an den festen Kosten bestimmt, und zwar ist der Anteil der Ortstransformatorenstationen um das 1,25fache und der Anteil der Ortsnetze um das 1,7fache zu erhöhen. In vielen Fällen ist der Anteil der festen Kosten der Uebertragungseinrichtungen vom Bezüger in Form einer Grundgebühr zu bezahlen, und die Mehrbeanspruchung lässt sich durch einen Zuschlag zu dieser Grundgebühr ausdrücken. Wird beispielsweise angenommen, dass der Anteil an der Grundgebühr der Ortstransformatorenstationen und der Ortsnetze je ¼ der gesamten Grundgebühr betrage, so wäre beim Anschluss einer Einphasen-Schweissmaschine die Grundgebühr auf das

$$\frac{1}{2} + \frac{1}{4} \cdot 1,25 + \frac{1}{4} \cdot 1,7 = 1,24$$
 fache

zu erhöhen.

Da die Untersuchung über den Einfluss einphasiger Belastungen von der Voraussetzung ausging, dass ein Transformator auch unsymmetrisch bis zu seinen Vollastverlusten belastet werden könne, sind diese Zahlen etwas zu niedrig. Im ungünstigsten Fall, wo der Transformator nur soweit unsymmetrisch belastet wird, bis in einem Schenkel der Volllaststrom erreicht ist, kann $\sqrt{3}$ mal mehr Drehstromleistung als Einphasenleistung angeschlossen werden. Wird mit dieser Voraussetzung gerechnet, so beträgt die Grundgebühr für einphasige Last das $0.5 + 0.5 \cdot 1.7 = 1.35$ fache der Grundgebühr der Drehstromlast. Wird ferner damit gerechnet, dass die gesamten festen Kosten an der Mehrbeanspruchung beteiligt sind, so muss der Zuschlag zur Grundgebühr das 1,7fache betragen.

Der einphasige Anschluss verursacht ferner ungefähr 1,25mal soviel Verluste wie ein Dreiphasenanschluss gleicher Leistung. Wenn der Einphasen-Bezüger für diese 25 % Mehrverluste aufkommen soll, so sind diese am Verbrauchspreis zu berücksichtigen. Da die Einphasenlast aber nicht den gesamten stromabhängigen Verlustanteil von der Energiequelle bis zum Verbraucher um 25 % erhöht (vgl. Fig. 7) und ausserdem die Verluste in den Leitungen klein sind, so ist praktisch nur mit einer Erhöhung der Kupferverluste in den Orts-

transformatoren zu rechnen. Werden diese zu 4 % der Belastung angenommen, so sind die Verbrauchspreise um 0,25·0,04 = 1 % zu erhöhen. Da die Schweisstransformatoren im allgemeinen eine sehr kleine Benützungsdauer aufweisen, kann diese kleine Erhöhung des Verbrauchspreises vernachlässigt werden.

686

Zusammenfassend kann also gesagt werden: Soll die Mehrbeanspruchung des Drehstromnetzes durch Schweisstransformatoren am Energiepreis berücksichtigt werden, so ist die Grundgebühr der normalen Drehstromlast um 24 % bis höchstens 70 % zu erhöhen, wobei die zweite Zahl aber nur bei stark, d. h. während der Schweissung fast voll belasteten Netzen in Frage kommt.

Die Mehrbelastung der Energieübertragungs-Einrichtungen der Werke durch Einphasen-Schweisstransformatoren ist also nur gering; mit Rücksicht auf die Gewinnung von neuen Energieabnehmern sollten daher auch die Schweisstransformatoren zu den normalen Energiepreisen beliefert werden und es sollten keine oder dann nur kleine Zuschläge verlangt werden.

5. Der Anschlusswert von Schweissmaschinen.

Der vielfach den Energiepreis beeinflussende Anschlusswert in kVA einer Schweissmaschine (z. B. bei Bestimmung des Grundpreises, der Minimalgarantie usw.) wird heute noch von den verschiedenen Fabrikaten mehr oder weniger willkürlich angegeben. Einige geben als Anschlusswert die aufgenommene Dauerleistung, andere die aufgenommene Leistung bei verschiedenen Einschaltdauern (E D), aber ohne Nennung der zugrunde gelegten Einschaltdauer an 1). Es kommt auch vor, dass Fabrikanten den Anschlusswert auf dem Leistungsschild absichtlich niedrig angeben, um gegenüber andern Fabrikaten konkurrenzfähig zu bleiben. Wie ver-

Tabelle IV.

	Angeschriebene Leistungen an Schweiss- transformatoren in % der								
Fabrikat	grösstmögl. Leistungs- aufnahme	grösstmögl. Schwei-s- leistung	zulässigen primären Dauerbelast.						
1	86	56	170						
2	62	50	240						
3	58	38	220						
4	60	33	160						

schieden heute beispielsweise Schweisstransformatoren angeschrieben werden, zeigt Tabelle IV, wo die auf dem Leistungsschild angegebenen kVA-Werte verschiedener Fabrikate in % der grösstmög-

lichen Leistungsaufnahme, der grösstmöglichen sekundären Schweissleistung und der Leistungsaufnahme bei der zulässigen Dauerbelastung angegeben sind. Für die Werke ist es daher wichtig, dass der Anschlusswert von Schweissmaschinen eindeutig und so definiert werde, dass er jederzeit auf einfache Weise kontrolliert werden kann. Ferner muss die Definition des Anschlusswertes der Schweissmaschinen der Definition des Anschlusswertes anderer Energieverbraucher (Motoren usw.) sinngemäss ent-

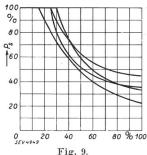
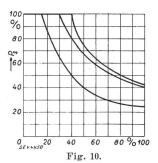


Fig. 8.


Aufgenommene Scheinleistung in % der zulässigen
Dauerleistung bei 60 % Einschaltdauer von Schweisstransformatoren verschiedener Herkunft.

sprechen. Ausserdem sollte der Anschlusswert auch noch Aufschluss geben über die maximale Leistungsentnahme aus dem Netz, was heute bei kompensierten Schweisstransformatoren nur durch Messung bestimmt werden kann (vgl. Tabelle IV).

Bei gewöhnlichen Motoren entspricht der Anschlusswert in der Regel der maximal möglichen Dauerbelastung. Bei nichtautomatischen Lichtbogen-Schweissmaschinen, die hier allein in Frage kommen, liegt die praktisch maximal mögliche «Dauerbelastung» bei ca. 50 bis 60 % Einschalt-

Aufgenommene Scheinleistung in % der maximal möglichen Leistungsaufnahme von Schweisstransformatoren verschiedener Herkunft.

Aufgenommene Scheinleistung in % der maximal möglichen Leistungsaufnahme verschiedener Typs von Schweissumformern.

dauer. Die Nennleistung bei dieser Einschaltdauer könnte als Anschlusswert definiert werden. Eine einfache Kontrolle der Anschlussleistung wäre aber nicht möglich. Ferner gäbe diese Angabe keinen Aufschluss über die maximal auftretende Belastung des Netzes, weil kein allgemein gültiger Zusammenhang besteht zwischen der Nennleistung bei einer bestimmten Einschaltdauer und der maximal möglichen Belastung (vgl. Fig. 8).

Wird dagegen der Anschlusswert als ein bestimmter Teil der beim grösstmöglichen Schweißstrom aufgenommenen Schweissleistung definiert, so kann die grösstmögliche Leistungsaufnahme leicht durch

¹⁾ Die Nennleistung ist bestimmt durch die zulässige Erwärmung der Maschine, hängt also von der Betriebsweise ab. Darnach können bei ein und derselben Maschine verschiedene Nennleistungen angegeben werden (vgl. VDE-Vorschriften). Die Leistungsangabe ohne Nennung der Betriebsweise auf Schweissmaschinen entspricht nicht einer Nennleistung; es soll damit vielmehr der Wert des Anschlusses charakterisiert werden. Diese Leistungsangabe verdient daher eher die Bezeichnung Anschlusswert.

eine Strommessung bei kurzgeschlossenem Schweissstromkreis gemessen und ohne weiteres der Anschlusswert errechnet und kontrolliert werden. Die aufgenommenen Scheinleistungen in % der maximal möglichen Scheinleistungsaufnahmen bei verschiedenen Einschaltdauern sind in den Fig. 9 und 10 für Transformatoren und Umformer verschiedener Herkunft und Grösse aufgetragen. Darnach werden bei ca. 60 % Einschaltdauer im Mittel ca. 50 % der maximal möglichen Scheinleistung aufgenommen; der Anschlusswert lässt sich also auf folgende Weise definieren: Der für die Energiepreise massgebende Anschlusswert in kVA einer Schweissmaschine ist gleich 50 bis 60 % der beim maximal möglichen Schweißstrom aufgenommenen Scheinleistung.

Durch diese Definition erfolgt auch ohne weiteres eine im Interesse des energieliefernden Werkes liegende, günstigere Behandlung der mit mehr Kondensatorenleistung kompensierten, aber sonst gleichen Schweisstransformatoren. Fig. 11 zeigt, dass nach der vorgeschlagenen Definition ein Transformator mit der Schweissleistung S bei Kompensation mit einer Kondensatorleistung K_1 einen Anschlusswert gleich A_1 , bei einer Kondensatorleistung K_2 aber einen solchen von A_2 aufweist.

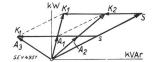


Fig. 11.

5 maximale Schweissleistung.
5 Schweissleistung mit ca.
60 % Einschaltdauer.
6 Kondensatorleistungen.
4 Anschlusswerte.

Würde der Anschlusswert bei einer bestimmten Einschaltdauer, z. B. bei der Schweissleistung s festgelegt, so würde der Schweisstransformator mit dem kleinern Kondensator K_2 ebenfalls nur den Anschlusswert A_1 und der Schweisstransformator mit dem grössern Kondensator K_1 sogar den grössern Anschlusswert A_3 besitzen. Ausserdem ist es ohne weiteres möglich, aus dem derart definierten Anschlusswert auf die notwendige Dimensionierung der Installation zu schliessen.

Ueber einige neuere Konstruktionen und Entwicklungsarbeiten am Kaltkathodenstrahl-Oszillographen.

Von G. Induni, Zürich.

621.317.755

(Mitteilung aus dem Laboratorium der Firma Trüb, Täuber & Co. A.-G., Zürich.)

Wie unsere Leser wissen, kaufte der SEV im Jahre 1926 einen Dufourschen Kathodenstrahloszillographen und beauftragte Herrn Dr. K. Berger als Versuchsingenieur mit der Weiterentwicklung dieses Apparates und mit Untersuchungen über die Natur der Ueberspannungen in elektrischen Anlagen; Ziel dieser Arbeiten war, die Betriebssicherheit der Hochspannungsanlagen zu erhöhen, im besonderen Mittel ausfindig zu machen, welche sie gegen Ueberspannungen atmosphärischen oder inneren Ursprungs schützen. Der vom Vorstand des SEV eingesetzte Ausschuss zur Leitung dieser Arbeiten wurde im Jahre 1930 auf breiterer Basis in die «Verwaltungskommission für den Kathodenstrahloszillographen» mit dem «Arbeitskomitee», beide unter dem Vorsitz des verstorbenen Herrn Dr. K. Sulzberger, übergeführt.

Der Versuchsingeneur entwickelte den Dufourschen Oszillographen in den Werkstätten des SEV und später auch mit der Firma Trüb, Täuber & Cie. A.-G., Zürich, welche die Ausführung übernommen hat, zu einem industriell brauchbaren Apparat, mit dem im Laufe der Jahre bemerkenswerte Resultate, besonders auf dem Gebiet der Gewitterforschung, der Kurzschluss- und Erdschluss-Erscheinungen und der Prüfung von Ueberspannungsschutzapparaten erzielt wurden. Ueber alle diese Arbeiten, z. T. auch über die Weiterentwicklung des Oszillographen wurde im Bulletin des SEV laufend berichtet. Im folgenden werden nun die ersten, für den Verkauf bestimmten, fabrikmässig hergestellten Ausführungen beschrieben. — Die Redaktion.

Comme nos lecteurs le savent déjà, l'ASE fit en 1926 l'acquisition d'un oscillographe cathodique Dufour et chargea M. K. Berger, ingénieur, de développer cet appareil et d'étudier la nature des surtensions dans les installations électriques. Le but de ces travaux était d'augmenter la sécurité d'exploitation des installations à haute tension et, en particulier, de trouver des moyens pour les protéger contre les surtensions d'origine atmosphérique ou interne. Le comité nommé par l'ASE pour diriger ces travaux fut élargi en 1930 et transformé en la «commission d'administration des travaux avec l'oscillographe cathodique (KOK)», avec son «comité d'action», présidés les deux par le regretté M. K. Sulzberger.

L'ingénieur chargé des essais développa l'oscillographe Dufour dans les ateliers de l'ASE, puis plus tard en collaboration avec la maison Trüb, Täuber et Cie S. A., Zurich, qui en a repris l'exécution, pour en faire un appareil industriel pratique qui permit peu à peu d'obtenir des résultats remarquables, en particulier dans le domaine de l'électricité atmosphérique, des phénomènes de court-circuit entre phases ou à la terre, ainsi que des essais d'appareils de protection contre les surtensions. Ces travaux et aussi en partie les perfectionnements de l'appareillage ont été relatés dans le Bulletin de l'ASE. Dans l'article ci-dessous l'auteur décrit les premiers appareils de fabrication industrielle, destinés à la vente. — La rédaction.

1. Einleitung.

Das wachsende Interesse, welches die Industrie und die Forschung dem Kaltkathodenstrahl-Oszillographen in neuerer Zeit entgegenbringen, bedingte nicht nur eine Entwicklung dieses Apparates im Sinne grösserer Leistungsfähigkeit, sondern auch in konstruktiver Richtung. Hierüber, besonders über die Entwicklung einiger wichtiger Einzelteile, wurde an dieser Stelle schon berichtet (siehe Fussnote 1) auf Seite 688). Es scheint heute angezeigt, die interessierten Kreise einmal über die fertigen Konstruktionen und ganzen Apparate zu orientieren, weil bei diesen die speziell durch die jeweilige Problemstellung gestellten Forderungen berücksichtigt wurden. Die Lösung der gestellten Probleme konstruktiver Natur war nicht nur durch die Anpassung an den Verwendungszweck geboten, sondern auch durch die Forderung einer fabrikationsmässigen, preiswerten Herstellung der Apparate gegeben. Nicht zuletzt war auch die