Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 25 (1934)

Heft: 4

Artikel: Wirtschaftlichste Verteilung der Blindlast auf verschiedene Kraftwerke

Autor: Egli, Albert

DOI: https://doi.org/10.5169/seals-1060136

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wärmemenge braucht. Diese theoretischen Ueberlegungen bestätigen also die Versuchsresultate.

Zum Schluss soll noch anhand eines Beispiels ein weiterer Vorteil der Aldrey-Leitung hervorgehoben werden. Wenn für eine Spannung von 110 kV ein Kupferseil von 100 mm² nur aus Gründen der Coronaverluste gewählt werden muss, für die Uebertragungsleistung aber der gleiche Querschnitt in Aldrey genügen würde, stellt sich der Erstellungspreis der Leitung aus 100 mm² Aldrey bedeutend günstiger.

Wenn aber die 100 mm² Kupferseil auch für die Uebertragungsleistung verlangt werden, müsste für Aldrey der widerstandsgleiche Querschnitt, nämlich 178,5 mm², in Frage kommen. Die 178,5 mm²-Aldrey-Leitung wird bei gleichem Kabelpreis je nach Leitungsbauvorschriften und Gelände 5 bis 10 % billiger als die 100 mm²-Kupferleitung. Dabei besteht aber der wichtige Vorteil, dass die Aldrey-Leitung auch mit höherer Spannung betrieben werden könnte, falls später einmal die zu übertragende Leistung erhöht werden müsste. Das 178,5 mm²-Aldrey-Seil kann unter gleichen Annahmen mit einer ca. 27 % höheren Spannung, also mit 140 kV, betrieben werden. Bei gleichem effektivem Verlust kann die Uebertragungsleistung um 27 % und bei gleichem prozentualen Verlust um 60 % erhöht werden. Eine Aldrey-Leitung kann also eine 60 % grössere Leistung übertragen als die widerstandsgleiche Kupferleitung.

Endlich stellt Aldrey einen dauernden Wert dar und kann leicht eingearbeitet werden.

Diese Ausführungen haben gezeigt, dass die verschiedenen Bedenken, die man anfänglich gegen die Verwendung der Aluminiumlegierung Aldrey im Leitungsbau hatte, in der Praxis nicht eingetreten sind und dass auch die theoretischen Ueberlegungen sich dadurch bestätigen. Aldrey hat in den acht Jahren seine Brauchbarkeit bewiesen und steht heute als gleichwertiges, meist sogar überlegenes Leitermaterial neben allen bisher bekannten.

Literatur.

Peek junior, F. W., Dielectric phenomena in high voltage engineering, 1920, p. 199.

Legierter Aluminiumdraht «Drahtlegierung 3». Mitt. der Aluminium Industrie A.-G., Neuhausen (Schweiz. Bauzeitung, t. 87, 1926, p. 323).

Wyssling, Eine Weitspannleitung der SBB für 132 kV aus hochleitender, zäher Aluminiumlegierung (Rapport No. 55 de la Conférence Internationale des Grands Réseaux électriques, Paris, 1927 [Sonderdruck]).

Zeerleder, A. v., et Bosshard, M., Neue Wege im Freileitungsbau (Z. f. Metallkunde, t. 19, 1927, p. 459).

Schmitt, Hochleitfähige vergütbare Aluminiumlegierungen in der Freileitungstechnik (ETZ, t. 48, 1927, p. 1176).

Fuchs et Kaufmann, Lichtbogenwirkungen an Freileitungsseilen (ETZ, t. 49, 1928, p. 126).

Bohner, H., Zugfestigkeit und elektrische Leitfähigkeit von Reinaluminium und Aluminiumleichtlegierungsdrähten in Abhängigkeit von mechanischer und thermischer Behandlung (Hauszeitschrift der VAW, t. 1, 1929, p. 12).

Dusaugey, A., Rupture accidentelle des conducteurs aériens: comparaison des conducteurs de cuivre et d'aluminium (RGE, t. 24, 1928, p. 36).

Vallauri, G., et Giacobini, Impiego dei conduttori in alluminio nelle grandi linee elettriche (Annali dei Lavori Pubblici, No. 10, 1929, p. 930).

Zeerleder, A. v., et Bourgeois, P., Effect of temperature attained in overhead electric transmission cables (Journal Inst. of Metals, t. 42, 1929, p. 321).

Schmitt, Die Aluminium-Demonstrationsleitung auf Sylt (Hauszeitschift der VAW, t. 1, 1929, p. 31).

Pape, H. M., Beanspruchung schwingender Drahtseile unter besonderer Berücksichtigung der Beanspruchungen an den Tragklemmen von Freileitungen (Mitteilung Nr. 7 des Wöhler-Institutes, Braunschweig, 1930).

Pester, F., Die Festigkeitseigenschaften von elektrischen Leitungsdrähten bei tiefen Temperaturen (Z. f. Metallkunde, t. 22, 1930, p. 261).

Zeerleder, A. v., Einfluss der Korona-Erscheinungen auf Freileitungsdrähte (Bull. SEV, t. 22, 1931, p. 215; Hauszeitschrift der VAW, t. 3, 1931, p. 267). Kocherhans, E., Aluminium im Freileitungsbau (STZ, 1931,

p. 465).

Strand, O., Ueber das Problem der Phasenabstände bei elektrischen Leitungen (ETZ, t. 52, 1931, p. 889).

Porter, J. H., Aluminium busbars resist power arcs (Electr.

World, t. 98, 1931, p. 104). Wöhr, F., Korona an Kupfer- und Aluminiumseilen (Haus-

zeitschrift der VAW, t. 3, 1931, p. 266). Wöhr, F., Die Einwirkung von Kurzschlußströmen auf die Festigkeit von Leitungsseilen aus Aluminium und Kupfer

(Hauszeitschrift der VAW, t. 3, 1931, p. 271).

Potthoff, K., Koronaverluste an Kupfer und Aluminium-seilen (Elektrizitätswirtschaft, septembre 1931).

Pramaggiore, C., Conduttori in lega di alluminio. I conduttori in Aldrey (Alluminio, t. 1, 1932, p. 80). Nefzger, J., Die Leitungsschwingungen — Versuche zur Lö-

sung der Klemmfrage (Techn. Mitteilungen der Firma J. W. Hofmann, Kötzschenbroda-Dresden, März 1932).

Pester, F., Festigkeitsprüfungen an Stangen und Drähten bei tiefen Temperaturen (Z. f. Metallkunde, t. 24, 1932, p. 67, 115).

Wirtschaftlichste Verteilung der Blindlast auf verschiedene Kraftwerke.

Von Albert Egli, Basel.

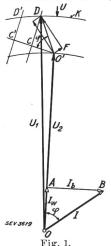
Es wird gezeigt, dass beim Energiebezug von mehreren Kraftwerken über verschiedene Leitungen eine bestimmte günstigste Blindlastverteilung möglich ist, die minimale Jahreskosten der Uebertragungsverluste herbeiführt. Diese Verteilung richtet sich nur nach den kW-Kosten im betreffenden Betriebsmoment bei den für die Energielieferung in Betracht kommenden Elektrizitätswerken und nach den Ohmschen Widerständen der Uebertragungsleitungen vom gemeinsamen Netz bis zu den Generatoren. Die günstigste Blindlastverteilung ergibt sich also dann, wenn die Blindlastleistungen der einzelnen Energiebezüge umgekehrt proportional dem Produkt kW-Preis für den Betriebsmoment mal Ohmschen Widerstand der Uebertragungsleitung ist.

L'auteur démontre que, lorsque l'on achète l'énergie de plusieurs usines par l'intermédiaire de différentes lignes, il est possible d'obtenir une répartition optimum de la charge réactive, pour laquelle les frais annuels provenant des pertes de transport sont minimum. Cette répartition n'est basée que sur les frais de puissance active au moment donné de l'exploitation des usines entrant en considération pour la livraison d'énergie et sur les résistances ohmiques des lignes de transport entre le réseau commun et les générateurs. La répartition de la charge réactive est la plus favorable lorsque les puissances réactives des différentes lignes sont inversément proportionnelles au produit des frais de puissance active au moment donné par la résistance ohmique de la ligne considérée.

A. Einleitung.

Speisen mehrere Kraftwerke gemeinsam auf ein Netz, so ist es meistens gegeben, wieviel Wirkleistung jedes Werk ins Netz liefert. Sind es gleichartige Kraftwerke, so wird man die Wirkleistung im Verhältnis ihrer Grösse auf die einzelnen Kraftwerke verteilen und die gleiche Verteilung auch mit der Blindleistung vornehmen. Sind die Kraftwerke jedoch ungleicher Art, z. B. Grundlast- und Spitzen-, Nah- und Fernkraftwerke, eigene und fremde Werke, so ist die gleichmässige Verteilung nicht ohne weiteres vorteilhaft. Während man aber bei der Wirkleistung durch die Betriebsverhältnisse gezwungen ist, eine bestimmte Verteilung vorzunehmen, ist man bei der Blindlastverteilung oft in weiten Grenzen frei.

Man kann die Blindlast verteilen mit Rücksicht auf konstante Spannungshaltung im Kraftwerk und im Netz. Wie Fig. 1 zeigt, entsprechen in diesem



Falle zunehmende Wirkleistung, welche die Spannungsabfälle O'C, bzw. O'C', erzeugen, abnehmende Blindleistungen entsprechend C'D, bzw. C'D'.

Man kann die Blindleistung aber auch so verteilen, dass sie im wesentlichen aus den Nahkraftwerken bezogen wird, oder unter Ausnutzung des Bezugsrechts aus den Fremdkraftwerken. Man kann sich nun fragen, ob es eine wirtschaftlichste Verteilung der Blindlast gibt.

Unter einer wirtschaftlichsten Verteilung versteht man

eine Verteilung, welche die geringsten Jahreskosten des Energiebezugs zur Folge hat. Die Energiebezugskosten während einer bestimmten Zeit berechnen sich in den meisten Fällen aus einem Betrag, der proportional ist zum Gesamt-Energiebezug in dieser Zeit und einem Betrag, der proportional ist zur höchsten Leistung, die innert dieser Zeit auftrat.

Es gilt dies nicht nur für den Bezug aus fremden Werken, sondern auch für den Bezug aus eigenen Werken. Man kann daher die Gesamtkosten K eines Energiebezugs z. B. während eines Jahres mit einer Höchstleistung von P kW und einem Jahresenergiebezug von A kWh, bei einem Preis der Höchstleistung von f Fr./kW und einem Energiepreis von p Fr./kWh wie folgt ansetzen:

$$K = P \cdot f + A \cdot p \tag{1}$$

Dabei sind P und A zunächst auf die Meßstelle bezogen, d. h. jene Stelle, wo die Energie von einer Hand in die andere Hand übergeht.

P und A lassen sich in einen Betrag, der ins Netz übertritt, und einen Betrag, der von den Uebertragungsverlusten von der Meßstelle bis zum Netz herrührt, zerlegen. Die Uebertragungsverluste werden um so kleiner, je grösser bei konstantem Wirkleistungsbezug der Leistungsfaktor ist, je kleiner also der Blindleistungsbezug ist. Bei konstant gehaltener Leistung beim Eintritt ins Netz wird also K je nach den vom Blindleistungsbezug abhängigen Uebertragungsverlusten grösser oder kleiner.

Aber auch der Energielieferant hat, auch bei konstant gehaltener Leistung an der Meßstelle, einen von der Blindleistungsabgabe abhängigen Kostenaufwand von der Meßstelle bis zur Turbinenwelle der Generatoren.

Bezeichnet man die in irgendeinem Zeitpunkt ins Netz abgegebene Leistung mit P, die totalen, vom Netz bis rückwärts zur Turbinenwelle auftretenden, vom Energiebezug unabhängigen konstanten Verluste mit P_c und die vom Energiebezug abhängigen Verluste mit P_i , so lässt sich sowohl P_c als auch P_i in je einen Teil zerlegen, der zwischen Meßstelle und Netz, und einen Teil, der zwischen Turbinenwelle und Meßstelle entsteht, die im folgenden mit P'_c und P''_c bzw. P' und P''_i bezeichnet werden sollen. Pc rührt von den Hilfsantrieben der Transformatorenstationen, den Eisenverlusten, Ableitungs- und Koronaverlusten der Transformatoren und Leitungen und den Reibungsverlusten und Eisenverlusten der Generatoren, Pi von den Wirbelstrom- und Ohmschen Verlusten in den Transformatorwicklungen, den Leitungen und den Armaturen der Generatoren und den Erregerverlusten der Generatoren her.

Es ist also die Messleistung gleich $P+P'_c+P'_i$, die den Lieferanten interessierende Gesamtleistung, die seinen Speicherwasser- und Kohlen- bzw. Oelverbrauch sowie die bereitzuhaltende Maschinenleistung bestimmt, gleich: $P+P_c+P_i=P+P'_c+P'_i+P''_i+P''_i$.

Die stromabhängigen Kosten sind nun, abgesehen von der Erregung 1), proportional dem Quadrat des Stromes; wir dürfen deshalb setzen:

$$P_i = 3RI^2 \tag{2}$$

Nach dem pythagoräischen Lehrsatz ist aber, da die Vektoren des Wirk- und des Blindstromes senkrecht aufeinanderstehen,

$$I^2 = I_w^2 + I_b^2 \tag{3}$$

Bei mehreren Kraftwerken, welche in das Netz speisen, stellt sich nun die Frage, ob es eine solche Verteilung der insgesamt benötigten Blindleistung gibt, bei der die gesamten Energiebezugskosten ein Minimum werden.

Man habe mehrere Kraftwerke mit den Grundgebühren f_1 , f_2 und f_3 Fr./kW und dem Energiepreis p_1 , p_2 und p_3 Fr./kWh. Der Gesamtbetrag, der für einen Jahresbezug bezahlt werden muss, beträgt bei den Höchstleistungen P_1 , P_2 , P_3 und den Energiemengen A_1 , A_2 und A_3 :

$$K_{t} = f_{1}P_{1} + f_{2}P_{2} + f_{3}P_{3} + p_{1}A_{1} + p_{2}A_{2} + p_{3}A_{3}$$
(4)

¹⁾ Diese soll später noch berücksichtigt werden.

Je nachdem man nun unter K_t die gesamten Energielieferungskosten für den Bezüger und den Lieferanten zusammen oder nur diejenigen des Bezügers oder diejenigen des Lieferanten verstehen will, müssen zu den momentanen ins Netz gelieferten Leistungen P noch die Verluste P_c , P_c' , P_c'' und P_i' und P_i' hinzukommen. Wir erhalten also unter der Voraussetzung, dass beispielsweise die Energie nur nach dem Maximalbezug bezahlt werden muss:

$$K_{t} = (P_{1} + P'_{c1} + P'_{11}) \cdot f_{1} + (P_{2} + P'_{c2} + P'_{12}) \cdot f_{2} + (P_{3} + P'_{c3} + P'_{13}) \cdot f_{3}$$

oder unter Trennung der Wirk- und Blindleistungsverluste:

$$K_{t} = f_{1} \left(P_{1} + P'_{c1} + \frac{3 R_{1}}{1000} I_{w1}^{2} + \frac{3 R_{1}}{1000} I_{b1}^{2} \right)$$

$$+ f_{2} \left(P_{2} + P'_{c2} + \frac{3 R_{2}}{1000} I_{w2}^{2} + \frac{3 R_{2}}{1000} I_{b2}^{2} \right)$$

$$+ f_{3} \left(P_{3} + P'_{c3} + \frac{3 R_{3}}{1000} I_{w3}^{2} + \frac{3 R_{3}}{1000} I_{b3}^{2} \right)$$

$$(5)$$

In dieser Gleichung ist K_t nur abhängig von den in jedem Klammerausdruck zuletzt erscheinenden Summanden $\frac{3\,R_1}{1000}\,I_{_{b\,1}}^2$, $\frac{3\,R_2}{1000}\,I_{_{b\,2}}^2$, und $\frac{3\,R_3}{1000}\,I_{_{b\,3}}^2$, sofern die $I_{w1},\,I_{w2}$ und I_{w3} als fest, $I_{b1},\,I_{b2}$ und I_{b3} als variabel betrachten.

Nun ist uns $I_{b1} + I_{b2} + I_{b3} = I_b$ durch den Gesamtleistungsfaktor des Bezugs gegeben. Die Aufgabe besteht daher darin, die Blindströme so zu verteilen, dass folgende zwei Bedingungen erfüllt sind:

$$I_{b1} + I_{b2} + I_{b3} = I_b$$
 (6a)

$$\frac{3R_1}{1000}I_{b1}^2 + \frac{3R_2}{1000}I_{b2}^2 + \frac{3R_3}{1000}I_{b3}^2 = \text{Minimum} \quad (7a)$$

B. Das Kostenminimum.

Die beiden Gleichungen haben die Form:

$$X + Y + Z = K_1 \tag{6b}$$

$$AX^2 + BY^2 + CZ^2 = K_2 (7b)$$

wobei K_2 unter der Voraussetzung, dass Gl. (6b) erfüllt ist, ein Minimum sein muss.

Trägt man K_2 z. B. nur für X und Y (also Z = 0) in einem Koordinatensystem ein, so sieht man ohne weiteres, dass, ohne die Bedingung 6b, K_2 für X = 0 und Y = 0 und Z = 0 ebenfalls = 0 und somit das Minimum würde.

Um somit Gl. 6b zu berücksichtigen, müssen wir einen der drei Werte X, Y oder Z durch K_1 und die andern zwei Variablen ausdrücken. Wir setzen also

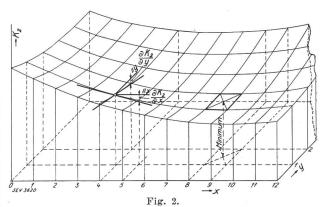
$$Z = K_1 - X - Y \tag{8}$$

Damit erhalten wir unter Einsetzung in Gl. 7b

$$AX^{2} + BY^{2} + CK_{1}^{2} - 2CK_{1}X + CX^{2} - 2CK_{1}Y + 2CXY + CY^{2} = K_{2}$$
 (9)

Denkt man sich die Werte von K_2 für feste X und variable Y und umgekehrt für variable X und feste Y in ein Koordinatensystem aufgetragen, so erhält man ein Bild ähnlich Fig. 2.

Man sieht daraus, dass das Minimum dort liegen muss, wo sowohl die Kurven für konstantes X wie diejenigen für konstantes Y horizontal verlaufen, wo also die Aenderung von K_2 mit wachsendem X



Kostenfunktion 0.5 $X^2 + 1.17 Y^2 + 0.8 XY - 10 X - 10 Y = K_z$

bzw. Y gleichzeitig zu Null wird. Rechnerisch ergibt sich dies, indem man die Differentialquotienten von K_2 nach X und nach Y gleich Null setzt. Dabei darf die Differentiation nur partiell durchgeführt werden, d. h. man muss bei der Differentiation nach X, Y konstant, und bei der Differentiation nach Y, X konstant voraussetzen. Es muss also sein:

$$\frac{\partial K_2}{\partial X} = 0 \text{ und } \frac{\partial K_2}{\partial Y} = 0$$
 (10)

wobei ∂ das Zeichen für partielle Differentiation bedeutet.

Wir erhalten also:

$$\frac{\partial K_2}{\partial X} = 2(A+C)X - 2CK_1 + 2CY = 0$$
 (11)

$$\frac{\partial K_2}{\partial Y} = 2CX - 2CK_1 + 2(B + C)Y = 0$$
 (12)

Rechnet man aus diesen zwei Gleichungen X und Y aus, so ergibt sich nach Einsetzung in die Gleichung für Z, dass:

$$AX = BY = CZ (13a)$$

sein muss, damit K_2 ein Minimum wird.

In dieser Gl. 13a sind die Koeffizienten A, B und C nach Gl. 5 wie folgt gegeben:

$$A = f_1 \cdot \frac{3R_1}{1000}; \quad B = f_2 \cdot \frac{3R_2}{1000}; \quad C = f_3 \cdot \frac{3R_3}{1000} \text{ (14a)}$$

Haben wir während einer beliebigen Stunde bei keinem der drei Energiebezüge das Leistungsmaximum, so sind die Bezüge bei Anwendung der Kostenfunktion Gl. 1 nach dem kWh-Preis zu bezahlen; bei den mittleren Stundenleistungen P_1 , P_2

und P_3 kann man für die Beträge setzen P_1 p_1 , P_2 p_2 und P_3 p_3 . Dementsprechend haben wir als Koeffizienten der Gl. 13 a zu setzen:

$$A=p_{1}\cdot\frac{3\,R_{1}}{1000};\;\;B=p_{2}\cdot\frac{3\,R_{2}}{1000};\;\;C=p_{3}\cdot\frac{3\,R_{3}}{1000}\,(14\mathrm{b})$$

Haben wir bei einem der Energiebezüge das Maximum der Leistung, bei den andern hingegen beliebige, durch den Betrieb bedingte kleinere als die Maximalleistung, so müssen für den Bezug, der mit Maximalleistung geschieht, die aus den festen Kosten pro kW (f_1, f_2, f_3) berechneten Koeffizienten eingesetzt werden, so z. B. wenn $P_1' = P_1$, P_2' und P_3' kleiner als P_2 bzw. P_3 sind:

$$A = f_1 \cdot \frac{3 R_1}{1000}; \ B = p_2 \cdot \frac{3 R_2}{1000}; \ C = p_3 \cdot \frac{3 R_3}{1000} \ (14c)$$

Eine vierte Möglichkeit besteht darin, dass der Gesamtbetrieb auf Maximalleistung ist. Die verfügbaren Leistungen sind ausgenützt, so dass, wenn keine andern Möglichkeiten vorliegen, man daran denken muss, wo irgend möglich Leistung zu sparen.

Wird z. B. aus einem Laufwerk mit der in diesem Zeitpunkt kleinen Leistung P_1 , und bei den andern Werken deren Maximum P_2 bzw. P_3 bezogen, und kostet jedes hinzugekaufte kW f_4 Fr, so wird dann das Minimum an Uebertragungskosten vorhanden sein, wenn sich die Blindleistungen umgekehrt proportional zu den Ohmschen Widerständen der Uebertragungsleitungen (vom Netz bis zu den Generatoren) verhalten, weil jedes Verlust-kW, gleichgültig von welchem Lieferanten, die gleichen Mehrkosten bedingt.

Wir haben also in diesem Falle zu setzen:

$$A = \frac{3 R_1}{1000}; \ B = \frac{3 R_2}{1000}; \ C = \frac{3 R_3}{1000}$$

oder, da der für alle gleiche Faktor $\frac{3}{1000}$ weggelassen werden kann:

$$A = R_1; B = R_2; C = R_3.$$

Man kann die Koeffizienten A, B, C als fiktive Widerstände, X, Y, Z als Ströme auffassen; dann lässt sich Gl. 13a auch so aussprechen:

Die Blindströme müssen bei der wirtschaftlichsten Verteilung mit den Widerständen A, B und C den für alle gleichen Spannungsabfall AX = BY = CZ erzeugen.

Sinngemäss gilt dies gemäss Ableitung nicht nur für 3, sondern auch für 2, 4 oder noch mehr Kraftwerke.

Dieser Satz ergab sich unter Vernachlässigung der Erregerverluste. Die Erregerverluste nehmen gewöhnlich nicht quadratisch, sondern nahezu linear mit der bezogenen Blindleistung zu. Man müsste daher streng genommen setzen:

anstatt
$$AX^2: A' + A''X + A'''X^2$$

" $BY^2: B' + B''Y + B'''Y^2$
" $CZ^2: C' + C''Z + C'''Z^2$ (15)

Setzt man $\frac{A''}{A'''} = 2 M$, so erhält man

$$A' + A''X + A'''X^{2},$$

$$= A''' \left[\frac{A'}{A'''} - \left(\frac{A''}{2 A'''} \right)^{2} + \left(\frac{A''}{2 A'''} \right)^{2} + \frac{A''}{A'''} X + X^{2} \right]$$

$$= A''' \left[\frac{A'}{A'''} - M^{2} + M^{2} + 2 MX + X^{2} \right]$$

107

Das 3. bis 5. Glied des Klammerausdruckes stellt wieder ein Quadrat dar, nämlich $\left(\frac{A^{\prime\prime\prime}}{2\,A^{\prime\prime\prime}}+X\right)^2$, wofür $X^{\prime 2}$ gesetzt sei. Analog ergibt sich ein $Y^{\prime 2}$ und $Z^{\prime 2}$. Anstelle der quadratischen Ausdrücke X ergibt sich daher, wenn wir setzen

$$rac{A''}{A'''} - \left(rac{A'''}{2A'''}
ight)^2 = A_o ext{ und } B_o ext{ und entsprechend } C_o$$
:

$$K_t = A^{""} [A_o + X^{"2}] + B^{""} [B_o + Y^{"2}] + C^{""} [C_o + Z^{"2}]$$

wovon wir ohne weiteres $A^{\prime\prime\prime}A_0+B^{\prime\prime\prime}B_0+C^{\prime\prime\prime}C_0$ ausscheiden und zu den konstanten Verlusten P_c zählen können. Der Rest aber ist wieder gleich gebaut wie Gl. 7b, so dass nun für diesen auch der auf Gl. 13a aufgebaute Satz gilt, nur haben wir anstelle der wirklichen Blindleistungen X, Y und Z die um $\frac{A^{\prime\prime}}{2\,A^{\prime\prime\prime}}$ bzw. $\frac{B^{\prime\prime}}{2\,B^{\prime\prime\prime}}$ bzw. $\frac{C^{\prime\prime}}{2\,C^{\prime\prime\prime}}$ vergrösserten Blindleistungen X^\prime , Y^\prime und Z^\prime . Diese müssen übrigens im gleichen Verhältnis zueinander stehen, wie ohne Berücksichtigung der Erregerverluste, wir haben also wiederum:

$$A'''X' = B'''Y' = C'''Z'$$
 (13 b)

wo $A^{\prime\prime\prime}$, $B^{\prime\prime\prime}$ und $C^{\prime\prime\prime}$ mit den ursprünglichen Koeffizienten A, B und C übereinstimmen.

C. Anwendungsbeispiele.

Einige Beispiele mögen das Vorgehen noch besser erläutern:

Es sei $P_{\text{b total}} = 20\ 000\ \text{kVAr}$,

ferner: $f_1 = \text{Fr. } 80.\text{--/kW}$; $t = \frac{1}{2}$ Stunde; $p_1 = 2$ Rp./kWh; $p_2 = 3$ Rp./kWh; $p_3 = 5$ Rp./kWh; $R_1 = 0.5$ Ohm; $R_2 = 1.0$ Ohm; $R_3 = 0.8$ Ohm. Dann erhalten wir zunächst bei Maximalbezug vom Werk 1:

$$R'_1: R'_2: R'_3 = 0.5 \cdot 80: 0.03 \cdot 0.5 \cdot 1.0: 0.05 \cdot 0.5 \cdot 0.8$$

= $40.0: 0.015: 0.02$

$$\frac{1}{R'_1} = 0.025; \quad \frac{1}{R'_2} = 66.50; \quad \frac{1}{R'_3} = 50.0$$

somit $P_{b1}: P_{b2}: P_{b3} = 0.025:66.5:50.0$

(15)
$$P_{b1} = 20000 \cdot \frac{0,025}{66.5 + 50 + 0,025} = 4,3 \text{ kVAr}$$

$$P_{b2} = 20000 \cdot \frac{66,5}{66,5 + 50 + 0,025} = 11400 \text{ kVAr}$$

 $P_{b3} = 20000 \cdot \frac{50}{66,5 + 50 + 0,025} = 8600 \text{ kVAr}$

Man sieht, was man übrigens auch vermuten konnte, dass auf das Kraftwerk K_1 , das in dieser Zeit sein Leistungsmaximum hat, nur ein verschwindend kleiner Bruchteil des Blindleistungsbezugs kommt. Im wesentlichen wird er über die beiden andern Kraftwerke bezogen.

Für den Fall der Gl. 14b ergibt sich:

$$R'_1: R'_2: R'_3 = 0.02 \cdot 0.5 \cdot 0.5 \cdot 0.03 \cdot 0.5 \cdot 10 : 0.05 \cdot 0.5 \cdot 0.8$$

= $0.005 : 0.015 : 0.02$

somit
$$\frac{1}{R'_1} = 200$$
; $\frac{1}{R'_2} = 66.5$; $\frac{1}{R'_3} = 50.0$

und
$$P_{b1}: P_{b2}: P_{b3} = 200:66,5:50$$
, also

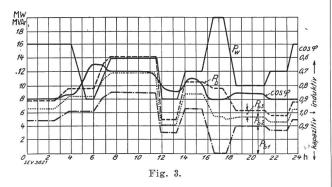
$$P_{b1} = 20000 \cdot \frac{200}{200 + 66.5 + 50} = 12650 \text{ kVAr}$$

$$P_{b2} = 20000 \cdot \frac{66,5}{200 + 66,5 + 50} = 4200 \text{ kVAr}$$

$$P_{b3} = 20000 \cdot \frac{50}{200 + 66.5 + 50} = 3150 \text{ kVAr}$$

Auf Grund dieser Berechnungsmethode kann ein Blindleistungsverteilungsplan festgelegt werden.

Man stellt für das normale Tages- und Nacht-Belastungs-Diagramm und der cos φ -Streifen die Verteilung der Gesamt-Blindleistung fest. Ebenso ermittelt man für die einzelnen Bezugsquellen die



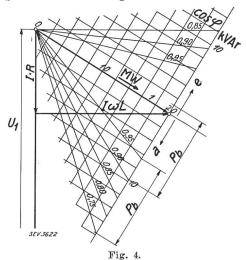
für die Verlustkostenberechnung massgebenden kWh-Preise und kW-Preise und die Ohmschen Uebertragungswiderstände für die Leitungen und Transformatoren, bezogen auf ein und dieselbe Spannung, z. B. die Netzspannung. Auf Grund der Berechnungsmethode ergibt sich dann zunächst die

Aufteilung der Gesamtblindleistung auf die einzelnen Bezüge, womit es möglich wird, einen Betriebsplan für die Blindleistungsquoten der einzelnen Bezüge aufzustellen.

In diesem Plan können dann durch Markierungen auch die zufolge der cos φ -Klauseln einzuhaltenden Grenzen, sowie die durch die Impedanzen und Regulierorgane vorgeschriebenen Grenzen eingetragen werden; beide Grenzen sind noch abhängig vom Wirkleistungsbezug (Fig. 3).

D. Der resultierende Gesamtgewinn.

Damit sind wir in der Lage, den totalen Uebertragungsverlustgewinn für die wirtschaftlichste Verteilung der Blindleistungen vor und nach einer



Spannungsdiagramm bei konstanter Belastung.

 U_1 Hauptspannung. 1R Ohmscher Spannungsabfall bei $\cos \varphi = 1.$ 1wL Induktiver Spannungsabfall bei $\cos \varphi = 1.$

 P_b Kondensatorleistung. Spannungsabfall (Erhöhung) infolge rein kapazitiver Be-

a Spannungsabfall infolge rein induktiver Belastung.

cos φ -Verbesserung zu berechnen. Auf Grund von Fig. 4 bestimmt man für die verschiedenen totalen Blindleistungsbezüge P_b sowohl für den Tag der Höchstleistung, als auch für einen typischen Tag die wirtschaftlichste Aufteilung der Gesamtblindleistung auf Grund der vorhandenen Energiepreise für die Uebertragungsverluste.

Sodann bestimmt man unter Abzug der vorgesehenen Kondensatorenleistung die neuen totalen Blindleistungsbezüge und deren Aufteilung auf die verschiedenen Uebertragungsleitungen auf Grund der oben angewandten Energiepreise.

Die Differenz der auf das Jahr berechneten Verlustkosten vor und nach der $\cos \varphi$ -Verbesserung ergibt sodann den Bruttogewinn.