Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 24 (1933)

Heft: 8

Rubrik: Mitteilungen SEV

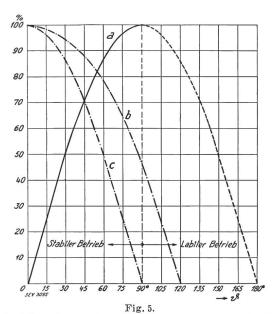
Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use


The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Störung ist aber dank der Miterfassung des Stabilitätswinkels in das Reguliersystem unmöglich dadurch, dass die kritische Situation des Betriebes automatisch erfasst wird und noch vor dem Zusammenbruch der synchronisierenden Leistung die stabilitätserhaltenden Wirkungen mittels des stark

174

Abhängigkeit der synchronisierenden Leistung und der Wirkleistung vom Stabilitätswinkel ϑ der Uebertragung.

- Wirkleistung eines Synchrongenerators. Synchronisierende Leistung einer Schenkelpoltype. Synchronisierende Leistung einer Vollpoltype.

anschwellenden Steuerstromes eingeschaltet werden. Die Rapidität dieser Anschwellung kann man durch passende Lichtschlitzformen und durch Zusatzschlitze beliebig einstellen. Beim grössten Stabilitätswinkel oder Kippwinkel überdecken sich die Lichtschlitze vollständig, es kann der maximale Lichtstrom durchtreten. Bei Synchronmaschinen mit Schenkelpolen müsste man allerdings berücksichtigen, dass die synchronisierende Leistung infolge der Unterschiedlichkeit in der Längs- und Querrichtung des Hauptkraftflusses erst bei $\vartheta \approx$ 120° verschwindet, während dies bei Vollpolsynchronmaschinen schon bei $\vartheta = 90^{\circ}$ der Fall ist (Fig. 5).

3. Allgemeine Bemerkungen.

Der Apparat müsste mit seiner Solenoidspule, je nachdem Wirk-, Blind- oder Scheinleistungsregelung gewünscht wird, entsprechend auf Strom- und Spannungswandler geschaltet und am Anfang und Ende einer Kuppelleitung vorgesehen werden. Er kann überall da angewendet werden, wo die Längsimpedanz der Stromlieferungsbahn eindeutig definiert ist (Einfach- und Doppelleitung) und die konstanten Spannungen an den Enden derselben für eine gegebene Richtung der Wirk- und Blindenergie festliegen. Seine Verwendung bei komplizierteren Netzschaltungen bedarf allerdings näheren Studiums. Auch muss gesagt werden, dass trotz der ausserordentlich hohen Reguliergeschwindigkeit des Apparates eben doch eine Reihe von Zeitkonstanten (z. B. der Solenoidspule, der Stromwandler, der Haupt- und Hilfserregermaschinen, der Generatorhauptfeldspulen) die Geschwindigkeit der Steuerung reduzieren. Dieser Umstand könnte dadurch gemildert werden, dass man die Zeitkonstanten von Stromwandler- und Solenoidspule durch besondere Formgebung sehr klein zu halten trachtet, Hebelübersetzungen oder dergleichen vorsieht und schliesslich auf die Haupt- und Hilfserregermaschinen ganz verzichtet, indem man das Hauptfeld der Generatoren direkt durch den vom Photozellenstrom gittergesteuerten Anodenstrom des Gleichrichters erzeugt.

Technische Mitteilungen. — Communications de nature technique.

Schnellkocher.

621.364.5 Wie wir erwarteten, sind uns auf den Artikel «Neue Lösungen des Problems der kleinen und schnellen elektrischen Kochgelegenheit» 1) verschiedene Erwiderungen eingegangen, die wir im folgenden kurz resümieren wollen, indem es uns von vorneherein klar war, dass dieses etwas heikle Problem von verschiedenen Seiten beleuchtet werden muss und die einseitige Einstellung auf möglichst rasches Kochen schwerwiegende Nachteile haben kann.

Aus Fabrikantenkreisen wird vor allem dem durchaus begreiflichen Unbehagen Ausdruck gegeben, dass im Bulletin Gebrauch und Kauf typischer Auslandsprodukte angepriesen werden, denen wohl bestechend gute Eigenschaften nachgesagt würden und somit indirekt die einheimischen Produkte herabsetzen. Demgegenüber ist allerdings zu sagen, dass, wie alle Artikel im Bulletin, auch dieser vorliegende keinen propagandistischen Charakter haben kann und soll, sondern nur allgemein den Lesern Resultate technischer Arbeit zur Kenntnis bringen und eventuell zur Diskussion stellen wollte. Dann wird mit Recht darauf aufmerksam gemacht, dass die einheimischen Fabriken natürlich ohne weiteres auch hochbelastete Kochgeräte herstellen können und das auch schon vor Jahren taten, und dass es

überhaupt die Schweizerfabriken waren, die der Verbreitung des elektrischen Kochens den Weg bereitet hatten, lange bevor die Sache im Ausland ernsthaft aufgenommen wurde. Man kam aber bei uns von den hochbelasteten Kochapparaten in jeder Form ab, einmal weil die Elektrizitätswerke aus Gründen der Anschlussmöglichkeit und der Installation die Anwendung derselben nicht wünschten und dann, weil es mit einer seriösen Geschäftsführung als unvereinbar erachtet wurde, dem Publikum Apparate zu verkaufen, die bei der ersten kleinen Unvorsichtigkeit des Bedienenden («trockengehen») defekt gehen müssen und sogar grosse Gefahren für Personen und Sachen (Brände!) verursachen.

Dieser Punkt ist nun allerdings sehr wichtig, da gerade in letzter Zeit in der Hausinstallations-Vorschriften-Kommission des SEV und VSE in sehr eingehenden Verhandlungen die Frage der Feuersicherheit der elektrischen Kocher behandelt und unter dem Druck der Argumente der Brandversicherungsanstalten die Vorschriften für die Verwendung und den Bau von Kochern so verschärft wurden, dass die im Artikel beschriebenen Geräte in dieser Form wahrscheinlich nicht zugelassen werden könnten, so dass also bei Empfehlung oder gar Kauf derselben sehr Vorsicht am Platz ist.

Ferner wird darauf hingewiesen, dass die Anordnung mit der durchbohrten Kochplatte aus Gründen der Konstruktion und der Reinigung zu Bedenken Anlass gibt, da sie

¹⁾ Bull. SEV 1933, No. 6, S. 138.

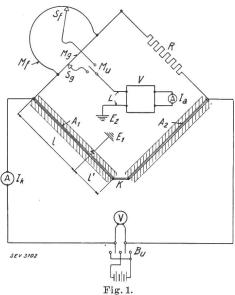
nicht dauerhaft gut sein könne, und es fraglich erscheine, ob überhaupt ein zuverlässiger Schalter, der den Anforderungen voll entspreche, gefunden werden könne.

Aus all dem wird gefolgert, dass beim Berichten über solche typische Spezialgebiete der Technik, wo nur dem Spezialisten alle Schwierigkeiten der Konstruktion aus vielen schmerzlichen Erfahrungen bekannt sind, Vorsicht am Platze

Von Seiten der Werke wird uns geschrieben, dass die AEG-Einzelkochplatte, da wo elektrische Kochherde vorhanden sind, keinen Vorteil biete, weil an solchen Orten der elektrische Herd so gebaut und mit Kochplatten ausgerüstet sein soll, dass Zusatzgeräte und vor allem Einzelkochplatten mit besonderm Anschluss vermieden werden können. Es ist heute möglich, 18-cm-Kochplatten bis maximal 1500 Watt mechanisch solid auszuführen. Mit diesen Kochplatten kann man sehr rasch kochen und da auf diesen Kochplatten von 18 cm Durchmesser mit sehr guter Ausnützung Kochtöpfe von 16 cm & benützt werden können, so ist das Bedürfnis nach einer 14,5-cm-Platte nicht mehr so gross wie früher. Zudem hat die Praxis gezeigt, dass 14-cm-Kochplatten nicht genügend solid gebaut werden können.

Zum Prometheus-Einzelkocher ist zu bemerken, dass dieser mit seiner eingebauten Leistung von 1800 Watt und beim Fehlen eines Temperaturbegrenzers als brandgefährlich bezeichnet werden muss. Ferner können diese Kochgeräte, die normalerweise zweileitrig zwischen Pol- und Nulleiter geschaltet werden, nicht ohne weiteres an jede Steckdose angeschlossen werden, da die Zuleitungen zu Steckdosen meistens nur mit 1-mm²-Draht, der bloss mit 6 A abgesichert werden darf, ausgerüstet sind. Stromverbraucher mit einer grössern Strombelastung als 6 A müssen aber für Polspannung gebaut sein. Demnach sind für die empfohlenen Kocher besondere Steckdosenleitungen zu erstellen, was den Käufern aber zum voraus gesagt werden muss, weil dies mit Kosten verbunden ist.

Es wird dann der Auffassung Ausdruck gegeben, dass eine allfällige Propaganda für die zwei beschriebenen Erzeugnisse nach den betreffenden Werksvorschriften verfrüht wäre und dass noch exaktere Untersuchungen, namentlich auch auf sicherheitstechnischem Gebiet abgewartet werden sollten.


Endlich möchten wir nicht unterlassen, darauf hinzuweisen, dass an der Mustermesse von einer Firma «Kocher» gezeigt wurden, die den unbestreitbaren Vorteil der kurzen Kochzeit auf andere Weise, speziell auch durch guten Wärmeübergang und kleine zu erwärmende Massen im Gerät selbst zu erreichen suchen.

Fehlerortsmessungen an Hochspannungskabeln.

Die meisten der bisher üblichen Verfahren zur Bestimmung von Fehlerstellen (speziell Erdschlußstellen) in Hochspannungskabeln beginnen zu versagen, wenn die Uebergangswiderstände an der Erdschlußstelle in die Grössenordnung von 0,1 bis 1 Megohm übergehen. Diese hohen Uebergangswiderstände können entstehen, wenn zwischen dem Zeitpunkt des Erdschlusses und demjenigen der Fehlermessung die noch nicht ausgebrannte Durchschlagstelle im abgeschalteten Kabel durch nachsickerndes Oel wieder «versiegelt» wird. In der Zeit, welche bei Störung für die Durchführung der nötigen Schaltungen und die Herbeischaffung und Inbetriebsetzung der Kabelmessapparatur erforderlich ist, kann in vielen Fällen dieses «Versiegeln» stattfinden.

Dr. von Ludwiger, Berlin, beschreibt 1) ein neu entwickeltes Messgerät zur Auffindung solcher Erdschlüsse mit hohem Uebergangswiderstand. Die Messanordnung geht aus Fig. 1 hervor. Die gestörte und eine gesunde Ader des Kabels von gleichem Querschnitt werden am Ende durch die Verbindung K überbrückt und bilden den einen Zweig der Gleichstrommessbrücke. Der andere Zweig wird durch das Messgerät gebildet und besteht aus dem festen Widerstand R von 60 Ω und den Schleifdrähten Mg und Mf (ebenfalls 60 Ω), die sukzessive für Grob- und Feineinstellung benützt werden können.

Als Brückenstromquelle wird ein tragbarer Akkumulator verwendet, dessen Betriebsspannung nach der Kabellänge zu wählen ist (ca. 2 V pro km einfache Länge). Für Aderquerschnitte zwischen 35 und 150 mm² werden entsprechend dieser Spanung 2 bis 9 A benötigt.

Schema der Messanordnung nach v. Ludwiger.

ema der Messanordnung nach v. Ludwiger. Fehlerhafte Ader.
Gesunde Ader (von gleichem Querschnitt).
Erdschlusstelle (Fehlerort).
Erdungsstelle des Verstärkers.
Kurzschlussverbindung der Aderenden.
Eingangsleitungen zum Verstärker.
Messdraht zur Grobeinstellung.
Messdraht zur Feineinstellung.
Messdraht-Umschalter.
St Schleifkontakte.
Brückenwiderstand = Messdrahtwiderstand.
Gleichstromröhrenverstärker.

Gleichstromröhrenverstärker.

Als sogenanntes «indirektes Nullinstrument» ist ein Gleichstromröhrenverstärker V verwendet, dessen Anodenstrom I_a durch die Gitterspannung (zwischen den Eingangsleitungen L) bestimmt wird. Diese letztere wird selbst ausschliesslich durch das Potential am Schleifkontakt festgelegt, da die andere Eingangsleitung an Erde liegt. Der vor der Messung eingestellte Anodenstrom bleibt während der Messung nur dann unverändert, wenn die Spannung an den Eingangsleitungen des Verstärkers selbst null ist, d. h. im abgeglichenen Zustand der Brücke. Der Verstärkerzweig ist dabei praktisch stromlos, die Erdungsstellen (und auch die Erdschlußstelle) führen keinen Meßstrom. Die Nullanzeige ist dadurch unabhängig vom Erdschlusswiderstand.

Für den Betrieb des Verstärkers werden benötigt: Drei 15-V-Anoden-Trockenbatterien und eine Akkumulatorenzelle für die Kathodenheizung. Im Verstärkergerät eingebaute Messinstrumente ermöglichen nicht nur die Messung des Anodenstromes (der eigentlichen Kontrollgrösse), sondern auch der Anoden- und Heizspannung sowie des Kabelstromes I_{K}

Die Voreinstellung der betriebsfertigen Brücke erfolgt zuerst mittels des Schleifkontaktes Sa auf einem kurzen Schleifdraht. Hernach wird auf den Schleifkontakt S, umgeschaltet, dessen 10 m langer Draht auf einer Walze aufgewickelt ist, so dass die Feinabstimmung möglich wird. Ist 1 mV Potentialgefälle pro 1 m Kabellänge (bei 2 V pro 1 km Hin- und 1 km Rückleitung) vorhanden, so wird die Fehlerortsgenauigkeit von ca. 1 m erreicht, da die eintretende Anodenstromänderung bei 1 mV Potentialänderung am Schleifdraht wahrgenommen werden kann.

Als Störquellen kommen Störspannungen zwischen den beiden Erdungsstellen (des Kabels und der Brücke) in Betracht. Zu ihrer Beseitigung ist eine Kompensationseinrichtung im Erdkreis des Verstärkers vorhanden. Zur Kontrolle sind zudem die Brückenstromquelle und die Verstärkerein-

¹⁾ Siehe Elektr.-Wirtsch. 15. Okt. 1932, Nr. 20, S. 436.

SEV 3162

Fig. 1.

gänge umpolbar. Die Widerstände der Zuleitungen vom Kabelende zur Messbrücke sind durch den hohen Schleifdrahtwiderstand von 60 Ohm vernachlässigbar gemacht.

Die Messapparatur wurde von Dr. von Ludwiger praktisch erfolgreich geprüft und es ist damit die Lage von Uebergangswiderständen bis 1 Megohm auch an sehr kurzen Kabelstücken festgestellt worden. Die Verstärkerapparatur allein ist auch in Verbindung mit Kabelmessgeräten anderer Herkunft verwendbar. Hingegen erweist sich der hohe Widerstand der Schleifdrähte als besonders günstig für die Messgenauigkeit. R. Spieser.

Absuchen von Mittelspannungs-Freileitungen nach Isolatoren mit Haarrissen 1).

621.315.623:621.315.1.00.45 Mit einem neuen Gerät, dem «Absuchspiegel», kann das betriebsmässige Absuchen von Freileitungen nach Isolatoren mit Haarrissen erfolgen, ohne dass die Leitung spannungslos gemacht werden muss. Die zur Zeit übliche Methode,

nach welcher geschulte Leute die Maste der abgeschalteten Leitung besteigen und die einzelnen Isolatoren aus nächster Nähe untersuchen, besitzt den Nachteil des Unterbruches der Energielieferung, besonders wenn keine Ringleitung vorhanden ist. Isolierrohres

Der «Absuchspiegel» besteht aus einem am obern Ende eines 2 bis 3 m langen angebrachten Doppelspiegel. beweglichen Durch das Isolierrohr ist ein zweites, drehbares Isolierrohr geführt, das an seinem unteren Ende in einen Knopf ausläuft. Durch Drehen des Knopfes kann dem Doppelspiegel jede gewünschte Lage gegeben werden. Der mit der Prüfung beauftragte Monteur ist nun, nach-

Beanstandete Isolatoren in % der untersuchten.

				Tabel	re r.		
				1931			
Jahr	1928	1929	1930	abge- stiegen	abge- spiegelt		
Gefundene zweiteilige Stützisolatoren mit Haarrissen in % der untersuchten Isolatoren	1,20	1,38	1,19	1,80	2,60		
Gefundene Stützisolatoren mit anderen Beschädigungen in % der untersuchten Isolatoren	0,61	0,83	0,22	0,15	0,52		

Tabelle 1 zeigt das Resultat der jährlichen Prüfungen der Stützisolatoren eines 2000 km langen Mittelspannungsnetzes. In den letzten vier Monaten des Jahres 1931 waren in diesem Netz 20 Spiegel in Gebrauch, die infolge der günstigen Witterung bis Mitte Dezember verwendet werden konnten. In dieser Zeit wurden 500 km Leitungen abgespiegelt und die in der Aufstellung genannten Prozentzahlen beschädigter Isolatoren gefunden. Wie aus einem Vergleich der in den Rubriken «abgestiegen» und «abgespiegelt» stehenden Prozentzahlen hervorgeht, konnte mittels Spiegel eine grössere Zahl von Haarrissen und sonstiger Beschädigungen an den Isolatoren gefunden werden, als beim Absuchen ohne Verwendung des Spiegels. Es muss jedoch hervorgehoben werden, dass frische, vollkommen weiss erscheinende Haarrisse mit dem Spiegel nicht gefunden werden können. Der Verfasser 1) ist aber der Ansicht, dass Risse solchen Aussehens nur sehr wenig tief sein können und dass sie die Durchschlagsfestigkeit des Porzellans nur unwesentlich herabsetzen. Es komme vielmehr in erster Linie darauf an, die älteren, verbreiterten und vertieften Risse, in denen sich bereits Staub festgesetzt hat, festzustellen. Solche Risse würden mit dem Spiegel unfehlbar gefunden.

Beim Abspiegeln arbeiten immer zwei Mann in geringem Abstand, um sich, wenn nötig, unterstützen zu können. ersuche ergaben, dass bei einer solchen Arbeitsweise die Arbeitsleistung pro Mann etwa sechs Masten pro Stunde war,

die Wegzeiten mitgerechnet.

Der Verfasser schliesst wie folgt: «Die Erfahrungen haben gezeigt, dass mit Hilfe des neuen Verfahrens dadurch Ersparnisse erzielt werden, dass das Abspiegeln an Wochentagen durch das Bezirkspersonal erfolgt. Die Ersparnisse liegen demnach in den kürzeren Wegzeiten, in den geringeren Ausgaben an Auslösung und an Fahrgeldern. Ausserdem fallen die Sonntagsstunden fort. Der Hauptvorteil des Abspiegelns besteht jedoch in der Verkürzung der Abschalt-M. Forter.

Die automatische Parallelschaltanlage im Kraftwerk Kembs.

Das Rheinkraftwerk Kembs enthält wohl die grössten Generatoren (31 000 kVA, 75 U/m), die mit automatischen Parallelschaltapparaten versehen sind. Diese Parallelschalteinrichtung (Brown Boveri) ist besonders auch im Hinblick auf das verwendete «Wahlsystem» für die Spannungswandler interessant.

Will man sich nicht nur auf die Aufmerksamkeit des Schaltwärters verlassen, so muss man in Anlagen, in denen aus Ersparnisgründen nicht auf beiden Seiten des Oelschalters Spannungswandler angeordnet sind, die Sekundärleitungen des richtigen Sammelschienen- oder Leitungsmesswandlers automatisch zur Parallelschalteinrichtung führen. Diese «Wahlschaltung» wird gewöhnlich mit Hilfskontakten an den Trennern bzw. Oelschaltern hergestellt, damit die Kontrolle der Phasengleichheit und der Frequenzübereinstimmung im-

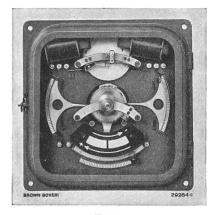


Fig. 1. Selbsttätiger Brown Boveri-Parallelschaltapparat.

mer zwischen den zwei Anlageteilen wirklich erfolgt, die durch die Stellung der Trenner für die beabsichtigte Parallelschaltung vorbereitet sind.

In Kembs werden für die Parallelschaltung nicht Sammelschienenmesswandler verwendet, sondern der Synchronismusvergleich erfolgt immer zwischen der zuzuschaltenden

¹⁾ Wesche, Elektr.-Wirtsch., 30. Sept. 1932.

Maschine oder Leitung und dem aus weiteren Maschinen bzw. Leitungen bestehenden Betriebskomplex 1). Es kann also für den Vergleich irgendein Spannungstransformator der schon auf demselben Betrieb befindlichen Maschinen oder Leitungen benützt werden. Die Kombination der Trenner bzw. Oelschalter-Hilfskontakte muss jedoch dafür sorgen, dass ein Messwandler gewählt wird, der wirklich zu dem Betrieb gehört, auf den das neue Aggregat zugeschaltet wird.

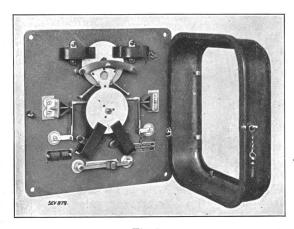


Fig. 2.

Synchronisierregler für die automatische Steuerung des Drehzahlreglers von Antriebmaschinen zu Wechselstromgeneratoren. (Aus Bull. SEV 1929, S. 295).

Es kommt noch hinzu, dass in Kembs ausser dem selbsttätigen Parallelschaltapparat noch ein Synchronisierregler verwendet wird, welcher die Drehzahl der zuzuschaltenden Maschine automatisch beeinflusst, bis Frequenz- und Phasenübereinstimmung vorhanden sind. Dies bedingt eine dreiphasige Führung des Wahlschaltungssystems; deshalb und auch mit Rücksicht auf die Tatsache, dass mehrere Trenner

bzw. Oelschalter hintereinander die Wahlschaltung beeinflussen müssen, hat man für die Wahlschaltung einen Gleichstromhilfskreis genommen. Die ganze Wahlschaltung ist infolgedessen einpolig und sehr einfach. Die Zuschaltung des gewählten Leitungsmesswandlers geschieht dann mit Hilfe eines dreipoligen Schützes, der vom Gleichstromhilfskreis betätigt wird. Diese selbsttätige Synchronisier- und Parallelschalteinrichtung hat sich auch in Kembs bewährt. Die Wartezeit beträgt nur 30 bis 60 Sekunden, wobei die Ausschläge der Wattmeter bei der Parallelschaltung unbedeutend sind. Dies ist ein deutlicher Beweis dafür, dass man auch mit Maschinen grösster Leistung eine rasche Synchronisierung erreichen kann, ohne dass man zu dem komplizierten und nicht immer befriedigenden Mittel der Grobsynchronisierung greifen muss.

Mit Rücksicht auf die besonderen Betriebsverhältnisse der Anlage kann die automatische Parallelschalteinrichtung so eingestellt werden, dass ein genaues Parallelschalten noch bei Spannungsunterschieden von ca. 30 % erfolgt. Die vorhandenen Transformatoren und Leitungsimpedanzen bewirken, dass diese im Betrieb oft unvermeidliche Spannungsdifferenz beim Parallelschalten keine störenden Stromstösse bewirkt.

Mit dem auch in Kembs verwendeten BBC-Parallelschaltapparat sind seit seiner Erstausführung für das E.W. Aarau²) bereits über 400 Kraftwerke und Schaltstationen ausgerüstet worden. Die Arbeitsbedingungen für die automatische Parallelschalteinrichtung sind stark vom Charakter der parallelzuschaltenden Einheiten und des Netzbetriebes abhängig. Bei Generatoren kleiner Leistung ist die Turbinenregulierung oft primitiver Art, was zusammen mit einem geringen Schwungmoment Bedingungen ergibt, die an das rasche Arbeiten der automatischen Parallelschalteinrichtung sehr hohe Anforderungen stellen; einerseits darf die Wartezeit nicht allzu lang werden, anderseits sind gerade in Netzen kleiner Leistung Leistungsstösse bei ungenauem Parallelschalten unzulässig. Aber auch in diesen Anlagen kleiner und kleinster Leistung hat sich die automatische Parallelschalteinrichtung bewährt. Sie bildet einen der Hauptbestandteile der Apparatur automatischer Kraftwerke. W. Marolf.

Wirtschaftliche Mitteilungen. — Communications de nature économique.

Ueber das Verhältnis der Energiepreise für Licht, Wärme und motorische Kraft.

Sehr oft hört man seitens der Abonnenten den Vorwurf, es sei doch nicht recht, für Wärme und motorische Kraft viel niedrigere kWh-Preise zu verlangen als für die Beleuchtung; dadurch müssten die Lichtabonnenten den Wärmeund Kraftbezügern einen Teil der Energiekosten tragen helfen. Es ist oft nicht leicht, dem Publikum diese vielfach tief eingewurzelte und oft absichtlich verbreitete falsche Meinung zu widerlegen. Ich habe deshalb versucht, mit genauen Erhebungen die wirklichen Verhältnisse, wie sie heute im allgemeinen für die Tarifbildung vorherrschen, zu untersuchen, um feststellen zu können, warum die Lichtenergie am meisten kosten muss und in welchem Verhältnis der Lichtpreis zum Preis der zu andern Zwecken, wie Wärme und Kraft, gebrauchten Energie stehen soll. Dieses Verhältnis wurde für die Ortschaft Langenthal untersucht.

Die Energieabgabe ist in die drei üblichen Kategorien, Beleuchtung inkl. Kleinapparate, Wärme und motorische Kraft unterteilt. Die Verarbeitung des Zahlenmaterials per 1932 ergibt folgendes:

- 1. Beleuchtung inkl. Kleinapparate:
 Anschlusswert = 3517 kW, Konsum = 895 745 kWh.
 Gebrauchsdauer = 895 745 : 3517 = 253 Stunden.
- Wärme (Heisswasserspeicher, Kochherde etc.):
 Anschlusswert = 2302 kW, Konsum = 3564470 kWh.
 Gebrauchsdauer = 3564470:2302 = 1550 Stunden.
- 3. Motorische Kraft:
 Anschlusswert = 2266 kW, Konsum = 2216525 kWh.
 Gebrauchsdauer = 2216525:2266 = 976 Stunden.

Die Gebrauchsdauer der angeschlossenen Leistung für die drei Kategorien ist also sehr verschieden. Setzt man diejenige für Wärme, d. h. 1550 = 1, so ist die für Kraft = 1550:976 = 1,6 mal kleiner, die für Beleuchtung 1550:253 = 6,1 mal kleiner. Weil der auf die kWh entfallende Kostenanteil für Kapitaldienst und Unterhalt von der Gebrauchsdauer abhängig ist, geht aus den gefundenen Gebrauchsdauern hervor, dass eben der Kostenanteil für Beleuchtung viel grösser ist als für Wärme und Kraft. Wendet man die gefundenen Verhältniszahlen auf den Tarif an, so ergeben sich z. B. folgende Werte.

Nimmt man an, der mittlere Erlös für Wärme betrage 4 Rp./kWh, so soll die Kraft 1,6·4 = 6,4 Rp. und die Beleuchtung 6,1·4 = 24,4 Rp./kWh abwerfen. Dieser Preis von 24,4 Rp./kWh berücksichtigt aber die viele Kleinarbeit, welche die Lichtabonnemente für das Inkasso, Zählerwesen etc. verursachen nicht und trägt auch dem Umstande, dass vielerorts keine oder nur geringe Zählermieten verlangt werden, nicht Rechnung. Schliesst man diese nicht zu vernachlässigenden Faktoren in die Rechnung ein, so darf das Verhältnis Licht zu Wärme wenigstens 8:1 bis 10:1 betragen, d. h. im erwähnten Beispiel soll das Licht 32 bis 40 Rp./kWh abwerfen.

Obschon der Faktor «Gebrauchsdauer» nicht das einzige preisbestimmende Element ist, hat er doch grosse Wichtigkeit. Jedenfalls wird die Disponibilität ab Kraftwerk durch ihn weitgehend bestimmt, so dass man für die Abschätzung der Tarife für die drei erwähnten Energiebezüger auf die Gebrauchsdauer abstellen kann, ohne von den wirklichen Verhältnissen weit entfernt zu sein.

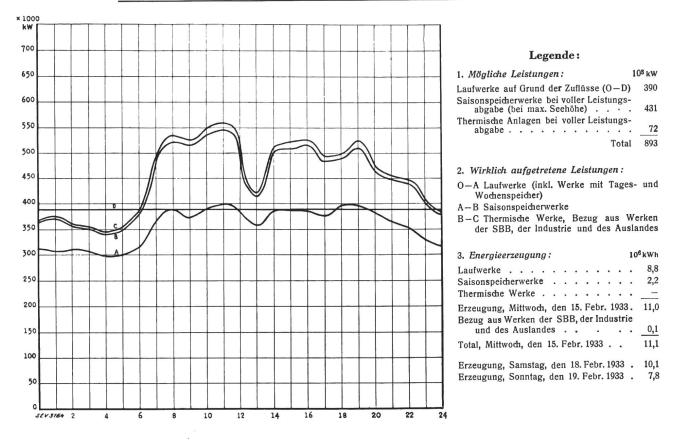
¹⁾ Dieselbe Anordnung besitzen auch das 1923 gebaute Unterwerk Toess der NOK und einige weitere neuere Anlagen in der Schweiz.

²⁾ Schweiz. Techniker-Z. vom 18. April 1918.

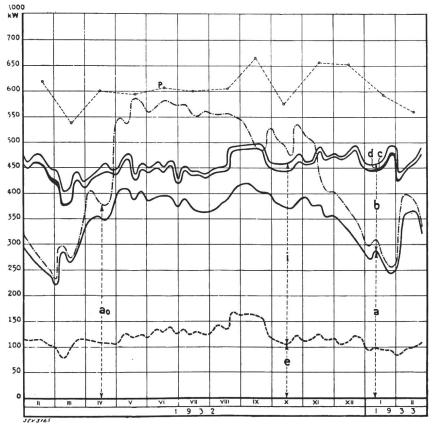
Energiestatistik

der Elektrizitätswerke der allgemeinen Elektrizitätsversorgung. Bearbeitet vom Eidg. Amt für Elektrizitätswirtschaft und vom Verband Schweizerischer Elektrizitätswerke.

Die Statistik umfasst die Energieerzeugung aller Elektrizitätswerke für Stromabgabe an Dritte, die über Erzeugungsanlagen von mehr als 300 kW verfügen. Sie kann praktisch genommen als Statistik aller Elektrizitätswerke für Stromabgabe an Dritte gelten, denn die Erzeugung der nicht berücksichtigten Werke beträgt nur ca. 0,5 % der Gesamt-


Nicht inbegriffen ist die Erzeugung der Schweizerischen Bundesbahnen für Bahnbetrieb und der Industriekraftwerke für den eigenen Bedarf. Die Energiestatistik dieser Unternehmungen wird jährlich einmal in dieser Zeitschrift erscheinen.

Energieerzeugung und Bezug										Speicherung				
Hydraulische Erzeugung				Bezug aus Anlagen der Energie- SBB und der Einfuhr Industrie		Total Erzeugung und Bezug		Ver- ände- rung gegen Vor-	Energieinhalt der Speicher am Monatsende		Aenderung im Berichtsmonat — Entnahme + Auffüllung			
1931/32	1932/33	1931/32	1932/33	1931/32	1932/33	1931/32	1932/33	1931/32	1932/33	jahr	1931/32	1932/33	1931/32	1932/33
				in 10	³ kWh					0/0		in 10	6 kWh	
2	3	. 4	5	6	7	8	9	10	11	12	13	14	15	16
305,6	302,8	0,7	0,3	8,1	9,2	_	• _	314,4	312,3	-0.7	395	478	- 2	+ 16
291,0	316,2	0,7	0,4	6,5	2,2	0,9	0,6	299,1	319,4	+6,8	359	455	- 36	- 23
308,1	318,3	1,0	1,1	7,9	3,9	0,9	0,6	317,9	323,9	+1,9	298	388	- 61	- 67
296,4	307,2	0,9	3,8	5,3	6,4	1,0	0,6	303,6	318,0	+4,7	246	279	- 52	-109
289,5	283,5	2,9	0,8	9,0	3,9	1,0	0,7	302,4	288,9	-4,5	139	229	-107	- 50
272,9		3,7		8,8		2,8		288,2			75		- 64	
289,6		0,4		2,0		3,6		295,6			66		- 9	
296,8		0,2		6,2		_		303,2		3	162		+ 96	
291,6		0,2		6,0		_		297,8			267		+105	
296,4		0,2		5,5		_		302,1			395		+128	
310,6		0,3		5,5		_		316,4			448		+ 53	
318,6		0,2		5,0		_		323,8			462		+ 14	
3567,1 1490,6	1528,0	11,4 6,2	6.4	75,8 36,8	25,6	10,2 3,8	2,5	3664,5 1537,4	1562.5	+1.6			_	
	1931/32 2 305,6 291,0 308,1 296,4 289,5 272,9 289,6 296,8 291,6 296,4 310,6 318,6 3567,1	Erzeugung 1931/32 1932/33 2 3 305,6 302,8 291,0 316,2 308,1 318,3 296,4 307,2 289,5 283,5 272,9 289,6 296,8 291,6 296,4 310,6 318,6	Erzeugung Erzeu 1931/32 1932/33 1931/32 2 3 4 305,6 302,8 0,7 291,0 316,2 0,7 308,1 318,3 1,0 296,4 307,2 0,9 289,5 283,5 2,9 272,9 3,7 289,6 0,4 296,8 0,2 291,6 0,2 296,4 0,2 310,6 0,3 318,6 0,2 3567,1 11,4	Hydraulische Erzeugung Thermische Erzeugung 1931/32 1932/33 1931/32 1932/33 2 3 4 5 305,6 302,8 0,7 0,3 291,0 316,2 0,7 0,4 308,1 318,3 1,0 1,1 296,4 307,2 0,9 3,8 289,5 283,5 2,9 0,8 272,9 3,7 289,6 0,4 296,8 0,2 291,6 0,2 296,4 0,2 310,6 0,3 318,6 0,2 318,6 0,2 3567,1 11,4	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung	Hydraulische Erzeugung


	Verwendung der Energie														
Monat	Haushalt, Landwirtschaft und Kleingewerbe		trie ¹)	Chem metallu und the Betri	rgische rmische	Bahnen ³)		Verluste, Eigenbedarf und Speicherpumpen- antrieb 4)				Ver- ände- rung gegen Vor-	Energie- ausfuhr		
	1931/32	1932/33	1931/32	1932/33	1931/32	1932/33	1931/32	1932/33	1931/32	1932/33	1931/32	1932/33	jahr ⁵)	1931/32	1932/33
						in 106	kWh						0/0	in 106	kWh
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Oktober	96,2	98,6	52,9	47,0	21,2	23,1	17,2	19,0	48,3	50,3	235,8	238,0	+ 0,9	78,6	74,3
November .	98,2	104,0	51,7	48,2	20,2	25,6	16,9	18,5	47,6	46,5	234,6	242,8	+ 3,5	64,5	76,6
Dezember .	112,5	115,0	52,1	50,1	15,5	19,1	19,4	19,8	50,5	47,6	250,0	251,6	+0,6	67,9	72,3
Januar	107,9	117,6	47,5	49,5	15,2	16,2	20,9	23,1	48,0	49,9	239,5	256,3	+7,0	64,1	61,7
Februar 6)	104,7	100,0	48,0	43,4	13,9	21,9	20,5	20,4	46,8	42,8	233,9	228,5	- 2,3	68,5	60,4
März	100,3		46,0		14,0		18,1		46,5		224,9			63,3	
April	89,6		45,9		22,2		20,7		45,2		223,6			72,0	
Mai	84,1		43,0		27,0		15,6		55,4		225,1			78,1	
Juni	81,9		42,5		24,8		15,3		48,8		213,3			84,5	
Juli	79,8		43,1		28,9		16,2		48,8		216,8			85,3	
August	83,3		44,4		28,4		16,3		46,4		218,8			97,6	
September .	87,2		47,0		25,9		15,3		46,5		221,9			101,9	
Jahr	1125,7		564,1		257,2 (86,1)		212,4		578,8 (64,8)		2738,2 (2673,4)			926,3	
Okt.bisFebr.	519,5	535,2	252,2	238,2	86,0 (19,7)	105,9 (46,2)	94,9	100,8	241,2 (9,2)	237,1 (12,4)	1193,8	1217,2 (1204,8)		343,6	345,3

¹⁾ Ohne Abgabe an chemische, thermische und metallurgische Betriebe.
2) Die in Klammern gesetzten Zahlen geben den Anteil der ohne Liefergarantie, zu «Abfallpreisen», abgegebenen Energie an.
3) Ohne die Energieerzeugung der SBB für Bahnbetrieb.
4) Die in Klammern gesetzten Zahlen geben den Verbrauch für den Antrieb von Speicherpumpen an.
5) Die in Klammern gesetzten Zahlen entsprechen der Abgabe in der Schweiz inkl. Verluste und Eigenbedarf, aber ohne den Verbrauch der Speicherpumpen.
6) Februar 1932 mit 29 Tagen!

Tagesdiagramm der beanspruchten Leistungen, Mittwoch, den 15. Februar 1933.

Jahresdiagramm der verfügbaren und beanspruchten Leistungen, Februar 1932 bis Februar 1933.

Legende:

- Mögliche Erzeugung aus Zuflüssen (nach Angaben der Werke)
- a₀ Laufwerke
- 2. Wirkliche Erzeugung
- a Laufwerke
- b Saisonspeicherwerke
- c Thermische Werke
- d Bezug aus Werken der SBB, der Industrie und des Auslandes
- 3. Verwendung:
- i Inland
- e Export
- 4. O-P Höchstleistung an dem der Mitte des Monats zunächstgelegenen Mittwoch.
- NB. Die unter 1-3 erwähnten Grössen entsprechen den durchschnittlichen 24-stündigen Mittwochleistungen.

Diese aus den Erfahrungen der Praxis errechneten Zahlen zeigen deutlich, dass das Licht eben am meisten kosten muss, weil die jährliche Benützungsdauer sehr klein ist. Die so oft gehörte Behauptung, das Licht müsse wegen der Wärme- und Kraftabgabe zu teuer verkauft werden, ist deshalb unrichtig.

Es wurden auch die Zahlen für das Jahr 1926 untersucht. Es ergaben sich folgende Werte für die Gebrauchsdauer der installierten Leistung:

Beleuch	tu	ng				423	h
Wärme						1458	h
Kraft						1010	h

Während sich die Gebrauchsdauern für Wärme und Kraft, verglichen mit dem Jahre 1932, nur wenig änderten, ist diejenige für Beleuchtung stark gesunken. Woher kommt nun das? Seit einigen Jahren wird grosse Propaganda gemacht, um das Publikum zu veranlassen, stärkere Lampen zu kaufen. Teilweise kommt das Publikum dieser Einladung nach, aber jedenfalls nur ein kleiner Teil, denn es wird in jeder Familie sehr darauf geachtet, dass die monatlichen Lichtrechnungen nicht grösser werden als in frühern Jahren. Wo stärkere Lampen sind, wird mehr gespart, d. h. die Leute lassen das Licht nicht länger brennen als unbedingt nötig ist, damit sich die Monatsrechnung nicht vergrössert. Die Kleinapparate, wie Einzelkocher, Heizkissen, Haartrockner, Teemaschinen etc., haben seit 1926 stark Eingang gefunden; deren Anzahl vermehrte sich um ca. 65 %. Diese Apparate werden aber verhältnismässig noch viel weniger gebraucht als das Licht, was zusammen mit der kürzeren Brenndauer der grösseren Lampen, das Sinken der Gebrauchsdauer der Kategorie Beleuchtung und Kleinapparate von 1926 bis 1932 erklärt; denn auf der einen Seite ist der Anschlusswert stark und auf der andern der kWh-Konsum nur schwach gestiegen.

Interessant ist die Feststellung, dass die Energieabgabe für Beleuchtung inkl. Kleinapparate von 1926 bis 1932 nur um 5 % zunahm, die Abgabe für Wärmezwecke dagegen um 131 % und die für motorische Kraft um 37 %. Auch diese Feststellung ist ein Fingerzeig, dass im Abbau der Licht-energiepreise grösste Vorsicht am Platze ist. Man darf keine grosse Steigerung der Energieabgabe für Beleuchtung erwarten; denn viele Abonnenten haben heute ein kleineres Einkommen und müssen sehr sparen. Wir machen die Erfahrung, dass viele Abonnenten monatlich um 20 bis 50 Rp.

kleinere Rechnungen haben als im Vorjahr.

Fritz Aeberhard, Verwalter, Langenthal.

Der Dieselmotor in Norditalien.

621.436:621.311 Im Geschäftsbericht 1932 der Società Lombarda per distribuzione di energia elettrica in Mailand, eine der grössern Produktions- und Energieverteilungs-Gesellschaften Norditaliens, mit einer Bilanzsumme von nahezu einer Milliarde Lire, ist auch der Einfluss der Wärmekraftmotor-Konkurrenz im allgemeinen und der Dieselmotor-Konkurrenz im besondern erwähnt. Wir entnehmen diesem Bericht folgenden Satz: «... Nachdem aber die Wirklichkeit den Erwartungen nicht voll entsprochen hat, speziell bezüglich Bequemlichkeit und Sicherheit des Betriebes, sind im verflossenen Jahre 1932 verschiedene unserer früheren Bezüger, welche den Dieselmotor installiert hatten — einige nach wenigen Jahren, andere sogar nach wenigen Monaten — schon wieder zu uns zum direkten Elektrizitätsbezug zurückgekehrt.» (Dazu hat gewiss auch das Wiederanziehen des Oelpreises mitgewirkt.)

Aus den Geschäftsberichten bedeutenderer schweizerischer Elektrizitätswerke.

S. A. «L'Energie de l'Ouest Suisse», Lausanne, sur l'année 1931.

(Par suite de circonstances particulières, notre extrait concernant ce rapport se trouve publié un peu en retard.)

En raison de la dépression dans les affaires industrielles
le mouvement d'énergie n'a pas augmenté.
Les recettes d'exploitation ont été de 2 808 643
Le selde estif de 1020 e (a) de
Le solde actif de 1930 a été de
Les frais d'exploitation et d'achat d'énergie se sont
élevés à
L'excédent des intérêts débiteurs sur les intérêts
créanciers a été de
Sur le solde de fr. 1 457 053
fr. 780 553 ont été consacrés à des amortissements et à des
versements à des fonds de réserve,
fr. 600 000 ont été distribués à titre de dividende (6 % du
capital versé),
fr. 30 000 ont été versés à titre de gratifications et de tan-
tièmes,
fr. 46 499 ont été reportés à compte nouveau.
Le capital action est de 18 millions, dont 8 ne sont pas
encore versés.
Le capital obligations est de 25 millions.
Les travaux de la Dixence avancent normalement.
A.C. Knaftwork Laufonhung nuo 1032

A.-G. Kraftwerk Laufenburg, pro 1932.

in of Matthewark Emurchang, pro 1902.						
Die im Geschäftsjahre abgesetzte Energiemenge betrug						
389,5·106 kWh, wovon 3,1·106 kWh Fremdenergie waren.						
Fr.						
Der Gewinn aus dem Betriebe betrug 5 727 530						
Der Ertrag aus den Beteiligungen erreichte 407 950						
Der Ertrag aus Aktivzinsen						
Diesen Gewinnposten stehen gegenüber:						
Die allgemeinen Unkosten mit 1672 707						
Die Passivzinsen mit 902 887						
Die Ausgabe für Fremdenergie 287 042						
Die Einlagen in verschiedene Reservefonds 1 276 800						
Die Aktionäre erhielten an Dividende (10 %) 2 100 000						
Der Verwaltungsrat an Tantièmen						
Die Gesamtanlagen, inklusive Warenlager, stehen mit						
47,5 Millionen Fr. zu Buche, die anderweitigen Beteiligungen						
mit 9,1 Millionen.						
Des Alexandresial between 91 Milliamen des Oblinesiamen						

Das Aktienkapital beträgt 21 Millionen, das Obligationenkapital 18 Millionen.

Schweiz. Kraftübertragung A.-G., in Bern, pro 1932.

Im Berichtsjahre wurden angekauft:

in Derichtejame warden angenaart.	K W II
von den Schweiz. Bundesbahnen	37 563 000
von den Nordostschweizerischen Kraftwerken .	14 930 553
vom Kraftwerk Laufenburg	7 354 147
vom Elektrizitätswerk Olten-Aarburg	10 944 747
von den Bernischen Kraftwerken und dem	
E.W. Bern	228 790
Verkauft wurden:	
an das Badenwerk	54 823 719
an die Bernischen Kraftwerke	4 856 000
an die Centralschweizerischen Kraftwerke	478 800
an die Nordostschweizerischen Kraftwerke	6 451 920
Ferner wurden transitiert:	
für das E.W. Olten-Aarburg	43 250 000
für das Kraftwerk Laufenburg	29 016 680
für die Nordostschweizerischen Kraftwerke	9 687 810
für das Kraftwerk Ryburg-Schwörstadt	1 806 590
Der Erlös aus dem Energiegeschäft betrug, inkl.	Fr.
Saldovortrag und Aktivzinsen	479 117
Die Kosten für Verwaltung, Betrieb und Unter-	117 111
halt betrugen	210 987
Die Abschreibungen und Einlagen in den Erneue-	210 /01
rungsfonds und den Reservefonds	164 643
Der Vortrag auf neue Rechnung	103 486
Es wird keine Dividende ausbezahlt.	100 100
Do wird Keine Dividende dusbezanit.	D

Das einbezahlte Kapital beträgt 4,2 Millionen. Die Anlagen stehen mit 4,831 Millionen zu Buche. Die S.K. hat sich mit Fr. 500 000 (10 %) am Aktienkapital der Gotthardleitung A.-G. beteiligt.

Gesellschaft des Aare- und Emmenkanals A.-G., Solothurn, pro 1932.

Die Energieabgabe betrug 96,73 \cdot 106 kWh, wovon 31,7 \cdot 106 kWh zu «Abfallpreisen» ohne Liefergarantie und 65,03 · 106 kWh zur allgemeinen Energieversorgung.

Von der abgegebenen Energie kamen 1,84 10⁶ kWh aus dem eigenen kleinen Kraftwerk Luterbach, der Rest wurde von den Bernischen Kraftwerken und dem Kraftwerk Olten-Aarburg geliefert.

Der Anschlusswert der installierten Verbrauchsapparate betrug am Ende des Jahres 54 011 kW (Beleuchtung 6673, Motoren 12 220, Bahnen 550, thermische Apparate 34 568 kW). Die Maximalbelastung betrug 25 654 kW.

	$\mathbf{Fr.}$
Der Bruttoertrag aus der Energielieferung betrug	2 939 409
Der Reinertrag aus dem Installationsgeschäft	55 326
Verschiedene andere Einnahmen beliefen sich auf	$133\ 530$
Diesen Einnahmen stehen gegenüber:	
Die Ausgaben für Energiebezug	2 045 245
Die allgemeinen Unkosten und diejenigen für Be-	
trieb und Unterhalt	603 418
Die Passivzinsen	95 671
Die Abschreibungen und Einlagen in den Reserve-	
fonds	230 000
Die Dividende von 5 %	150 000

Die Gesamtanlagen, inklusive Zähler- und Messeinrichtungen, die sich durch Ankäufe von den BKW und durch Erstellung neuer Leitungen und Transformatorenstationen vermehrt haben, stehen heute mit Fr. 5 091 377.— zu Buch. Das Aktienkapital beträgt 3 Millionen, das Obligationenkapital 1,5 Millionen.

Elektrizitätswerk Wynau A.-G., Langenthal, pro 1932.

Im Jahre 1932 wurden in den eigenen hydraulischen Anlagen 41 227 090 kWh erzeugt. Der Fremdenergiebezug und die Energieerzeugung mittels Dampfreserve und Dieselmotor betrugen 4856260 kWh. Der mittlere Erlös pro erzeugte und gekaufte kWh betrug 4,56 Rp. Die maximal abgegebene Leistung betrug 9450 kW, der Totalanschlusswert 21522 kW.

Die Gesamteinnahmen beliefen sich, inkl. Saldo-	Fr.
vortrag, auf	2 148 406
Die Passivzinsen beliefen sich auf	367 693
Die Betriebskosten auf	994 710
Die Abschreibungen aller Art und Einlagen in den	
Reservefonds betrugen	$632\ 031$
Die Zuwendungen an die Gemeinden	70 084
Die Dividende von 6 % an das einbezahlte Aktien-	
kapital betrug	60 000

Das Aktienkapital beträgt 5 Millionen, wovon aber nur 20 % einbezahlt sind. Es besteht daneben eine Obligationenschuld von 4,5 Millionen und eine Hypothekarschuld von 3,15 Millionen. Die gesamten Anlagen (inklusive Materialvorräte im Werte von Fr. 89 071) stehen mit 10,09 Millionen zu Buche.

Vom Schweizerischen Bundesrat erteilte Energieausfuhrbewilligung.

Der Elektrizitätswerk Olten-Aarburg A.-G. in Olten wurde eine vorübergehende Bewilligung (V 50) erteilt, während des Sommers 1933 im Maximum 3 000 kW unkonstanter elektrischer Energie an die Lonza G. m. b. H. in Waldshut auszuführen. Die vorübergehende Bewilligung V 50 kann jederzeit ganz oder teilweise zurückgezogen werden. Sie ist längstens bis 30. September 1933 gültig 1).

1) Bundesblatt 1933, No. 13, Bd. I, pag. 589.

Miscellanea.

In memoriam.

Max Fehr †. Mit dem am 14. März 1933 erfolgten Hinschied des Herrn Max Fehr, Direktor der Micafil A.-G., Altstetten-Zürich, verlor die schweizerische elektrotechnische Spezialindustrie einen ihrer sympathischsten Führer.

Max Fehr †
29. Mai 1884 — 14. März 1933.

M. Fehr erhielt seine berufliche Ausbildung an der Maschinenbauabteilung des Technikums Winterthur. Nach kurzer Tätigkeit bei der Firma J. J. Rieter & Cie. A.-G. in Töss wurde er bei der A.-G. Brown, Boveri & Cie. in Baden angestellt und kam damit in das noch junge Gebiet der elektrischen Isoliertechnik. In Anerkennung seiner Führereigenschaften wurde ihm bald die Leitung der Mikarta-Abteilung anvertraut. In die Zeit des Weltkrieges fällt seine Tätigkeit bei der Firma H. Weidmann A.-G. in Rapperswil. Im November 1918 war er Mitbegründer der Micafil A.-G., Werke für Elektroisolation, in Altstetten, deren erfolgreiche Leitung er fortan inne hatte und deren raschen Aufstieg zu einem der bedeutendsten Unternehmen dieser Art er erlebte, die anfänglich mühevollen Zeiten mit Kraft und Geschick überwindend. In den letzten Jahren wurde seine vorbildliche Energie, sein frisches und heiteres Wesen mehr und mehr durch Zeiten tückischer Krankheit gebrochen, die ihn schliesslich, gleichwohl unerwartet, aus dem Leben raffte. In Fehrs Schaffenszeit fällt die allgemeine Entwicklung der Isoliertechnik aus der früheren blossen Empirie zu einem durch wissenschaftliche Arbeit getragenen Zweig der elektrotechnischen Industrie. Die rechtzeitige Erkenntnis der Notwendigkeit solcher Entwicklung und verständnisvolles Handeln charakterisieren seine Geschäftsführung. Sein grosszügiges und doch vorsichtiges Wesen erleichterte stets die Einführung neuer, erfolgversprechender Produkte, die sich dem Fabrikationsprogramm ohne Zwang einordnen liessen. Schwierigkeiten haben ihn nie erschreckt; sie freuten ihn im Gegenteil im Hinblick auf die Mühen, die sie auch andernorts geben mussten. Seine Mitarbeiter schätzten an ihm ein grosses Geschick der richtigen Vereinigung strenger Führung mit einer gütigen, humorvollen, überall angenehm empfundenen Wesensart.

Kleine Mitteilungen.

Schiffahrts-Ausstellung in Rorschach. Der Nordostschweizerische Verband für Schiffahrt Rhein-Bodensee, St. Gallen, veranstaltet vom 28. Mai bis 16. Juli d. J. in Rorschach eine Schiffahrts-Ausstellung mit einer Schau der Rhein- und anderer Kraftwerke. Die Ausstellung wird eine reichhaltige Darstellung der Großschiffahrt von Rotterdam bis zum Bodensee, der Hafenanlagen in Plänen, Bildern und Modellen, der Wasserkraftnutzung mit ihren Relationen zu

den schweizerischen Spitzenwerken, der rheintalischen Binnenkorrektion und viel anderes bieten.

Conférence Internationale des Grands Réseaux électriques à haute tension. Nous rappelons la note publiée au Bulletin 1933, No. 3, p. 59, au sujet de la VII° session de la Conférence Internationale des Grands Réseaux électriques à haute tension, qui aura lieu à Paris du 18 au 24 juin 1933, et sommes en mesure d'ajouter les quelques précisions suivantes, susceptibles d'engager les hésitants à participer au prochain congrès:

Le droit d'inscription est de 375 fr. français (75 fr. suisses environ) ou même de 300 fr. seulement pour les membres de la Conférence. Il donne droit à la collection complète des rapports qui seront présentés, à l'entrée de la salle des séances, aux prix réduits sur les chemins de fer et dans les hôtels, aux voyages d'après-session, etc.

Ces réductions sont très importantes, puisque les chemins de fer français accordent aux participants régulièrement inscrits, ainsi qu'à leur femme et à leurs filles non mariées une réduction de 50 % sur le trajet de la frontière suisse à Paris et retour, avec faculté de quitter la France par une autre gare-frontière. Quant aux hôtels, le secrétariat général de la Conférence a obtenu d'un certain nombre d'entre eux — excellents hôtels du quartier aristocratique de l'Etoile des tarifs exceptionnels extrêmement bas en faveur des congressistes et des personnes qui les accompagnent. Il y a lieu en particulier de signaler des forfaits comportant un prix global pour un séjour de 7 jours pleins et comprenant la chambre, le petit déjeûner et un repas principal. Pour certains hôtels, ces forfaits atteignent 350 fr. français seulement!

A l'heure actuelle où la crise oblige beaucoup de monde à restreindre ses dépenses et même à supprimer tout superflu, l'importance des allégements financiers considérables consentis par nos amis français en faveur des participants à la session de juin n'échappera à personne, et nous souhaitons que nos compatriotes profitent nombreux de l'occasion qui leur est offerte de prendre part à des conditions si avantageuses à la 7e session de la Conférence internationale des Grands Réseaux, dont tous ceux qui ont assisté aux sessions précédentes sont demeurés de fidèles adhérents.

Pour tout renseignement complémentaire, s'adresser soit au président du Comité National Suisse pour la CIGR, M. P. Perrochet, Directeur, Malzgasse 32, Bâle, soit au secrétaire du Comité, M. H. Bourquin, ingénieur, Seefeldstrasse 301, Zurich.

Literatur. — Bibliographie.

620.92(494): 621.311.21(494) Nr. 720

Die verfügbaren Wasserkräfte der Schweiz unter besonderer Berücksichtigung der Speicherungsmöglichkeiten für die Erzeugung von Winterenergie. Erster Teil. Allgemeine Ausführungen und Speicherungsmöglichkeiten im Aaregebiet. Mitteilung Nr. 25 des Eidg. Amtes für Wasserwirtschaft, Bern. 165 S., A4, viele Fig. und Karten. Zu beziehen beim Sekretariat des Eidg. Amtes für Wasserwirtschaft und in den Buchhandlungen. Preis Fr. 25.

Die «Mitteilung Nr. 25» des Eidg. Amtes für Wasserwirtschaft erlaubt jedem Ingenieur, sich ein Bild zu machen über die Energiespeichermöglichkeiten im Aaregebiet. Sie ist eine grosse, gründliche, prächtig ausgestattete Publikation, die den Autoren alle Ehre macht und auch zeigt, dass sie mit finanziellen Mitteln zur Ausstattung erfreulicherweise

nicht zu kargen brauchen.

Es wurden 16 Projekte der nähern Untersuchung wert befunden, durchstudiert und durchgerechnet, und da stellte sich heraus, dass nach Ausbau der zweiten Oberhaslitalstufe (Werk Innertkirchen) im ganzen Gebiet der Aare keine Speicherungsmöglichkeit besteht, die auszubauen in absehbarer Zeit, d. h. solange Oel und Kohle zu den heutigen Preisen erhältlich sind, wirtschaftlich erscheinen könnte. Die Kosten, die sich für die erzeugbare Winterenergie ergeben, sind im Vergleich mit thermisch erzeugter Energie viel zu hoch. Was die Untersuchungen in dieser Hinsicht in der übrigen Schweiz ergeben werden, wissen wir heute noch nicht. Es ist wahrscheinlich, dass im Rhein-, Reuss- und Rhonegebiet Speichermöglichkeiten bestehen, deren Ausnützung wirtschaftlich ist.

Uebrigens ist auch eine zu einem negativen Resultate führende Arbeit wertvoll; sie wirkt abklärend und verhindert, dass Geld und Mühe für Studien ausgegeben werden, O. Gt. die sich nicht lohnen.

Die elektrische Kraftübertragung. II. Band. Die Niederspannungs- und Hochspannungs-Leitungsanlagen. III. Auflage. Von H. Kyser. 490 S., 16 × 24 cm, 395 Fig., 55 Zahlentafeln. Verlag: Julius Springer, Berlin 1932. Preis geb. RM. 34.-

Nun ist auch der zweite Band des bekannten Kyserschen Handbuches in dritter Auflage und damit in zeitgemässer Neubearbeitung erschienen 1). Der Stoff verteilt sich auf

drei Abschnitte, wobei der erste den elektrischen, der zweite den mechanischen Baubedingungen von Freileitungsanlagen gewidmet ist, während der dritte Abschnitt die Kabelleitungen behandelt. Im ersten Abschnitt werden zunächst die allgemeinen Gesichtspunkte für den Entwurf einer Leitungsanlage besprochen, dann folgen die Berechnungsgrundlagen im allgemeinen für die verschiedenen Schaltungsformen von Verteilungsanlagen, dann die Gleichstromverteilungsanlagen, die Gleichstromfernleitungen und die Wechselstromverteilungsleitungen für Einphasen-, Zweiphasen- und Dreiphasenstrom. Das letzte Kapitel des ersten Abschnittes ist den elek-Wechselstromhochspannungstrischen Verhältnissen der leitungen gewidmet; dabei wird von den Grundgleichungen ausgegangen, deren Elemente, Ohmscher Widerstand und Skineffekt, Selbstinduktion und gegenseitige Induktion, Kapazität, Ableitung, Strahlungsverlust, der Reihe nach ausführlich behandelt werden. Zwei weitere Unterabschnitte dieses letzten Kapitels sind je dem Leiterquerschnitt, dem Spannungsabfall und der Entwurfsbearbeitung und der elektrischen Beeinflussung von Fernmeldeleitungen durch Hochspannungsleitungen gewidmet.

Der mechanische Bau von Freileitungen gliedert sich im zweiten Abschnitt in 8 Kapitel. Im ersten werden die Gesichtspunkte für die Ausführung als Freileitung oder Kabel behandelt, dann folgt eine Erörterung der Freileitungsstrecke und deren Tracierung, dann werden die Werkstoffe der Freileitungen erörtert und dann folgt in ausführlicher Weise die Festigkeitsberechnung. Das nächste Kapitel ist den Isolatoren gewidmet, die folgenden beiden den Masten und deren Berechnung, dann werden Einzelheiten der Frei-leitung behandelt, wie Streckentrennschalter, Schutzgitter, Verbindungen der Leiter und deren Befestigung an Stützisolatoren, die Verdrillungspunkte, Störungen durch Seilschwingungen etc.

Der dritte Abschnitt behandelt die Kabelleitungen in vier Kapiteln. Im ersten werden die Kabelbauformen erörtert, im zweiten die elektrischen Werte der Kabel und Kabelanlagen, im dritten der mechanische Bau von Kabelanlagen und im vierten wirtschaftliche und betriebstechnische Einzelheiten.

Kysers «zweiter Band» stellt in der neuen Auflage jedenfalls die modernste und ausführlichste Monographie über den Leitungsbau dar und kann auf das wärmste empfohlen werden. Der Verlag Springer hat dem Werke die Ausstattung gegeben, die seinem grossen inneren Werte entspricht.

¹⁾ Siehe die Besprechung der dritten Auflage des ersten Bandes im Bull. SEV 1930, S. 595.

Normalien und Qualitätszeichen des SEV.

Qualitätszeichen des SEV.

Qualitätskennfaden des SEV.

Gemäss den Normalien zur Prüfung und Bewertung von Materialien für Hausinstallationen und auf Grund der mit Erfolg bestandenen Annahmeprüfung steht folgenden Firmen für die nachstehend aufgeführten Fabrikate das Recht zur Führung des SEV-Qualitätszeichens, bzw. des SEV-Qualitätskennfadens zu.

Von den für die Verwendung in der Schweiz auf den Markt gelangenden Objekten tragen die Kleintransformatoren das vorstehende SEV-Qualitätszeichen, die isolierten Leiter den gesetzlich geschützten SEV-Qualitätskennfaden, welcher an gleicher Stelle wie der Firmenkennfaden angeordnet ist und auf hellem Grunde die oben angeführten Morsezeichen in schwarzer Farbe trägt. Die Schalter, Steckkontakte, Schmelzsicherungen und Verbindungsdosen tragen ausser dem vorstehenden SEV-Qualitätszeichen auf der Verpackung, oder auf einem Teil des Objektes selbst, eine SEV-Kontrollmarke (siehe Veröffentlichung im Bull. SEV 1930, Nr. 1, S. 31).

Schalter.

Ab. 1. März 1933.

Elektromotorenbau A.-G., Birsfelden

- I. Kastenschalter zur Verwendung in trockenen Räumen. 1. Type Nr. TSD 1: Dreipoliger Ausschalter mit Sicherungen, für 500/250 V, 10/15 A.
 - 2. Type Nr. TSD 2: Dreipoliger Ausschalter mit in der Anlaufstellung überbrückten Sicherungen, für 500/250 V, 10/15 A.
 - 3. Type Nr. TSD 10: Stern-Dreieckumschalter mit Sicherungen, für 500/380 V, 20/25 A. 4. Type Nr. TSD 10: Stern-Dreieckumschalter mit in der
 - Sternstellung überbrückten Sicherungen, für 500/380 V, 20/25 A.

Die Schalter werden mit Tüllenabdeckhauben (T), Rohrstutzen (R) oder Kabelstutzen (K) ausgeführt.

- II. Kastenschalter zur Verwendung in nassen Räumen.
 - 5. Type Nr. TSD 1: Dreipoliger Ausschalter mit Sicherungen, für 500/250 V, 10/15 A. 6. Type Nr. TSD 2: Dreipoliger Ausschalter mit in der
 - Anlaufstellung überbrückten Sicherungen, für 500/250 V, 10/15 A.
 - 7. Type Nr. TSD 10: Stern-Dreieckumschalter mit Sicherungen, für 500/380 V, 20/25 A.
 - 8. Type Nr. TSD 10: Stern-Dreieckumschalter mit in der Sternstellung überbrückten Sicherungen, für 500/380 V, 20/25 A.

Die Schalter werden mit Rohrstutzen (R) oder Kabelstutzen (K) ausgeführt.

Die unter 3., 4., 7. und 8. genannten Schalter können mit aufgebautem Ampèremeter geliefert werden.

Victor Thaler, Fabrikation elektrischer Starkstromapparate, Basel.

Fabrikmarke: Firmenschild.

I. Kastenschalter für die Verwendung in trockenen Räumen. 7. Dreipoliger Druckknopf-Ausschalter mit Sicherungen (Schema A), für 500 V, 15 A.

Der Schalter wird mit Rohr- oder Kabelstutzen ausgeführt und kann auch mit aufgebautem Ampèremeter geliefert werden.

Ab 15. März 1933.

Siemens Elektrizitätserzeugnisse A.-G., Abt. Siemens-Schuckertwerke, Zürich (Vertretung der Siemens-Schuckertwerke,

Fabrikmarke:

- Drehschalter «Pacco» für 500 V, 6 A ~ (nur für Wechsel-
- A. für Aufputzmontage in trockenen Räumen mit runder, schwarzer Kunstharzpreßstoffkappe. Schema a) zweipoliger Ausschalter, Type Nr. P 25/2 ni, nir b) dreipoliger Ausschalter, Type Nr. P 25/3 ni, nir
- B. Einbauschalter für Schalttafeln (in trockenen Räumen).

 a) zweipoliger Ausschalter, Type Nr. P 25/2 th

 Schema 0 b) dreipoliger Ausschalter, Type Nr. P 25/3 th

Appareillage Gardy S. A., Genf.

Fabrikmarke:

Gardy

Druckknopfschalter 250 V, 6 A ~ nur für (Wechselstrom). A. für Aufputzmontage in trockenen Räumen, mit Deckel aus weissem (../02) oder braunem (../03) Kunstharzpressstoff.

Nr. 22040/02, 22040/03, einpol. Ausschalter, Nr. 22043/02, 22043/03, Wechselschalter

B. für Unterputzmontage in trockenen Räumen, mit Abdeckplatte aus Metall oder Glas und runden Einsatzplättchen aus Kunstharzpreßstoff.

Nr. 24090, einpoliger Ausschalter Nr. 24093, Wechselschalter

Der Vertrag betreffend die Führung des Qualitätszeichens für Schalter mit der Firma

Baur-Frey,

Elektrotechnische Artikel en gros, Dietikon,

als Vertreterin der Fabrikationsfirma

Elektrotechnische Fabrik Friedrich Joerg,

Unterrodach i. Oberfranken,

wurde aufgelöst. An dessen Stelle tritt für alle bisher zur Führung des Qualitätszeichens als berechtigt publizierten

Fabrikate (in neuer Vertrag mit der Firma

Elektro-Monopol A.-G., Zürich,

als Vertreterin der oben genannten Fabrikationsfirma.

Steckkontakte. Ab 1. März 1933.

Electro-Mica A.-G., Isoliermaterial für die Elektrotechnik, Zürich.

Fabrikmarke:

- I. Zweipolige Stecker für 6 A, 250 V.
 - A. aus braunem oder schwarzem Kunstharzpreßstoff, für trockene Räume.

Nr. 274, Normalausführung, mit 4-mm-Steckerstiften.

Verbindungsdosen.

Ab 15. März 1933.

Adolf Feller A.-G., Fabrik elektrischer Apparate, Horgen.

Fabrikmarke:

I. Gewöhnliche Verbindungsdosen für 380 V, 6 A. Type Nr. 3108: Deckel und Sockel aus Porzellan, Uförmig, mit 3 bzw. 4 eingekitteten Klemmen, für 13,5mm-Isolierrohre.

Progress A.-G., Fabrikation und Vertrieb elektrotechnischer Artikel, Basel.

Fabrikmarke: SIMPLEX

II. Spritzwassersichere Verbindungsdosen für 500 V, 15 A. 5. Type Nr. Gr. I/3, Gr. I/5 bzw. Gr. I/6: mit 3, 5 bzw. 6 Rohrstutzen. Gehäuse aus Grauguss. Max. 4 Klem-

Bei Verwendung der Verbindungsdosen in staubigen, feuchten oder nassen Räumen müssen die Gehäuse mit isolierender Vergussmasse gefüllt werden.

III. Klemmeneinsätze für gewöhnliche, staub-, feuchtigkeitsund spritzwassersichere Verbindungsdosen, für 500 V,

6. Type Nr. Gr. I/3 bzw. Gr. I/4: Klemmeneinsätze mit 3 bzw. 4 Klemmen.

Kleintransformatoren.

Ab 1. März 1933.

Transformatorenfabrik A.-G., Neuveville.

Fabrikmarke:

KTa 2 Leistung 20 VA, Spannungen:

prim. bis 250 V, sek 8-20 V.

KTa 3 Leistung 30 VA, Spannungen:

prim. bis 250 V, sek. 8-20 V.

Schmelzsicherungen.

Ab 15. März 1933.

H. W. Kramer, Zürich (Vertreter der Firma Christian Geyer G. m. b. H., Nürnberg-S.).

Fabrikmarke:

I. Einpolige Sicherungselemente für Schraubsicherungen, 500 V, 25 A (Gewinde E 27).

Type Nr. 1466, für den Einbau in Kasten, ohne Null-leiter-Abtrennvorrichtung, für vorderleiter-Abtrennvorrichtung, seitigen Leitungsanschluss.

Vereinsnachrichten.

Die an dieser Stelle erscheinenden Artikel sind, soweit sie nicht anderweitig gezeichnet sind, offizielle Mitteilungen des Generalsekretariates des SEV und VSE.

GEMEINSAME DISKUSSIONSVERSAMMLUNG

des Schweizerischen Elektrotechnischen Vereins des Schweizerischen Wasserwirtschaftsverbandes

Samstag, den 29. April 1933

im Auditorium I (Haupteingang Stadtseite) der Eidgenössischen Technischen Hochschule in Zürich

Elektrische Akkumulatoren-Fahrzeuge

Die Versammlung bezweckt, neben dem konstruktiven Aufbau und den Verwendungsmöglichkeiten der elektrischen Akkumulatorenfahrzeuge namentlich auch ihre betriebstechnische und volkswirtschaftliche Bedeutung als Energiekonsumenten zur Sprache zu bringen, wobei wertvolle Betriebserfahrungen ausgetauscht werden sollen.

PROGRAMM:

10 h bis 12 h Vortrag von Herrn Chalumeau, ingénieur en chef der Stadt Lyon, über den Akkumulatoren-Autobusbetrieb in der Stadt Lyon. Anschliessend Diskussion in französischer und deutscher Sprache.

9 h bis 10 h

12 h bis 13 h Gemeinsame Besichtigung von elektrischen Akkumulatoren-Fahrzeugen aller Art auf der Terrasse vor dem Hauptgebäude der Eidg. Techn. Hochschule.

13 h bis 15 h Mittagessen der Teilnehmer. In folgenden Restaurants werden für angemeldete Teilnehmer Plätze für das Essen reserviert: Studentenheim, Clausiusstrasse 21 (alkoholfrei, Selbstbedienung). Menu Fr. 2.50. Zunfthaus zur Saffran, Rathausquai 24. Menu Fr. 3.50.

Vortrag von Herrn Dipl.-Ing. Rödiger, Berlin, über Elektrische Akkumulatorenfahrzeuge. Anschliessend Diskussion in deutscher und französischer Sprache.

Wir laden die Mitglieder der beiden unterzeichneten Verbände zur Teilnahme an dieser interessanten und aktuellen Veranstaltung höflich ein und ersuchen sie, die der heutigen Nummer beigefügte Anmeldekarte dem Generalsekretariat des SEV und VSE bis spätestens am 26. April 1933 zuzustellen.

Teilnehmer, die sich an der Diskussion zu beteiligen wünschen, sind gebeten, bis zum gleichen Termin sich unter Angabe der Dauer ihres Votums und der Anzahl eventueller Lichtbilder anzumelden.

> Für den Schweizerischen Wasserwirtschaftsverband:

Für den Schweizerischen Elektrotechnischen Verein:

Der Präsident: (gez.) Dr. O. Wettstein.

Der Sekretär: (gez.) A. Härry.

Der Präsident: (gez.) A. Zaruski.

Der Generalsekretär: (gez.) A. Kleiner.

Anfragen betreffend Bezugsquellen.

(Antworten an das Generalsekretariat des SEV und VSE, Seefeldstrasse 301, Zürich 8, erbeten.)

12. Wer fabriziert einen «automatischen Dosenschalter», stellung, eingeschaltet bleibt und nachher selbsttätig ausder, wenn man ihn betätigt hat, 3 bis 5 Minuten, je nach Einschaltet?