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Die symbolische Rechnung der Wechselstromtechnik und
die ebene Vektorrechnung.

(Fortsetzung von Seite 99 und Schluss)

Von Prof. Max Landolt, Winterthur. 512

Anwendungen der ebenen Vektorrechnung auf
Grundprobleme der Wechselstromtechnik-
Es sollen nachstellend verschiedene

Verwendungsmöglichkeiten der vorher behandelten Dar-
stellungsart der ebenen Vektorrechnung gezeigt
werden.

31.

Vektorielle Behandlung von Wechselstromgrössen.

Bekanntlich lassen sich die gegenseitige
Phasenverschiebung und die Grösse von frequenzgleichen
Sinusschwingungen zeichnerisch durch Vektoren
abbilden. Solche Vektoren nennt man Zeitvektoren.

Von besonderem Vorteil ist diese graphische
Darstellungsart dann, wenn es sich darum handelt,
mehrere solche Sinusschwingungen verschiedener
Phase und Amplitude zu addieren. Der Vorteil
hegt darin begründet, dass die graphisch überaus
einfach, anschaulich durchführbare Addition von
Vektoren verschiedener Richtung und Länge
dasselbe Resultat ergibt wie die umständliche und
unübersichtliche mathematische Addition von
mehreren Sinusfunktionen verschiedener Phase und
ungleicher Amplitude.

In vielen Fällen wünscht man, die Ergebnisse
nicht nur graphisch darzustellen, sondern formel-
mässig zu erfassen, ohne mit Sinusfunktionen rechnen

zu müssen. Hiezu eignet sich die ebene
Vektorrechnung. Sie ist imstande, die in der zeichnerischen

Abbildung enthaltenen Ergebnisse in
Gleichungsform zu liefern, wo die Zeichnung selbst
nur einzelne mögliche, beispielhafte Lösungen
darstellt. Schliesslich liefert sie ganz genaue Resultate,

was eine graphische Methode nie zu leisten
vermag.

Die ebene Vektorrechnung und die zeichnerische

Darstellung von Vektoren beschränken sich
auf die Erfassung von rein sinusförmigen Schwingungen.

Von V'echselstromgrössen zusammengesetzter
Kurvenform können sie deshalb nur die

Grundharmonische des stationären Zustandes erfassen.

311.
S t r o m v e k t o r e n.

Vas liier für phasenverscliobene Ströme
gezeigt ist, gilt auch für andere Wechselstromgrössen
(Spannungen, elektromotorische Kräfte,
Durchflutungen, magnetische Flüsse usw.) sowie für
mechanische Schwingungen.

Beispiel:
Es soll gezeigt werden, wie sich die drei Ströme

eines symmetrischen Dreiphasensystems
durcheinander ausdrücken lassen, wenn sie gemäss Fig. 30
gegeben sind.

Da die drei Ströme einem symmetrischen
Dreiphasensystem angehören, haben die drei Vektoren

£s2 und S3 dieselben Beträge und sind je um
120" gegeneinander verdreht. Macht man für den
den Vektor £>L in den Vektor !y2 überführenden
Operator a den Ansatz

« $2 a a el V,

so wird der Betrag a wegen des
übereinstimmenden Betrages der
beiden Vektoren gleich 1 und
für den Winkel cp des Versors pig. 30.

erhält man — 120°, da die
Verdrehung des Vektors gegen den positiven Drehsinn

erfolgt. Man erhält so:

a= ae-O200

Für die beiden Komponenten a„ und a„ der Binom-
Form des Operators a findet man gemäss Gl. (21a)
und (21b):

1

aw cos - 120°) -

a„ sin — 120°) —
l/3

Damit erhält man für den Operator a:
1 .yya - t-' 2

•

Da die beiden Vektoren 3 und in bezug auf
den Vektor Qq zueinander symmetrisch liegen, ist
der Operator, der den Vektor in den Vektor S3

überführt, der zum Operator a konjugierte Operator.

Man kann also schreiben:

~ O (\
k Ai — A3 + jl20°

1 y 3
ök== " 2

•

Beispiel :

Es soll gezeigt werden, dass sich die drei Ströme
eines unsymmetrischen Dreiphasensystems ohne
Nulleiter als Superposition von zwei gegenläufigen,
symmetrischen Dreipliasenstromsystemen auffassen
lassen 23

Da kein Nulleiter vorhanden ist, müssen die
drei Vektoren Sq, S2 und A3 der Bedingung
genügen, dass ihre Summe Si ~t~ gleich Null ist.

-:s) Die Zerlegung beliebiger unsymmetrischer
Dreiphasensysteme (mit Nulleiter) behandelt die Methode der
symmetrischen Koordinaten von Fortescue. Siehe: Günther
Oberdorfer, Das Rechnen nach der Methode der symmetrischen

Koordinaten, E. u. M. 1927, S. 296; C. L. Fortescue,
Method of symmetrical Co-ordinates applied to the solution
of polyphase networks, Proceedings AIEE 1918, S. 629.
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Fig. 31.

Die drei Vektoren des gesuchten Mit-Systèmes,
die mit dem durch die gegebenen Vektoren
bestimmten Sinn der Verdrehung aufeinander
folgen, sollen 3h $2 und $3 heissen. Zwischen ihnen
gelten die Beziehungen:

V' P.-i 120» cy/+ 2 U'i A'V) 3
-1 240» cy/\) 1 *

Die drei Vektoren des gesuchten Gegen-Systems,
die gegen den durch die gegebenen Vektoren
bestimmten Sinn der Verdrehung aufeinander folgen,
sollen Sj", A2" tmd S3" heissen. Zwischen ihnen
gelten die Beziehungen :

.A» e+D20°$;<+2 S" — p+1 2400 cy//f, — evi 3

Für die drei gegebenen Vektoren erhält man
die Ansätze:

31=31 + 31' 32 cy/31+31' s3 A' -Tj 3 S"
Berücksichtigt man die zwischen den Vektoren

des Mit- und des Gegen-Systems bestehenden
Beziehungen, so erhält man:

o3i 31 A'A1
32 e-D200 3i + e + ; 120031'

+3 e-i 2400 cv; ,+ j 240» cv//_

r .n zur Bestimmung des Vektors Si des Mit-
Systems den Vektor 3' des Gegen-Systems auf die
einfachste Weise zu eliminieren, verdreht man die
Vektoren der zweiten Gleichung um + 120° und
die Vektoren der dritten Gleichung um — 120°.

A — A' -t-"ü 1 — Ü1T
«+' I200 32 3!
e-5'1200 3a 31

31'
e+2'2400 cv//

e+j 1200 cvt/.

Diese drei Gleichungen addiert man und erhält
so, da die Summe der drei symmetrischen Vektoren

cy "x31 ' e + ji20»cvj un(j e+j240° cv» Null ist:

0 /3i 3H L. e—j 120C 33
3

(69)

Um zur Bestimmung des Vektors 3''/ des

Gegen-Systems den Vektor 31 des Mit-Systeins auf
die einfachste Weise zu eliminieren, verdreht man
die Vektoren der zweiten Gleichung 11111 —120°
und die Vektoren der dritten Gleichung um + 120°.
Durch Addition der drei Gleichungen erhält man
ilaim :

(70)

Nach den in den beiden Gl. (69) und (70)
enthaltenen Konstruktionsvorschriften sind in Fig. 32
die beiden Vektoren A x und £5" konstruiert. Die

Fig. 32.

dadurch ermöglichte Zerlegung des gemäss Fig. 31

gegebenen unsymmetrischen Dreipliasensystems in
zwei symmetrische Dreiphasensysteme ist in Fig. 33

dargestellt.
312.

Impedanz- u n d
A d 111 i 11 a 11 z o p e r a t o r e n.

Herrscht längs eines Stromkreisteiles mit den
Endpunkten A und B die Wechselspannung U und
fliesst in dem betrachteten Stromkreisteil der
Wechselstrom I, so können diese beiden Grössen
durch die Vektoren 11 und A dargestellt werden.
Für beide Vektoren gelte gemeinsam der in Fig. 34
durch einen Pfeil angedeutete Bezugssinn. Stellt
man nun die Impedanz des betrachteten
Stromkreisteiles als Quotient von Spannung und Stromstärke

dar, so erscheint sie als Quotient von zwei
Vektoren, also als Operator. Man erhält für den
Impedanz-Operator Gl. (71).

z JL
3 (71)

Ganz analog erhält man für den Admittanz-
Operator Gl. (72).

3
Ii (72)

Da weder die Impedanz noch die Admiltanz
zeitlich sinusförmig veränderliche Grössen sind,
dürfen sie in einer Gleichung, die zeitliche Sinus-
funktionen darstellende Vektoren enthält, nicht
gleichermassen durch Vektoren ausgedrückt werden.

Ein Vektorquotient entspricht dagegen sehr
gut ihrer Eigenart, zwischen Strom- und Spannungs-
wellen eine Phasenverschiebung hervorzubringen.

Beispiel:
Gegeben seien eine Induktivität L, ein Ohmscher

Widerstand R und ein Kondensator C, die in
Reihenschaltung von einem Wechselstromgenerator
G unter Spannung gehalten werden. Die Wechsel-
spannung U habe die Kreisfrequenz co. Der Olim-
sclie Widerstand Ii sei von einem Parameter p
abhängig. Gesucht sei die in dem gegebenen Stromkreis

herrschende Stromstärke I sowie die resultierende

Impedanz Z der drei in Reihe geschalteten
Stromverbraucher.
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In Fig. 35 sind die Bezugssimie in das Schema
so eingezeichnet, dass die Stromstärke in den
verschiedenen Punkten des Stromkreises überall durch

Fig. 35.

SEV 'B26 ff

Fig. 36.

denselben Vektor 3 ausgedrückt wird. Rechnet
man mit den Vektoren @L, @R und (5C der
elektromotorischen Kräfte 24) der drei Stromkreisteile, so
ergeben sich die in Fig. 36 enthaltenen lokalen
Vektordiagramme. Danach gelten die drei
Gleichungen :

©l -/ <> L 3 @R -pR$ ©c /
1

$•

Da die verschiedenen Bezugssinne einen einheitlichen

Umlaufsinn festlegen, darf die Summe aller
elektromotorischen Kräfte gleich Null gesetzt
werden.

2> °

So erhält man für die elektromotorische Kraft
@G des Generators:

©C= @L ©R -@C
1

~ / 7771 vi-
CO G

Legt man, um den Spannungsvektor U in der
konventionellen Lage zu erhalten, seinen Bezugssinn

so, wie es in Fig. 35 geschehen ist, so gilt:
11 @ü.

Damit erhält man:
11 jcoL $ ~\-p R $ — / —— Q. (73)

Konstruiert man gemäss der
in dieser Gleichung enthaltenen
Konstruktionsvorschrift das
Vektordiagramm, so erhält man den
in Fig. 37 dargestellten Linienzug.Fig. 37.

21) Die der Induktivität, dem Ohmschen Widerstand und
der Kapazität zugeschriebenen elektromotorischen Kräfte
haben keine unmittelbare physikalische Bedeutung, sie sind
jedoch als Rechnungsgrössen äusserst bequem zu verwenden.
Ihre Einführung gestattet, das «dynamische» Problem in ein
«statisches» überzuführen, wie die Einführung der
Zentrifugalkraft das dynamische Problem des Gleichgewichtes
rotierender Körper in ein statisches überführt.

Statt mit elektromotorischen Kräften zu rechnen, kann
man auch mit Spannungen arbeiten. Insbesondere bei
komplizierteren Problemen ist es sehr empfehlenswert,
ausschliesslich nur mit der einen oder andern Grössenart zu
rechnen, da zufolge der in Satz 5 : «Spannung, Potential,
Potentialdifferenz und elektromotorische Kraft» des AEF10)
getroffenen Festsetzung Spannung und EMK bei gemeinsamem

Bezugssinn entgegengesetztes Vorzeichen haben. Die
gemischte Verwendung beider Grössenarten führt deshalb
leicht zu Vorzeichenfehlern.

Dividiert man Gl. (73) durch 3, so erhält man
gemäss Gl. (71) den Impedanzoperator Z.

Z p R -f- / (o L
*

^
co C

Für die gesuchte Impedanz Z, den Betrag des

Impedanzoperators Z, findet man gemäss Gl. (19) :

y<r R2) + co L 1

co C

Löst man die Gl. (73) nach 3 auf, so erhält man
:n

1

für den Vektor der gesuchten Stromstärke:

ou — 11.

pR+j
Hieraus entnimmt man gemäss Gl. (72) den

Admittanzoperator zu:

Y
1

P
(74)

Durch Vergleich mit Gl. (58) ersieht man, dass
der gefundene Admittanzoperator den Aufbau
eines Kreisoperators hat. Die darin enthaltenen
Operatoren a, b, c und d findet man durch
Identifizierung der beiden Gl. (74) und (58).

1

i(CdL ~ J~c) + pR

a -|- p b

c -\~p à

So erhält man:

1

aw — 1 ab — o

b„ 0 bb 0

0 c„ co L
1

co C

d,v — R db 0-

a=ow+ /ab 1

b K + /K 0

C Cw+/c„

4- jdb R

Die Spitze des Vektors 3 bewegt sich also auf
einem Kreis, wenn der Parameter p seinen Wert
verändert.

Den Betrag I des Vektors 3 bestimmt man
gemäss dem Ausdruck:

U

]/(pR)2+(o - V)2
co G /

Beispiel:
Es sei die Ableitung der bekannten, für den

stationären Zustand gültigen Differentialgleichungen
für Stromstärke und Spannung einer

Wechselstrom-Fernleitung 25 gezeigt. Die Induktivität, der

25) Diese Gleichungen finden sich zum Beispiel bei
Alfred Fraenckel, Theorie der Wechselströme, 2. Auflage,
S. 185, Gleichungen (212) und (213), Verlag Jul. Springer,
1921.
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Ohmsche Widerstand, die Kapazität und die
Ableitung pro km Länge der Fernleitung seien: L, R,
C und G. Für ein sehr kleines Längenelement dx
ergeben sich diese Konstanten dann zu:

L dx Rdx Cdx Gdx.

Für die Leitung gilt dann das Schema der
Fig. 38, in das für Strom und Spannung die Bezugssinne

eingezeichnet sind.

dUL dllD
~T~

3*d3 U

sevens dSç d%

Fig. 38. Fig. 39.

Rechnet man ausschliesslich mit Spannungsvektoren,

so erhält man für ein Leitungselement dx
im Abstände X von einem Bezugspunkte die vier
lokalen Vektordiagramme von Fig. 39.

Die diesen Vektordiagrammen entsprechenden
Gleichungen lauten :

t/ll,
2

dllR
2

j co Ldx
2

Rdx
2

d £yc jCO Cdx 11

d% Gdx U.

(3

(3

<*3)

<*3)

Die Bedingung, dass die Summe aller auf den
Punkt a zufliessenden Ströme Null werden muss,
führt zu der Gleichung:

o3 d 3c - d 3g - (3 + d3) o.

Hieraus erhält man:

_ d 3 — d 3c U- d 3c
d $ j co C d x U + Gdx U

d °c
,xS (G + j<o C) U.

dx v
(75)

Die Bedingung, dass die Spannung längs den
Wegen a, x und a, b, x + dx, x gleichgross sein

muss, führt zu der Gleichung:

IT _ d^± _L
2 2

(U + t/U)
t/UR t/UL

"

2 + 2

_ dU t/UL + <ZUR

— dll /CO Ldx ($ </$) + Rdx (3 + ^3)-
Da man den unendlich kleinen Vektor t/3

neben dem Vektor 3 vernachlässigen muss, erhält
man hieraus:

_
dll
d x

(R -f jcoL) $. (76)

Differenziert man diese Gleichung nach dx, so
erhält man den Ausdruck:

d2ll n- „ - (*+/«i) ix-
Hierin kann man den Differentialquotienten

dX dx aus Gl. (75) einsetzen und erhält so die
gesuchte Differentialgleichung für die Spannung:

(K + /'wL) (G + /"C) u- (77)

Differenziert man analog noch Gl. (75) nach
dx, so erhält man den Ausdruck:

t/2 3 er I • r\ d 7t

- a? <G+/"jC) ix
Hierin kann man den Differentialquotienten

dlljdx aus Gl. (76) einsetzen und erhält so die
gesuchte Differentialgleichung für die Stromstärke:

-51 (R+jcoL) (G + jcoC)%. (78)

32.
Vektorielle Behandlung von Impedanzen.

Es erweist sich als zweckmässig, auch Impedanzen,

die an sich weder gerichtete Grössen noch
zeitliche Sinusfunktionen sind, als Vektoren
darzustellen. Der Grund ist der, dass sich die resultierende

Impedanz einer Reihenschaltung mehrerer
Impedanzen durch Addition der Vektoren, die die
einzelnen Impedanzen darstellen, finden lässt.

Im vorhergehenden Abschnitt erschien die
Impedanz als Vektorquotient, als Operator der Form:

Z Zw + jZb.

Um zur Vektordarstellung des Impedanzoperators

Z zu gelangen, genügt es, ihn mit einem
beliebigen Einheitsvektor x zu multiplizieren. Dieser
Einheitsvektor i braucht keine elektrische Grösse

zu sein. Er kann eine rein geometrische Grösse,
eine gerichtete Strecke sein.

Multipliziert man obige Gleichung mit dem
Vektor i, so erhält man:

Z i Zwi + /Zbi.
Führt man für die Vektoren Z i, Zw x und j Zb i

die Bezeichnungen ,QW und 3 b ein, so schreibt
sich diese Gleichung in der Form :

3 3w + 3d-

Fig. 40 veranschaulicht die Zusammenhänge.
Der Vektor 3 und seine beiden Komponenten

3w und 3 b stellen bildlich die Dreh-Streckung dar,
die der darin enthaltene Operator Z ausübt, wenn
er mit einem Vektor multipliziert wird. Impedanz-
Vektoren dienen lediglich dazu, die graphische
Kombination von Impedanzen zu resultierenden
Impedanzen zu ermöglichen. Soll dagegen ein
Zeitvektor, der eine Stromstärke darstellt, in einen eine
Spannung darstellenden Zeitvektor übergeführt
werden, so ist er mit dem Impedanz-Operator, das

heisst, mit einem Vektorquotient zu multiplizieren.
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Was nachstehend für Impedanz-Operatoren und
Impedanz-Vektoren gezeigt wird, gilt sinngemäss
auch für Admittanz-Operatoren und Admittanz-
Vektoren.

Fig". 40. Fig. ,41.

321.

Reihenschaltung.
Es soll gezeigt werden, dass der Operator Z der

resultierenden Impedanz einer Reihenschaltung
von zwei Impedanzen, deren Operatoren Z1 und Z,
sein mögen, durch Addition der sie darstellenden
Vektoren graphisch gefunden werden kann.

Gegeben seien die beiden Impedanzoperatoren :

Z\ Z 1 w
I / £|b

Z2 Z2w -(- / Z2b.

Durch Multiplikation mit dem Einheitsvektor i
erhält man die Vektoren 3, und Q2.

3l "3 1 w 4~ 3l b 32 ^2w 4~ ^2 b

31 w i 32 w Z2 w
1

3ib )Zlbi Q2 b — / Z2 b !•

Durch graphische Addition der beiden Vektoren
und 3s findet man den Vektor 3i d" 32- Die

Zusammenhänge sind in Fig. 41 veranschaulicht.
Die Zusammenhänge sind so einfach, dass man

anhand der Fig. 41 sogleich erkennt, dass der durch
den Vektor 3i d~ 3* dargestellte Impedanzoperator
gleich der Summe der Operatoren und Z, ist.

Z\ + Z2 — Z[ w -)- / Z, [ z, / z2

322.

Parallelschaltun;
Es seien die Vektoren 3i und 32 von zwei

parallelgeschalteten Impedanzen graphisch gegeben.
Gesucht sei der Vektor der resultierenden Impedanz.

Es soll nun eine Konstruktionsvorschrift
abgeleitet werden, nach der der gesuchte Vektor 3
graphisch ermittelt werden kann 2G). Dividiert man
die beiden gegebenen Vektoren durch einen
beliebigen Einheitsvektor i, so erhält man zwei
Operatoren Zy und Z,.

2<i) Es bestehen verschiedene graphische Lösungen für
diese Aufgabe. Wohl die älteste, von E. Orlieh herrührend,
findet sich bei Alfred Fraenckel, Theorie der Wechselströme,
2. Auflage, S. 51, Verlag Jul. Springer, 1921. Weitere Lösungen

haben angegeben: H. Rukop, Diagramm für die
Parallelschaltung beliebiger Scheinwiderstände, Archiv für Elektrotechnik,

Band XXI (1929), S. 444, ferner: Albert von Brunn,
Neue Metboden zur graphischen Bestimmung von
Wechselstrom-Ortskurven, Bull. SEV 1929, S. 75.

Die hier behandelte Lösung lehnt sich an eine
Veröffentlichung von E. Gross an: «Ueber Ortskurven bei der
Parallelschaltung verschiedener Scheinwiderstände, von denen
einer veränderlich ist», E. u. M. 1929, S. 885, sowie an die
Konstruktion von Rukop.

3. z,
3
i

Z,.

Führt mau gemäss Fig. 42 die Spannung 11 und
die Ströme
Ziehungen:

und 3L ein, so gelten die Be-

Iii
lt
Z,

cv
1)2 —

11

Für den Operator Z der resultierenden Impedanz

der Parallelschaltung gilt dann die Beziehung:

Z
11

\\ 1 .32
s,

—«wv«—

Ersetzt man hierin die
Stromvektoren und so erhält
man :

11

Fig. 42.

z II

z, z2

Durch Kürzung und Ausrechnung findet man

Z z, z2

Z[ + Z2
(79)

Rechnet man vorläufig nicht mit dem Operator

Z„, sondern mit einem veränderlichen
Vielfachen davon, also mit p2Z,, so erhält man für den
resultierenden Impedanzoperator :

z Z' Z: (80)
Z, Up, Z2

Durch Vergleich mit Gl. (58) ersieht man, dass

der gefundene Operator Z den Aufhau eines
Kreisoperators hat. Die darin enthaltenen Operatoren
a, b, c und d findet man durch Identifizierung der
beiden Gl. (80) und (58).

Po Z1 Z2 a -hp b

Z] —(— p, Z2

So erhält man:

a 0 b Z( Z2

P d

Z, d Z2 (81)

Multipliziert man Gl. (80) noch mit dem
Einheitsvektor i, durch den man vorher die beiden
gegebenen Vektoren 3i und 3a dividiert hat, so
erhält man :

3p 2 —
P2 Z] Z2

z, 4- Po Z2
(82)

Der Vektor 3p2 läuft somit bei Veränderung
des Parameters p, auf einem Kreise. Nimmt der
Parameter p2 insbesondere den Wert Null an, so
wird auch der gefundene Kreisoperator zu Null,
damit erhält auch der resultierende Impedanzvektor

3o die Länge Null. Der Kreis geht also durch
den Fusspunkt der Vektoren 3i und 3r Wird da-
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gegen der Parameter p2 unendlich gross, so nimmt
der Kreisoperator den Wert Zt an. Der Vektor 3°°
fällt also mit dem Vektor Z1 i zusammen. Der Kreis
geht also durch die Spitze des Vektors 3r Diese
Zusammenhänge sind in Fig. 43 veranschaulicht.

Ein geometrischer Ort für den Kreismittelpunkt
ist die Mittelsenkrechte des Vektors 3i- Ein zweiter

geometrischer Ort lässt sich durch Berechnung
des Mittelpunktsoperators m oder des Mittelpunktvektors

m\ finden.
Gemäss Gl. (59) findet man den Ansatz:

— z, z, zlk
m ; : ; ;

Z Z2k — Z, k Z2

Im Zähler erscheint das Produkt der konjugierten

Operatoren Zx und ZJk. Dieses darf nach Gl.
(40) dem Quadrat des Betrages gleichgesetzt werden.

Es wird also:

z, Zlk=Zf.

Schreibt man die auftretenden Operatoren in
Binom-Form, so erhält man für den Nenner die
Gleichung :

z, z2k — ZlkZ2 (Z,w-(-/Zlb) (Z2w-/Z2b)
— (Zlw — /Zlb) (Z2w + / Z2b).

Multipliziert man die rechte Seite dieses
Ausdruckes aus, und ordnet man, wohei sich einige
Glieder herausheben, so erhält man:

z. z2k — ZIk Z2 — j 2 (Zlw Z2b — Z[ b Z2b).

Damit erhält der Mittelpunktsoperator die
Form:

m= - Z| Z2

- / 2 (ZlvvZ2b-Zlb Z2b)

Multipliziert man wieder mit dem bisher
gebrauchten Einheitsvektor i, so erhält man mit
geringfügiger Umstellung für den Mittelpunktsvektor
ra i den Ausdruck :

Z2
m i 377 7 7 7 V ^ / 2^0

2- \ 1 w 21) — 1 b ^2wJ

Hierin ist der erste Teil ein reiner Faktor, der
zweite Teil dagegen stellt den um einen rechten
Winkel verdrehten Vektor 32 dar. Die Richtung
des Mittelpunktsvektors steht somit senkrecht auf
der Richtung des gegebenen Vektors Q2. Damit ist
der zweite geometrische Ort für den Kreismittel¬

punkt gefunden. Er ist in Fig. 43 eingetragen. Der
gegebene Vektor 32 Lt: also eine Tangente des
gefundenen Kreises.

Der gesuchte Vektor 3 entspricht nach Gl. (79)
dem Werte 1 des Parameters p.,. Er liegt somit
irgendwo auf dem durch die Spitze des Vektors 3p 2

beschriebenen Kreise, der durch den Fuss- und den
Endpunkt des gegebenen Vektors 3i geht und für
den der ebenfalls gegebene Vektor 32 eine
Tangente ist. Dieser Kreis ist somit ein erster geometrischer

Ort für die Spitze des gesuchten Vektors 3-
Rechnet man analog wie vorher nicht mit dem

Operator Z2, sondern mit einem veränderlichen
Vielfachen davon, also mit p,/,, so findet man
wegen des symmetrischen Aufbaues der Gl. (80)
hinsichtlich der Operatoren Z, und Z, offenbar
dasselbe Resultat wie vorher, es sind darin lediglich
die Indices 1 und 2 miteinander zu vertauschen.
Man bekommt so für den gesuchten Vektor 3 einen
zweiten geometrischen Ort in Gestalt eines durch
die Spitze des Vektors 3p 1 beschriebenen Kreises,
der durch den Fuss- und den Endpunkt des gegebenen

Vektors 32 geht, und für den der ebenfalls
gegebene Vektor 3i eine Tangente ist. Fig. 44
veranschaulicht die Zusammenhänge.

Damit sind für die Spitze des gesuchten Vektors
3 zwei leicht konstruierbare geometrische Orte
gefunden und die gestellte Aufgabe ist damit
gelöst 27).

33.
Vektorielle Behandlung von Dreh- und

Wechselfliissen.
Sollen beispielsweise im Vektordiagramm des

Transformators der mit dem Magnetisierungsstrom
in Phase liegende Nulzfluss und die dagegen zeitlich

pliasenverschobenen Streuflüsse dargestellt
werden, so handelt es sich liiebei um magnetische
Wechselflüsse, von denen nicht eine veränderliche
räumliche Lage, sondern die Amplitude und die
zeitliche Phasenverschiebung abgebildet werden
sollen. Es kommt hiezu die im Abschnitt
«Vektorielle Behandlung von Wecliselstromgrössen»
behandelte Methode zur Anwendung. Diese gilt ganz
allgemein für zeitlich sinusförmig veränderliche
Grössen, also auch für magnetische Flüsse, magnetische

Spannungen und elektrische Durchflutungen.
Im Gegensatz dazu soll jetzt gezeigt werden, wie

solche Flüsse zu behandeln sind, bei denen in
Abhängigkeit von der Zeit die Intensität schwankt und
die räumliche Lage der Achse sich verändert.

Oft haben magnetische Flüsse im Luftspalt einer
elektrischen Maschine in Funktion des Umfanges
sinusförmige. Verteilung und weisen dabei gleiche
Wellenlänge auf. Unter dieser Voraussetzung lassen
sie sich mit Vorteil durch Vektoren abbilden. Dabei

wird ihre Stärke durch den Betrag dieser
Vektoren wiedergegeben und der Bogen zwischen ihren

2T) Diese sowie die in Fussnote 26 erwähnten weiteren
Konstruktionen versagen allerdings, wenn der zwischen den
gegebenen Impedanzvektoren eingeschlossene Winkel gleich
0 oder gleich 180° ist.



XXIIe Année 1931 BULLETIN No. 5 119

Achsen durch den Winkel zwischen den Vektoren
ausgedrückt. Der Wellenlänge entspricht der Winkel

2 7t. Der resultierende Fluss verschiedener
solcher Teilflüsse lässt sich dann durch Addition ihrer
Vektoren finden. Weisen die Teilflüsse in Funktion

des Umfanges eine zusammengesetzte Kurvenform

auf, so ist für jede Harmonische ein separates
Vektordiagramm zu zeichnen.

Ist die Stärke der betrachteten Teilflüsse mit
der Zeit sinusförmig veränderlich, so wird auch der
resultierende Fluss nach Grösse und Lage (der
Achse) eine Funktion der Zeit sein. Da durch die
verschiedene Lage der Vektoren die räumlich
verschiedene Lage der Flussachsen wiedergegeben
wird, kann durch dieses Darstellungsmittel nicht
noch die zeitliche Phasenverschiebung ausgedrückt
werden. Die einfache graphische Darstellung durch
Vektoren versagt hier, denn sie gibt ein Bild, das

nur in einem bestimmten Zeitpunkt richtig ist. Den
vollständigen Verlauf der Erscheinungen kann sie
nur durch eine ganze Reihe von solchen Moment-
bildern wiedergeben.

Hier erweist sich nun die ebene Vektorrechnung
als sehr brauchbares Hilfsmittel. Sie kann eine
unendliche Reihe von Momentbildern in einer
einzigen Gleichung ausdrücken. Nach Galileo Ferraris

28 zerlegt sie einen zeitlich sinusförmig
veränderlichen Vektor 0t 29 in zwei gleichschnell,
aber entgegengesetzt drehende Vektoren <PRt und
<I\t, deren Betrag halb so gross ist wie die Amplitude

0 des ursprünglichen Vektors <J\. Für diese
rechts- und linksherum rotierenden Vektoren <PRt

und 0Lt, deren Spitzen Kreise mit dem Fusspunkt
als Zentrum beschreiben, erhält man nach Gl. (52)
die Ausdrücke:

0Rt e-i <" t + <pJ
0 (81a)

(pL t ei (ut + f) (81b)

Der ursprüngliche Vektor <I>
t ist die Summe

0
2

der beiden Vektoren 0Rt und

0
0t e 3 (w t~\r9) 1— g -)r 3 (u t-<P) (82)0

2 2

Fig. 45 ist ein Momentbild, das den in dieser
Gleichung ausgedrückten Zusammenhang für einen
bestimmten Zeitmoment graphisch darstellt.

Damit die Addition
rechnerisch ausgeführt werden kann,
sind die in Gl. (81a) und (81b)
enthaltenen Versoren nach Gl.
(24) umzuschreiben. So erhält

Fig. 45. man :

28) Siehe hiezu: L. A. Finzi, Ueber Dreh- und Wechselfelder,

Archiv für Elektrotechnik, Band XXII (1929), S. 573,
ferner: Gerhard Hauffe, Komplexe Behandlung von Wechsel-
und Drehfeldern, E. u. M., 1927, S. 101.

29) Da für den griechischen Buchstaben <P kein deutscher
(Fraktur-) Buchstabe besteht, wird der Vektor nach Satz 10:
«Vektorzeichen» des AEFlu) durch Ueberstreichen
gekennzeichnet.

0Rt= (cos(cot-I7<??) — /sin(w t + 99))

0Ll (cos(ojf + <p)A/sin(cot+ 9?))

0
2

0

Bei Bildung der Summe heben sich die den
rechtwinkligen Versor j enthaltenden Glieder
gegenseitig auf. Es wird:

0t — cos (to t-\- 9o) 0 (83)
Sind mehrere zeitlich sinusförmig veränderliche

Flüsse gegeben, deren Achsen miteinander Winkel
einschliessen, so führt die Zerlegung zu ebenso vielen

Paaren entgegengesetzt drehender Vektoren.
Unter der Voraussetzung, dass die gegebenen Flüsse
dieselbe Periodendauer haben, weisen die gleichsinnig

rotierenden Vektoren dieselbe Drebgeschwin-
digkeit auf. Sie lassen sich deshalb zu einem
resultierenden Vektor vereinigen. Man erhält so zwei
entgegengesetzt gleichschnell rotierende Vektoren

0lrest und 0 K res t die nicht gleichlang zu sein
brauchen. Ihre Summe ist der endgültig resultierende

Vektor. Dieser genügt zufolge seiner
Entstellung der Gleichung:

0 0. ,-4- 0„-* rest ^Lrest 1 ^ R res t *

Bezieht man die nach links und rechts drehenden

Vektoren 0Lrest ,Jud 0Rrest auf einen beliebigen

Bezugsvektor 31, so kann man schreiben:

0 L res t r ei(at+P) 21

0R,-est qe'-^t+?) 2T.

Damit erhält man für den resultierenden Vektor
0rest die Gleichung:

0 — }• g 3 (<"> <+ V)
res t V q e-3.(a t+ P)) 21. (84)

Der Vergleich mit Gl. (67) zeigt, dass die
gefundene Gl. (84) eine Ellipsengleichung darstellt,
bei der der Mittelpunktsoperator m gleich Null ist.

Der resultierende Flussvektor 0rest beschreibt also
eine Ellipse, deren Mittelpunkt in den Vektorfusspunkt

fällt. Sind die beiden rotierenden Vektoren
0 l res t und 0 R res t gleichlang, so haben die beiden

Operatoren r und q gleiche Beträge. Der resultierende

Flussvektor 0rest degeneriert dann zu einem
pulsierenden Vektor, es entsteht ein Wechselfeld.
Wird dagegen der eine der beiden drehenden
Vektoren zu Null, so degeneriert der resultierende
Flussvektor 0rest zu einem kreisenden Vektor, es
entsteht ein Drehfeld.

Beispiel :

Es soll gezeigt werden, dass drei durch die
symmetrischen Zeitvektoren Su S2 und S3 dargestellte
sinusförmige Wechselströme, die in der Statorwick-
lung einer Dreiphasenmaschine fliessen, ein Drehfeld

hervorrufen können.
Die Wicklungen seien so angeordnet, dass die

die Induktionsverteilung im Luftspalt darstellenden
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Kurven mit genügender Annäherung als Sinuslinien
betrachtet werden können. IJeberdies sei die
Magnetisierungskurve der Maschine als geradlinig
vorausgesetzt, so dass der resultierende Fluss durch
Ueberlagerung der Flüsse der einzelnen Spulen-
gruppen der Wicklungen gefunden werden kann.

Unter diesen Voraussetzungen rufen dann die
drei Ströme drei längs des Luftspaltes sinusförmig
verteilte, zeitlich mit den Strömen pulsierende
Wechselflüsse hervor, deren Achsen durch die Spu-
lengruppen-Mitten gehen. Die drei Flussachsen
sind in Fig. 46 veranschaulicht.

Die drei Wechselfliisse sind durch Vektoren
darstellbar. Da die Flussachsen um den dritten
Teil der Wellenlänge der Flussverteilungskurve
auseinanderliegen und da der Wellenlänge der
Winkel 2 jt entspricht, müssen die drei Flussvektoren'/'!

t, t und <i>3 untereinander die Winkel
2 7t
—— einschliessen. Die drei (nicht gleichzeitig auf-

o
tretenden) Maximalwerte <I>2 und <I'3 der
pulsierenden Vektoren sind in Fig. 47 dargestellt.

Fig:. 46. Fig. 47.

Die Momentanwerte der Flussvektoren, die sich
im Takte und mit der Phasenverschiebung der
erregenden Ströme verändern, genügen den
Gleichungen :

<pu cos
6) t

<l>
1

J>2t cos^-1200; ï>2

03t cos <at~2m03.

Ersetzt man hierin die Maximalvektoren <l>2,

und 'I's unter Verwendung von Versoren durch den

Maximalvektor <I\, so findet man für die
Momentanvektoren die Gleichungen:

0 t COS 0) t <I>

<p2l cos (cot — 120°) e~i 1200 <I\

(p3t cos (co t - 240°) e ~j 2« » 0,

Zerlegt man diese drei pulsierenden Vektoren
in ihre nach links und rechts rotierenden Ferraris-
Ivomponenten, so erhält man die sechs
Gleichungen:

^Llt j t
<P,

'pRlt — ,-iot A
2

0L2t eU«f-i20o;e-ji20« ÎL

0R2t e-}(at-m«) e — j 120° A
2

(p.
0.,. e j<w t-2«0 e-j 2to

L3t 2

<p K3t= e~j('>*-2409 e-J 240°/A

Durch Addition findet man die resultierenden
Ferraris-Komponenten. Die linksrotierende wird:

<I>^ (1 C-^240» _l e~j f A] a t L.

Zerlegt man die in der Klammer stehenden
e-Potenzen in ihre Sinus- und Cosinus-Glieder, so
findet man:

(1 4- e-.;240° e- j 480») _ 1 4- cos (- 240°)

4- / sin — 240 °) 4- cos - 480 °) 4- / sin (—480°).

Durch Einsetzen der Zahlenwerte findet man,
dass der Klammerausdruck zum Wert Null führt.
Die Resultierende der linksrotierenden Ferraris-
Komponenten wird damit ebenfalls Null. Berechnet

man analog die Summe der rechtsrotierenden
Ferraris-Komponenten, so ergibt sich die Resultierende

zu:
Q

<0 „x R res t 2
1

Man findet so als Resultat für den resultierenden

Flussvektor einen gleichmässig rechtsherum
kreisenden Vektor, der unveränderlich seine Grösse
beibehält. Er ist um die Hälfte grösser als der
Fluss einer einzelnen Spulengruppe und hat im
Zeitmoment Null die Richtung des Teilflusses der
ersten Spulengruppe.
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