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Die symbolische Rechnung der Wechselstromtechnik und
die ebene Vektorrechnung*).

Von Prof. Max Landolt, Winterthur. 512

Für die graphische Darstellung von Zusammenhängen
zwischen sinusförmig veränderlichen Wechselstromgrössen
ist heute die Verwendung von Vektoren in Vektordiagrammen

unbestrittenes Allgemeingut. Die mathematische
Erfassung der gleichen Zusammenhänge ist dagegen umstrittenes

Kampfgebiet. Beweis dafür sind die verschiedenen
Methoden, die heute nebeneinander bestehen: Die symbolische

Rechnung und die ebene Vektorrechnung, die beide
in tuehreren Varianten vorkommen.

Die mit imaginären Zahlen arbeitenden symbolischen
Rechnungen haben für Viele etwas Unvorstellbares und
Geheimnisvolles an sich. Um diese Schwierigkeiten zu
beseitigen, interpretieren in letzter Zeit mehrere Autoren die
symbolische Rechnung vektoriell und andere verwenden die
ebene Vektorrechnung. Zumeist bedienen sie sich dabei
ganz verschiedener Zeichen und Ausdrucksweisen, so dass
sich eine einheitliche Sprache, die überall verstanden werden
könnte, nicht herausbilden kann.

Im ersten Teil der vorliegenden Arbeit werden die
Elemente von verschiedenen bestehenden Rechnungsarten kurz
zusammengestellt und kritisch besprochen. Im zweiten Teil
wird gezeigt, wie die symbolische Rechnung unter
Beibehaltung einer häufig angewandten Schreibweise vektoriell
interpretiert werden kann und sich dann zwanglos den
bekannten Regeln der elementaren Vektorrechnung fügt. Im
dritten Teil wird gezeigt, wie sich diese mit den Zeichen
der symbolischen Rechnung geschriebene ebene Vektorrechnung

auf Grundprobleme der Wechselstromtechnik anwenden

lässt.

Das Ziel der Arbeit ist, durch Zusammenfassung
bestehender Elemente der symbolischen Rechnung bei vek-
lorieller Auslegung zur Vereinheitlichung der mathematischen

Behandlungsweise von Wechselstromproblemen
beizutragen.

Das Generalsekretariat macht speziell die jüngeren Leser
des Bulletin auf die vorliegende Veröffentlichung aufmerksam,

als gute Einführung in die in Lehrbüchern und
wissenschaftlichen Abhandlungen oft angewandte symbolische
Methode.

L'utilisation de vecteurs et de diagrammes vectoriels pour
la représentation graphique de rapports entre grandeurs
sinusoïdales variables, telles quelles se présentent dans
l'étude des courants alternatifs, est aujourd'hui incontestablement

du domaine public. L'expression mathématique de
ces rapports, par contre, est encore fortement discutée. Pour
s'en rendre compte, on n'a qu'à considérer les différentes
méthodes qui subsistent encore aujourd'hui l'une à côté de
l'autre: le calcul symbolique, le calcul vectoriel et leurs
nombreuses variantes.

Les méthodes de calcul symbolique, travaillant avec des
grandeurs imaginaires, ont pour beaucoup quelque chose
de mystérieux et d'irreprésentable. Pour éviter ces
difficultés beaucoup d'auteurs ont, ces derniers temps, interprété
vectoriellement la méthode symbolique, tandis que d'autres
préconisent le calcul vectoriel plan. Généralement ils se
servent pour leurs calculs de signes et d'expressions toutes
différentes, de sorte qu'il ne peut se former une terminologie
unitaire et compréhensible pour tous.

Dans la première partie de cette étude, l'auteur analyse
les notions élémentaires des différentes méthodes de calcul.
Dans la seconde partie, il montre comment la méthode
symbolique peut être interprétée vector iellement, tout en en
maintenant les signes conventionnels courants, et comment
cette nouvelle méthode se prête alors aux opérations et
règles connues du calcul vectoriel élémentaire. Dans la
troisième partie, l'auteur montre de quelle manière le calcul

vectoriel plan, utilisant les signes conventionnels de la
méthode symbolique, peut être appliqué aux problèmes
fondamentaux de la technique des courants alternatifs.

Le but de cette étude est de contribuer à l'uniformisation
de l'analyse mathématique des problèmes des courants
alternatifs, en condensant les notions élémentaires existantes de
la méthode symbolique et en donnant à ces notions une
interprétation vectorielle.

Le Secrétariat général recommande spécialement aux
jeunes lecteurs du Bulletin l'étude de cette publication, qui
est une excellente introduction à la méthode symbolique
assez souvent employée actuellement dans les manuels et
dans les travaux scientifiques.
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*) Eingang des Manuskriptes: 2. Juni 1930.



86 BULLETIN No. 4 XXII. Jahrgang 1931
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1.

Elemente bestehender symbolischer Rechnungen
und ebener Vektorrechnungen.

Nach dem Vorbild der Mathematik, die jedem
Punkt der Gauss'schen Zahlenebene eine reelle und
eine imaginäre Koordinate zuschreibt, wird in der
symbolischen Rechnung ein eine Wechselstrom-
grösse darstellender Diagrammvektor in zwei
Komponenten zerlegt, von denen die eine mit der
reellen und die andere mit der dazu senkrecht
stehenden imaginären Achse eines Koordinatensystems

zusammenfällt. Der Spitze des Vektors
wird eine komplexe Zahl zugeordnet und damit
der ganze Vektor, dessen Fusspiuikt mit dem
Nullpunkt des Koordinatensystems zusammenfällt,
symbolisch dargestellt. So wird zum Beispiel ein einen
beliebigen, sinusförmig veränderlichen Wechselstrom

von der effektiven Stromstärke / darstellende

Diagrammvektor jy gemäss Fig. 1 zerlegt.
Die Spitze des Vektors £y, dessen Länge I beträgt,

hat die Koordinaten I cos cp und t—j 1 sin cp. Man
erhält so folgenden Ausdruck:

=z I cos <p — I sin cp.

Als Zeichen für die imaginäre Einheit schreibt
die symbolische Rechnung den Buchstaben j, da
der in der Mathematik dafür verwendete Buchstabe

i für den Momentanwert der Stromstärke
reserviert ist.

In Fig. 1 ist die Lage der Achsen die in der
Mathematik übliche: Die Verdrehung der
positiven reellen Halbachse um 90° entgegengesetzt der
Drehrichtung des Uhrzeigers ergibt die Lage der
positiven imaginären Halbachse. Der Winkel cp,
der die Voreilung des Vektors (y gegenüber einem
in der positiven reellen Halbachse liegend gedachten

Bezugsvektor angibt, ist im Uhrzeigersinn positiv

gerechnet.

i
1 leas f ffee//eAchse /

-jIsin?

Fig. 1.

jlsmf \ffee//e Achset

Icosv

jlâMf

Fig. 2. Fig. 3.

Bezeichnet man gemäss der internationalen
Festsetzung 1 j den Winkel cp im Gegenulirzeiger-
sinn als positiv, so muss ein Vektor £y, der einem
in der positiven reellen Halbachse liegenden Be-

1) Die Commission Electrotechnique Internationale (CEI)
legte im September (les Jahres 1911 in Turin fest: «Bei der
graphischen Darstellung von periodisch veränderlichen
elektrischen und magnetischen Grössen soll der dem Uhrzeigersinn

entgegengesetzt gerichtete Drehsinn (lie Phasenvoreilung
angeben.» ETZ 1911, S. 1059.

zugsvektor voreilt, in den Quadranten zu liegen
kommen, der durch die beiden positiven
Halbachsen eingeschlossen ist (Fig. 2).

Im zugehörigen symbolischen Ausdruck
erscheint entsprechend der veränderten Lage der
imaginären Komponente an Stelle des Minus-Zeichens

ein Plus-Zeichen :

CN
G I cos cp -\- j 1 sin cp.

Behält man als positiven Drehsinn den Gegen-
uhrzeigersinn bei, so erhält man eine dritte
Darstellungsweise, die wieder zu dem zuerst erhaltenen
symbolischen Ausdruck führt, indem man die beiden

imaginären Halbachsen miteinander vertauscht
(Fig. 3) :

Q I cos cp —j I sin cp.

Diese drei Darstelhmgsarten eines Vektors durch
eine komplexe Zahl sind in der Literatur der
symbolischen Rechnung von bekannten Autoren
angewendet worden. Die vierte noch mögliche
Darstellungsart, die wieder zum zweiten symbolischen
Ausdruck führt, kommt nicht vor.

Die erste Darstellungsart verbreitete sich vor
allem, bevor international (1er Gegenuhrzeigersinn
als positiver Vektordrehsinn festgesetzt war1). Sie
wurde von Arnold 2) und Roessler3) angewendet.
In Anlehnung an deren Standardwerke wird sie
neuerdings noch von Hugo Ring*) benützt.

Als Beispiel sei die elektromotorische Kraft
einer Wechselstromquelle G in Funktion des von
ihr durch eine mit einem Ohmschen Widerstand R
in Serie geschalteten Drosselspule L getriebenen
Stromes dargestellt. Die Kreisfrequenz sei co

(Fig. 4).
Unter Berücksichtigung der

im Schaltungsschema (Fig. 4)
eingezeichneten Bezugssinne5)
erhält man das Vektordiagramm
der Fig. 5.
-0-_Der zugehörige symbolische
Ausdruck lautet :

@ R $ — j o>L$ (R — j uL) $.

Die zweite Darstellungsart entspricht der
internationalen Festsetzung des positiven Vektordreh-
sinnes. Sie beginnt gegenwärtig, sich allgemein

-) E. Arnold, Die W/echselstromtechnik, Band I, 2.
Auflage, S. 37, Verlag Jul. Springer, 1910.

3) G. Roessler, Die Fernleitung von Wechselströmen, Verlag

Jul. Springer, 1905.
4) Hugo Ring, Die symbolische Methode zur Lösung von

W'echselstromaufgaben, 2. Auflage, S. 2, Verlag Jul. Springer,

1928.
5) Die Berücksichtigung der Bezugssinne ist für die Rechnung

ebenso wichtig wie für das Vektordiagramm, worüber
näheres zu finden ist bei A. v. Brunn, Die Bedeutung des

Bezugssinnes im Vektordiagramm, Bull. SEV 1922, S. 386.

Fig. 4.
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durchzusetzen. Als Benutzer dieser Darstellungsart
seien beispielsweise folgende Autoren genannt:
Casper6), Hauffe7), Noether8), Richter9), Tho-
mälen 10). Für das vorher behandelte Beispiel
ergibt sich das Vektordiagramm (Fig. 6) :

H
uLI

Fi 5.

cjLI yoreilung

scv 1796 Halbachse

Fig. 6.

Der zugehörige symbolische Ausdruck bekommt
die Form:

@ R $ + j L (R j 0) L) (y

Die dritte Darstellungsart wird von einigen
Autoren angewendet, die ursprünglich den
Uhrzeigersinn als Vektordrehsinn betrachteten und
sich nachher der internationalen Festsetzung
anschlössen. Sie konnten ihre früheren Gleichungen
beibehalten, wenn sie mit der Veränderung des
Drehsinnes gleichzeitig die Lage der positiven
imaginären Halbachse umklappten, also so legten, dass
sie gegenüber der positiven reellen Halbachse um
90° im Uhrzeigersinne verdreht war. Als Beispiel
sei Ossanna 11 genannt. Das Vektordiagramm des
behandelten Beispieles entspricht dann Fig. 7.

Der zugehörige symbolische Ausdruck lautet:

@ R$ (R —ju L)

Wie bisher dargelegt worden ist, zerlegt die
symbolische Rechnung die von ihr behandelten
Wechselstromgrössen in zwei Komponenten ver-

Fiff. 7. Fig.

schiedener Art, nämlich in eine reelle (wirkliche)
und in eine imaginäre (unvorstellbare). Damit
schafft sie gegenüber den Vektordiagrammen etwas

6) Ludwig Casper, Einführung in die komplexe Behandlung

von Wechselstromaufgaben, S. 20, Verlag Jul. Springer,

1929.
7) Gerhard Hauffe, Die symbolische Behandlung der

Wechselströme, S. 20, Nr. 991 der Sammlung Göschen, Verlag

Walter de Gruyter & Co., 1928.
8) F. Noether, Abschnitt «Vektordiagramme und

komplexe Rechnung» in E. v. Rziha und J. Seidener, Starkstromtechnik,

Taschenbuch für Elektrotechniker, Band I, 7.
Auflage, S. 38, Verlag Wilhelm Ernst & Sohn, 1930.

9) Rudolf Richter, Elektrische Maschinen, Band I, S. 55,
Verlag Jul. Springer, 1924.

10) Adolf Thomälen, Kurzes Lehrbuch der Elektrotechnik,
10. Auflage, S. 137, Verlag Jul. Springer, 1929.

11 G. Ossanna, Abschnitt «Symbolische Behandlung
stationärer Wechselstromerscheinungen» in E. v. Rziha und
J. Seidener, Starkstromtechnik, Taschenbuch für
Elektrotechniker, Band I, 6. Auflage, S. 58, Verlag Wilhelm Ernst
& Sohn, 1922.

Neues, Unerwünschtes. Die Ebene, die für die
graphische Darstellung der Zusammenhänge durch
Vektoren in allen Richtungen homogen ist,
bekommt bei der mathematischen Behandlung durch
die symbolische Rechnung eine axiale Struktur.
Die Wechselstromgrössen sind aber ihrer Natur
nach niemals komplex, also nicht aus einer reellen
und einer imaginären Komponente zusammengesetzt.

Um diesen Zwiespalt zu beheben, entstand
in den letzten Jahren in der einschlägigen Literatur
eine Strömung, die die in den Vektordiagrammen
graphisch vollständig reell dargestellten
Zusammenhänge auch mathematisch mit vollständig
reellen Mitteln zu erfassen sucht. Die symbolische
Rechnung wird dabei vektoriell interpretiert oder
gar durch eine neuartige Vektorrechnung vollständig

ersetzt. Die nachfolgend erwähnten drei
Methoden verlassen in der Reihenfolge der Aufzählung

immer mehr die Auffassung und die
Ausdrucksweise der bisherigen symbolischen Rechnung.

Rothe 12) rechnet zwar mit komplexen Zahlen,
legt ihnen aber eine vollständig geometrisch-vek-
torielle Bedeutimg zu. Die Schreibweise bleibt
dabei in der Hauptsache die bisher übliche. Er führt
einen Einheitsvektor e und den dazu senkrechten
Einheitsvektor i ein, die beide in der Zeichnungsebene

liegen. Jeder beliebige Vektor lässt sich
dann als vektorielle Summe von Vielfachen der
beiden Einheitsvektoren auffassen.

Gemäss Fig. 8 lautet dann die Gleichung des
Vektors §:

3 Xe + Vi

Nach Rothe stellt man Spannung, Stromstärke,
Impedanz usw. gleichermassen als Vektoren dar.
Die vektorielle Deutung der Gleichung für die
elektromotorische Kraft © einer Wechselstromquelle,

die durch eine Impedanz g die Stromstärke
treibt, stösst dabei auf Schwierigkeiten.

@ 8$ '

Die elektromotorische © erscheint als Produkt
zweier Vektoren g und S- Rechnet man dieses
Produkt nach den Regeln der Vektoranalysis aus,
so ergibt sich die elektromotorische Kraft entweder
als Skalar oder als Vektor, der auf der durch die
Vektoren der Stromstärke und der Impedanz
festgelegten Zeichnungsebene senkrecht steht, je nachdem

man das Produkt als skalares (inneres) oder
vektorielles (äusseres) auffasst. Da nun aber der
Vektor der elektromotorischen Kraft weder ein
Skalar ist, noch auf der Zeichnungsebene senkrecht
steht, wird eine Erweiterung der Vektoranalysis
nötig, wenn man die Auffassung und Schreibweise
der symbolischen Rechnung auch hei vektorieller
Auslegung unverändert beibehalten will; wenn
man also elektromotorische Kraft, Stromstärke,
Impedanz usw. gleichermassen durch Verwendung

12) Rudolf Rothe, Abschnitt «Komplexe Zahlen und
Vektoren einer Ebene», in Hütte, Des Ingenieurs Taschenbuch,

Band I, 25. Auflage, S. 140, Verlag Wilhelm Ernst Si
Sohn, 1925.
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deutscher (Fraktur-) Buchstaben13) als Vektoren
schreibt und auffasst.

Um diese Schwierigkeiten zu umgehen, definiert
Rothe ein neues (drittes) Produkt zwischen zwei
Vektoren. Dieses erhält indessen keinen
charakteristischen Namen, durch den es leicht von den
beiden bisher bekannten Produkten unterschieden
werden könnte.

Es seien die beiden
toren 3 und §' gegeben.

j I g I (cos cp e -j- sin cp i)

â' U'l (cosf//e+ sinr// i).

Für das neue Produkt, dessen Ergebnis ein in
der Ebene der beiden Vektoren 3 und §' gelegener
Vektor ist, gilt die Definitionsgleichung:

à 5' \iI • 15' i (cos ((f + V) e + si" (<p + çp') i}-

Die durch diese Gleichungen beschriebenen
Verhältnisse sind in Fig. 9 dargestellt. Dieses neue
Vektorprodukt könnte — mindestens für die
Bedürfnisse der Wechselstromtechnik — vermieden
werden, wenn man darauf verzichtet, die Impedanz,

Admittanz usw. gleicherweise wie die
elektromotorische Kraft, die Stromstärke usw. als
Vektoren aufzufassen und zu schreiben. Dieser
Verzicht liegt sogar recht nahe, denn die Impedanz,
die Admittanz usw. sind keine sinusförmig
veränderlichen Wechselstromgrössen und sie weisen
gegenüber diesen keine Phasenverschiebungen auf.

Kafka14) unterscheidet zwei Arten von
Vektoren : Zeitvektoren (Stromstärke, Spannung) und
Koordinatenvektoren (Impedanz, Admittanz).
Dementsprechend hat sein Symbol j zwei verschiedene

Bedeutungen: Es ist einerseits ein «Dreber»,
der einen mit ihm verbundenen Vektor im
positiven Sinne (entgegengesetzt dem Uhrzeiger) um
90" verdreht, und anderseits ein Einheitsvektor in
Richtung der positiven Blindachse, die der imaginären

Achse der bisherigen symbolischen Rechnung

entspricht. Ebenso erhalten die Koordinatenvektoren

zwei Bedeutungen: Einerseits sind sie,
wie ihr Name sagt, eigentliche Vektoren, anderseits
wirken sie bei «multiplikativer Verknüpfung» mit
Zeitvektoren als «Drehstrecker», indem sie den
daneben geschriebenen Zeitvektor zugleich drehen
und strecken (oder verkürzen). Bei der «multipli-
kativen Verknüpfung» zweier Koordinatenvektoren
erscheint dann wie bei Rothe12) das früher
erwähnte dritte Produkt zweier Vektoren. Statt der
in der symbolischen Rechnung vielfach angewandten

Schreibweise mit Potenzen von e verwendet
Kafka «Rundpfeilsymbole», mit denen genau gleich
gerechnet wird wie mit den imaginären e-Potenzen.

13) Diese Schreibweise findet man sehr häufig, man
vergleiche zum Beispiel E. Arnold, Die Wechselstromtechnik,
Band I, 2. Auflage, S. 64, Verlag Jul. Springer, 1910.

14) Heinrich Kafka, Die ebene Vektorrechnung und ihre
Anwendungen in der Wechselstromtechnik, Teil I: Grundlagen,

Nr. 22 der Sammlung mathematisch-physikalischer
Lehrbücher, Verlag B. G. Teubner, 1926.

Es gilt also die Analogie:
<—\

ei? cp.

Diese neue Schreibart gibt in anschaulicher
Weise die Verdrehung wieder und soll drucktechnische

Vorteile bieten. Sie hat indessen den
unbestreitbaren Nachteil, neu zu sein, also die Vielheit
der symbolischen Schreibweisen und Darstellungs-
arten um eine weitere, bisher unbekannte, zu
vermehren.

Natalis 15) hat nicht nur eine neue Schreibweise,
sondern eine ganz neue Methode entwickelt. Er
fasst die Impedanzen usw. mathematisch als Vek-
torverhältnisse auf, die graphisch durch zwei
Vektoren (Spannung und Stromstärke) gegeben sind.
Er bringt damit eine Darstellung in Vorschlag, die
dem Wesen der Impedanz, Admittanz usw. sehr
gut entspricht. Die Rechnungen werden ganz im
Rahmen der üblichen Vektorrechnung durchgeführt.

Es treten dabei weder begriffliche
Schwierigkeiten noch Unstimmigkeiten auf. Die
Gleichungen, in denen die Impedanzen usw. als
Vektorquotienten erscheinen, nehmen ganz neuartige
und ungewohnte Formen an. Ohne eingehendes
Studium der neuen Metbode kann man eine in
Natalisscher Ausdrucksweise geschriebene Arbeit
nicht lesen, auch wenn man die bisherige Form der
symbolischen Rechnung beherrscht. Das ist ein
grosser Nachteil, der eine weitgehende Verbreitung
dieser neuen Methode wohl sehr erschweren wird.
Der Unterschied der bisherigen symbolischen und
der Natalisschen Schreibweise sei an einem
Beispiel gezeigt. Gesucht sei die resultierende Impedanz,

die durch zwei in Reihe geschaltete bekannte
Impedanzen gebildet wird.

Bisherige symbolische Darstellung (Fig. 10):
8t ~hj to Gi

$2 R2 -)- j co L2

-8 8t 82 G, -)- j co L{ -f- R2 -|- j co L2

8 — ^1 ~t~ ^2 j (0J Gi -|- to G,).

-5, j, te iva
-WW"—-ww°— -WW*—AAAAA—

se/taoo S£y tâoc

Fig. 10. Fig. 11.

Natalissche Darstellung (Fig. 11):

f_.fi i
f2 _ fl + f~2

8 8 8 8

2.

Zusammenfassung bestehender Elemente zu
einer ebenen Vektorrechnung unter Verwendung

üblicher Schreibweisen.

Die nachfolgenden Darlegungen beschränken
sich auf ebene Vektoren, obwohl sie sinngemäss
auch auf räumliche Vektoren ausgedehnt werden

15) Friedrich Natalis, Die Berechnung von Gleich- und
Wechselstromsystemen, 2. Auflage, S. 17, Verlag Jul. Springer,

1924.
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könnten. Diese Vereinfachung ist dadurch gerechtfertigt,

dass die gewonnenen Resultate später (im
dritten Teil der vorliegenden Arbeit) auf Probleme
der Wechselstromtechnik angewendet werden sollen

und dort nur ebene Vektoren vorkommen. Im
übrigen kommt die beabsichtigte spätere Anwendung

auf die Wechselstromtechnik nur insofern
zum Ausdruck, als Quotienten von Vektoren
besonders eingehend behandelt werden.

Als Voreilung gilt gemäss der internationalen
Festsetzung1) eine Drehung im Gegenuhrzeiger-
sinn. Die Bezeichnungen halten sich an die
Zeichen des AEF1®), soweit die CEI keine solchen
festgelegt hat.

Von der Summe, der Differenz, dem skalaren
(innern) Produkt und dem vektoriellen (äussern)
Produkt von Vektoren braucht hier nichts gesagt
zu werden. Diese Elemente der Vektorrechnung
sind in allen Handbüchern und Taschenbüchern zu
finden, so dass sie als bekannt vorausgesetzt werden

dürfen. Ueberdies herrscht dabei gemäss
Satz 10 des AEF 1<ä) bereits Einheitlichkeit.

Die Behandlung der Quotienten von Vektoren
ist dagegen selten, es soll daher hierauf näher
eingegangen werden. Hiezu erweist sich eine Definition

als notwendig, die indessen kaum in der Form
neu ist und inhaltlich längst im Gchrauche steht.

21.
Der Quotient von zwei zueinander senkrecht

stehenden, gleichlangen Vektoren.
Es seien zwei Vektoren © und SB gegeben.

Gemäss Satz 10 des AEF 16) gilt dann für die
Beträge (Längen) dieser Vektoren folgende Schreibweise

:

I©] B |2B] — W.

Mit Zuhülfenahme der Einheitsvektoren ©° (sprich
B hoch Null) und SB0 kann dann geschrieben
werden :

© B©° SB r3B°.
Es soll nun folgende Definition getroffen werden :

Unter der Voraussetzung, dass erstens die
Beträge B und W der beiden Vektoren © und SB
einander gleich sind,

B=W (1)

und dass zweitens der Vektor © gegenüber dem
Vektor SB um 90 Grad positiv verdreht ist (also
um 90 Grad entgegengesetzt dem Uhrenzeigersinn)

©
(Fig. 12), wird der Quotient - - zur Abkürzung

identisch gleich j gesetzt:
©
SB =./• (2)

Gl. (2) ist die Definitionsgleichung für den von
nun an fortwährend gebrauchten Vektorquotienten j.
Was für ein Resultat kommt heraus, wenn man
einen Vektor mit j multipliziert oder dividiert?

1B) AEF. Verhandlungen des Ausschusses für Einheiten
und Formelgrössen in den Jahrei 1907 bis 1927, herausgegeben

im Auftrage des AEF von J. Wallot, Verlag Jul.
Springer, 1928.

sev fâo*

Fig. 12. Fig. 13.

Es soll zuerst die Multiplikation, also der
Ausdruck j untersucht werden. Ersetzt man gemäss
(1er Definitionsgleichung (2) j durch den Quotienten

©
so wird :

©»
J A (3)

Ueber die absolute Lage der beiden Vektoren
© und SB wurde anlässlich der Definition von jkeine Voraussetzung gemacht. Die Lage eines der
beiden Vektoren darf also frei gewählt werden.
So kann angenommen werden, dass der Vektor SB
mit dem Vektor in Phase liege. Fig. 13
veranschaulicht die Verhältnisse, die sich durch diese

A
Annahme ergeben. Der Quotient kann leicht

gebildet werden, da es sich dabei um den
Quotienten von zwei in Phase liegenden Vektoren
handelt. Er bedeutet ein Messen des Vektors
mit dem Vektor SB, was dasselbe gibt, wie wenn
der Betrag I des Vektors durch den Betrag W
des Vektors SB dividiert wird. Es gilt also die
Gleichung :

3 1

IV (4)

i 3

Setzt man diese Beziehung in Gl. (3) ein, so erhält
diese veränderte Gestalt :

I ©
W ' ^

Stellt man den Vektor © als Produkt aus dem
Betrag B und dem Einheitsvektor ©° dar und
berücksichtigt man, dass nach der für die Definition

von j gemachten Voraussetzung [gemäss Gl. (1)]
der Betrag B gleich dem Betrag W ist, so wird
schliesslich:

I B ©°
/ À -• „ -/©"• (3b)

Die rechte Seite dieser GL (3b), das Produkt aus
dem Betrage / und dem Einheitsvektor ©°, stellt
einen neuen Vektor dar, der genannt sei.

/©° 3'
./v 3'- (4)

Seine Länge ist gleich der Länge 1 des Vektors
und seine Richtung ist die Richtung des Einheitsvektors

©0, die mit der Richtung des Vektors ©
übereinstimmt. Zufolge der gemachten Voraussetzung

ist sie um 900 im Gegenuhrzeigersinn
gegenüber der Richtung des Vektors SB und
damit auch gegenüber der Richtung des Vektors Qj
verdreht. Das Produkt gebildet aus dem
Vektorquotienten j und einem beliebigen Vektor Q1, stellt
somit einen neuen Vektor dar, der gleich lang ist
wie der Vektor gegen ihn jedoch um einen
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rechten Winkel im positiven Drehsinne verdreht
ist. Der Vektorquotient j ist somit ein rechtwinkliger

Dreher oder ein rechtwinkliger Versor IT).
Es ist ohne weiteres verständlich, dass der

Ausdruck
(~j)3 -i 3

auch einen zum Vektor £y senkrecht stehenden
Vektor darstellt. Er sei £y" genannt.

-i9 &"•
Fasst man den Ausdruck j £y zu einem Vektor £y'

zusammen, j £y £y',

so wird —j £y — ^y' und somit ^y" — £y'. (5)

Der neue Vektor £y" ist gleich lang wie der
Vektor £y', also ebenso lang wie der Vektor £y. Er
ist jedoch dem Vektor ^y' entgegengesetzt gerichtet,
was durch das negative Vorzeichen ausgedrückt ist.
Fig. 14 veranschaulicht diese Beziehungen.

Das Produkt (—j) £y, gebildet aus dem negativ
genommenen Vektorquotienten j und einem
beliebigen Vektor £y, stellt somit einen neuen Vektor
dar, der gleich lang ist wie der Vektor £y, gegen
ihn jedoch um einen rechten Winkel im negativen
Drehsinne verdreht ist. Der negative Vektorquotient

— / ist somit ein negativer rechtwinkliger
Dreher oder Versor.

Es soll nun noch die Division, also der Ausdruck
O

untersucht werden. Benützt man zum Ersatz von

j wieder die Definitionsgleichung (2), so erhält man

_ 30^
j 23 ' (6)

1T) Fasst man in räumlicher Vektorrechnung die Vektoren
SB und © als in der XZ-Ehenc liegend auf, so lassen sie sich
durch die in der X- und der Z-Achse liegenden Einheitsvektoren

t und Ï ausdrücken. Dahei sei angenommen, dass der
Einheitsvektor f dem Einheitsvektor i voreilt.

Wx i + Wz ï © — Wz i + Wx Ï

Multipliziert man den Vektor SB mit dem in der Richtung
der y-Aehse liegenden Einheitsvektor j vektoriell, so erhält
man nach den Regeln der Vektorrechnung:

[SB j] Wx [i j] + Wz [f j] Wx ï + SBz (—i) ©.Wx [i j] + Wz [fj]
Entsprechend gilt dann:

i SB
©

Dabei ist aber zu bedenken, dass die Vektorrechnung im
allgemeinen reziproke Vektoren nicht kennt. Die letzte
Gleichung entspricht der Identitäts-Gleichung (2) :

•' ~ 2B*

Der Buchstahe j des lateinischen Alphabetes bedeutet einen
rechtwinkligen Versor, der ohne räumliche Auslegung
besteht. Dagegen stellt der Buchstabe j des deutschen (Fraktur-)

Alphabetes einen im Räume als rechtwinkligen Versor
wirkenden Einheitsvektor dar.

Allgemein erscheint der Quotient der rechtwinkligen
Vektoren SB und S, sei er nun in der ebenen Vektorrechnung
als Operator j oder als räumlicher Vektor j eingeführt, als
Spezialfall einer Quaternion. Siehe hierüber:

J. Kopeliowitch, Théorie des Quaternions, Thèse No. 707
Université de Genève, 1922.

A. Byk, Komplexe und ebene Vektorrechnung in der
Wechselstromtechnik, in W. Petersen, Forschung und Technik,

Verlag von Jul. Springer, Berlin, 1930.

In diesem Falle nimmt man zweckmässig an, dass
die Richtung des Vektors 23 mit der Richtung des
Vektors £y zusammenfalle. Indem mau wieder
berücksichtigt, dass die beiden Vektoren 23 und 2B

gleich lang sind, dass also die Beträge B und W
gleich gross sind, erhält man ähnlich wie vorher
bei der Multiplikation:'

•r I SSf=B- (6a>

9=ijrwo Jm (6b)

Die rechte Seite dieser Gl. (6b), das Produkt aus
dem Betrage I und dem Einheitsvektor 2ß° stellt
einen neuen Vektor dar, der Qf"' genannt sei.

/ 2B° ar
o3 (7)

Fio. 15 veranschaulicht diese Verhältnisse.

Die Länge des Vektors ,^y'" ist gleich der Länge I
des Vektors £y und seine Richtung ist die Richtung
des Einheitsvektors 233°, die mit der Richtung des
Vektors 2B übereinstimmt. Zufolge der anlässlich
der Definition von j über die relative Lage der
Vektoren 23 und 2$ gemachten Voraussetzung ist
somit die Richtung des neuen Vektors £y'" um 90°
im Uhrzeigersinn gegen die Richtung des Vektors
£y verdreht.

°y
Der Quotient -A-, gebildet aus dem Vektorquo-

tienten j und einem beliebigen Vektor £y, stellt
somit einen neuen Vektor dar, der gleich lang ist
wie der Vektor £y, gegen ihn jedoch um einen
rechten Winkel im negativen Drehsinn verdreht

ist. Der reziproke Vektorquotient— ist somit ein

negativer rechtwinkliger Dreher oder Versor. Ganz
ähnlich wie vorher hei der Multiplikation lässt
sich noch die Wirkung der Division eines Vektors
durch —j zeigen. Man erhält das Ergebnis:

rv
1Der Quotient v—, gebildet aus dem negativ

genommenen Vektorquotienten —j und einem
beliebigen Vektor £y, stellt einen neuen Vektor dar,
der gleich lang ist wie der Vektor £y, gegen ihn
jedoch um einen rechten Winkel im positiven Drehsinne

verdreht ist. Der reziproke Vektorquotient
-L. is, somit ein posiüeer «stornier Drei,er

oder Versor. Die vier Resultate sind graphisch in
der Fig. 16 zusammengestellt.

Fig. 15. Fig. 15.Fig. 14.
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Es zeigt sich, dass einerseits die Symbole j und

anderseits und auf einen als Faktor

daneben gesetzten Vektor (y dieselbe Wirkung
ausüben. Sie ersetzen einander und dürfen deshalb
einander gleichgesetzt werden. Man erhält so die
beiden Gleichungen :

-J
1

(8a)

(8b)

Ferner zeigt sich, dass man durch Multiplikation
des Vektors (jjj) mit dem rechtwinkligen Versor j
den Vektor —$ erhält. Das führt zu der Gleichung:

J U %) -% (8c)

Aehnlich gilt auch die Gleichung:

-j (-J 3) =~3- (8d)

Die vier Gleichungen (8a), (8b), (8c) und (8d)
lassen sich alle leicht in die Gleichung (9)
umformen, die aussagt, dass das Quadrat des
rechtwinkligen Versors j gleich der negativen Einheit ist.

f - I- (9)

Für die maginäre Einheit gilt bekanntlich die
Defiiiitionsgleichung 10 :

i + ]/ — 1

-1.
(10)
(H)

Die Uebereinstimmung der Gleichungen (9)
und (11) zeigt, wie nahe der rechtwinklige Versor

j und die imaginäre Einheit i miteinander
verwandt sind. Ein Unterschied besteht lediglich
darin, dass die imaginäre Einheit i ohne geometrische

Deutung zu Recht besteht, während der
rechtwinklige Versor j ein Quotient gleichlanger,
zueinander senkrecht stehender Vektoren ist.

Aus der formalen Uebereinstimmung der
beiden Gleichungen (9) und (11) folgt die
bedeutungsvolle Tatsache :

Für den rechtwinkligen Versor j gelten
dieselben Rechnungsregeln wie für die imaginäre Einheit

i.

22.
Der Operator, der Quotient von zwei beliebigen

Vektoren.
Es seien gemäss Fig. 17 zwei Vektoren 11 und ^

gegeben, deren Richtungen sich um den Winkel cp

unterscheiden.
Der Quotient dieser beiden Vektoren sei mit Z

(sprich Z-Punkt) bezeichnet. Es gelte also die
DeJinitionsgleichujjg :

11
Z o3

(12)

Löst man Gl. (12) nach dem Vektor U auf.
erhält man die Gleichung:

U Z3. (13)
Der Vektorquotient Z ist ein Operator, der mit
einem beliebigen Vektor $ multipliziert, einen

andern beliebig liegenden Vektor beliebiger Länge
ergibt. Da sowohl der Operator Z wie der
rechtwinklige Versor j Vektorquotienten sind, bestehen
zwischen ihnen offenbar Zusammenhänge. Diese
sollen jetzt näher untersucht werden, Zu diesem
Zwecke soll der Vektor II senkrecht und parallel
zum Vektor in die Komponenten llb und llw
zerlegt werden. Fig. 18 zeigt diese Zerlegung. In

Fig. 17. Fig. 18.

dieser Figur ist ausserdem der Vektor j
eingetragen. Da der Vektor üw in Phase mit dem Vektor

liegt, geht er aus ihm durch Multiplikation
mit einem Faktor hervor, der Zw genannt sei.

1IW ZW$. (14a)
Da ebenso der Vektor lt„ in Phase mit dem Vektor

j liegt, geht er aus ihm ebenfalls durch
Multiplikation mit einem Faktor hervor, der Zb
genannt sei.

u „ Zbj3f. (14b)
Berücksichtigt man, dass der Vektor lt die Summe
der beiden Komponenten Hw und 11

b ist, so erhält man
bei Berücksichtigung der Ansätze (14a) und (14b):

11 llw-f-llb Zwpj-VZbj= (Zw-t-jZb)^y. (15)
Vergleicht man diesen Ausdruck mit Gl. (13), so
findet man leicht :

Z — Zw —j Z„. (16)
Da man einen Vektor 11 immer senkrecht und
parallel zu einem andern Vektor zerlegen kann,
gilt allgemein der Satz :

Man kann einen Operator Z immer als Binom
schreiben, dessen erster Teil ein reiner Faktor und
dessen zweiter Teil ein mit dem rechtwinkligen
Versor j multiplizierter Faktor ist.

Drückt man die Läegen U, I/w und Ub der
Vektoren 11, Uw und llb durch die Länge I des Vektors

aus, so erhält man :

Uw Zw / (17a)
Ub ZbI (17b)

u 1/W+Vt 1/~ZÏ+Zjl. (18)

Man bezeichnet den Ausdruck ]/ Z\-\-Z\ als

Betrag Z des Operators Z und schreibt:
1 ZI Z

z i/z2 a-z (19)

Zwischen den Beträgen U und I gilt also die
Gleichung :

U — ZI (20)
Die analoge, zwischen den Vektoren 11 und
bestehende Gl. (13) sei zum Vergleich nochmals
angeschrieben :

11 z 3- (13)
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Die Grösse der beiden Faktoren Zw und Zb
hängt von den Beträgen U und I der beiden
Vektoren 11 und $, sowie von dem von ihnen
eingeschlossenen Winkel cp ab. Unter Berücksichtigung
der Gleichungen 17a, 17h und 18 findet man
anhand Fig. 18 sofort folgende Beziehungen:

i(f
Z„I
ZI

Zw z cos cp

Z„ I
sin cp ZI

NIIN sin cp

(21a)

(21b)

Setzt man diese Ausdrücke in Gl. (15) ein, so
erhält man:

11 Z (cos cp -\-j sin cp) $

Z — Z (cos cp + j sin cp) (22)

Gemäss Gl. (20) hat der Vektor Z £5 die Länge
des Vektors 11. Die Richtung ist aber offenbar die
Richtung des Vektors £5. Für die Drehung bei
gleichbleibender Länge muss somit das Glied
(cos cp 4~ j sin cp) die Ursache sein. In der Tat
wird der Betrag dieses Gliedes:

cos cp -)- 7 sin cp I ]/
Der Vektor Z (cos cp ' J sin cp) $

cp -j- sin2g? J.

ist also gleich
lang wie der Vektor Z weist aber ihm gegenüber

die Verdrehung um den Winkel cp auf.
Der Betrag Z ist somit ein reiner Faktor, das

Glied (cos cp +7 sin cp) dagegen ein reiner Dreher
oder Versor. Ganz allgemein lässt sich sagen:

Man kann einen Operator Z immer als Produkt
aus einem reinen Faktor Z (dem Betrag des
Operators) und einem reinen Versor cos cp + j sin cp

schreiben.
Multipliziert man einen Vektor mit einem

Operator, so bewirkt der Betrag des Operators eine
Veränderung des Betrages des Vektors und der
Versor des Operators bewirkt eine Verdrehung des
Vektors.

Für den gemäss Gl. (22) in der Produkt-Form
des Operators Z enthaltenen Versor cos cp-\- j sin cp

lässt sich noch eine andere Schreibweise begründen,
die zufolge ihrer Kürze oft mit Vorteil angewendet

wird. Man denke sich den durch die Vektoren
11 und S eingeschlossenen Winkel cp in m Teile
zerlegt, wobei die Zahl m unendlich gross werden
soll 18).

Aus Fig. 19 liest man ab:
U1 — Ho -Jllo,

Dabei kann wegen der Kleinheit des Winkels cpjm

gesetzt werden :

â ll„ 7II0-- U, U0(l+~
111 \ m

Da der Vektor 110 die Richtung des Vektors hat,
gilt:

H0! Z3 H,: Zl1+^F-
Ebenso wird : ll2 ItL^ I I (p

m

u, Z |: 1 + 1 3,

n-z (»-(1+2?

Setzt man 11 — '7—, so erhält man :
m

S'¬

il Z (lim( 1 + i-)")
3

(T\j

Da lim (' +!)"«>
annii

kann 11

u Zei

für unendlich grosses n den

Grenzwert 2,718 annimmt, den die Mathematik
mit e bezeichnet, kann man schreiben :

Fig. 19. Fig. 20.

Z Z e i v (23)

Dass e die Grundzahl der natürlichen Logarithmen

ist, hat hier wenig zu bedeuten. Die Schreibweise

mit Potenzen von e drückt nicht mehr aus
als die bisherige Schreibweise des reinen Versors:
cos cp -\- 3 sin cp.

ei f — cos cp + j sin cp (24)

z _ ltk

$ (25)

Liegen gemäss Fig. 20 zu einem Vektor Q zwei
gleich lange Vektoren U und Uk symmetrisch, so
findet man durch Zerlegung in Komponenten leicht
die beiden Operatoren Z und Zk5 die den Vektor £y

in die beiden symmetrischen Vektoren überführen.
Für die beiden gesuchten Operatoren gilt der Ansatz:

_U_
o

Drückt man den beiden Vektoren 11 und llk durch
die Summe von zwei Komponenten senkrecht und
parallel zum Vektor Q aus, so wird :

11 ltw -j- 11
„ llk llkw -|- llkb

11 - Zw $ +7 Z„ Q llk Zw s —j Zi,

18) Diese Ableitung folgt der Darstellung von Adolf Tho-
mälen, Kurzes Lehrbuch der Elektrotechnik, 10. Auflage,
S. 139, Verlag Jul. Springer, 1929.
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Durch Einsetzen findet man :

(26a)

(26h)

Für die Beträge der beiden Operatoren gemäss
Gl. (19) erhält man:

\z\ ifzi+zl z |zk| - /zT+ zT= z

Zk[ z (27)

Man bezeichnet zwei Operatoren Z und Zk, die
sich nur dadurch unterscheiden, dass ihr den
rechtwinkligen Yersor j enthaltender Teil mit
umgekehrten Vorzeichen erscheint, als kon jugierte
Operatoren. Die Beträge von zwei konjugierten
Operatoren sind einander gleich.

Multipliziert man konjugierte Operatoren mit
demselben Vektor 3, so bringen beide die gleiche
Längenänderung, aber entgegengesetzt gleiche
Verdrehungen hervor.

In der Schreibweise mit Potenzen von e erhält
man deshalb für konjugierte Operatoren die
Formen :

(28a)

(28b)

23.
Rechnungsregeln für Vektoren und Operatoren.

Für die ebene Vektorrechnung sollen dieselben
Bechnungsregeln gelten, die für die allgemeine,
räumliche Vektorrechnung bestehen. Sie werden
als bekannt vorausgesetzt.

Sind Vektoren unter Benützung von Operatoren
durch andere Vektoren ausgedrückt, so erfordert
deren Verknüpfung Rechnungsregeln für Operatoren.

Die einfachsten dieser Regeln sollen kurz
dargelegt werden. Zufolge der früher konstatierten
Uebereinstimmuiig zwischen dem rechtwinkligen
Versor j und der imaginären Einheit i decken sie
sich mit den Rechiiiuigsregeln für komplexe Zahlen.

231.
S u m m e.

Gegeben seien in Binom-Form die beiden
Operatoren:

Z) Zw+j'Zib im,l Z2 Z2w +7 z2b,

die zusammen mit einem Vektor ^ die beiden
Vektoren 11, und ll2 festlegen:

11, Z, 3 und U2 z2 3-
Gesucht sei der den Vektor Q in die Vektorsumme
11, -\- 112 überführende Operator, sowie dessen
Betrag. Aus dem Gegebenen folgt :

U, + il2 Z, 3 + Z.3
u, + u2= (Z, + Z2)3- (29)

Der gesuchte Operator ist gleich der Summe
der beiden gegebenen Operatoren. Diese soll nun

unter Berücksichtigung des gemachten Ansatzes
berechnet werden. Man erhält :

Zi + Z2 Ziw +7 Zib + Z2w +7 Z2b.

Durch Ordnen findet man für die Bildung der
Summe von zwei Operatoren die Rechnungsregel:

Z, -f Z2 — Z,w + Z2w +7 (Zlb + Z2b) (30)

Gemäss Gl. (19) erhält man hieraus für den
Betrag der Summe von zwei Operatoren:

Z, + Z2 — ]/ (Z,w + Z2».)2-|- (Z, b + Z2b)2 (31)

Fig. 21 enthält die nach den Regeln der
Vektorrechnung erfolgte Summenbildung.

Aus dieser Figur liest man ab:

11, + lt2 ^Zi w + Z2w + 7 (Zi b + Z2b)j

Vergleicht man diesen Ausdruck mit Gl. (29),
so findet man die in Gl. 30 ausgedrückte Recli-
nungsregel bestätigt.

Aus dem rechtwinkligen Dreieck, das den Vektor

11, -j- 112 als Hypothenuse enthält, findet man
für den Betrag 11, -f-ll2| der Vektorsumme:

| Iii —I—1121 — l/ (Z,w+ Z2w)2 + (Z,b + Z2b)" I-

Nun muss das Verhältnis der Beträge 11, —f— 1121

und / gleich den Betrag der gesuchten Operatoren-
summe sein.

7 I 7
| U i —1" 112

I a, -t- z,2 — j •

Durch Vergleich der beiden letzten Ausdrücke
findet man die in Gl. (31) ausgedrückte
Rechnungsregel bestätigt.

Jz2b -1

/
UrüJ \/U'

//S
jZ,hä

y : zms
Jfrre/2 a

Fig. 22.Fig. 21.

232.
Differenz.

Gegeben seien wie vorher wieder die beiden

Operatoren Z1 und Z2. Gesucht sei der den Vektor

£5 in 'be Vektordifferenz 11, — IL überführende
Operator, sowie dessen Betrag. Aus dem Gegebenen

folgt:
11, - 112 Z, 3-Z23
11, _ IL (Z, - z2) fr (32)

Der gesuchte Operator ist gleich der Differenz
der beiden gegebenen Operatoren. Diese soll nun
unter Berücksichtigung des schon vorher gemachten

Ansatzes berechnet werden. Man erhält:
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Z, - Z2 Z, w + j Z, „ - (Z2W +./ Z2b).

Durch Ordnen findet man für die Bildung der
Differenz von zwei Operatoren die Reclinungsregel :

Z, — Z2 — Z,w Z2w + j (Zi b Z2b) (33)

Gemäss Gl. (19) erhält man hieraus für den
Betrag der Differenz von zwei Operatoren:

z, - z2!= y (zlw-z2w)2+(zlb-z2b)2 (34)

Fig. 22 enthält die nach den Regeln der
Vektorrechnung erfolgte Differenzbildung.

Aus dieser Figur liest man ab:

Iii—U2 —(ZIW-Z2w+j(Zlb-Z2b))
Vergleicht man diesen Ausdruck mit Gl. (32),

so findet man die in Gl. (33) ausgedrückte
Rechnungsregel bestätigt.

Aus dem rechtwinkligen Dreieck, das den Vektor

11, —112 als Hypothenuse enthält, findet man
analog wie vorher die in Gl. (34) enthaltene
Rechnungsregel für den Betrag der Operatorendifferenz
bestätigt.

233.
Produkt.

Gegeben seien in Binom-Form die beiden
Operatoren :

Z, zlw + izlb Z2 z2w + ;z2b,
wobei der Operator Z2 zusammen mit dem Vektor
lt2 einen Vektor ^ und den Operator Z, zusammen
mit dem Vektor Q den Vektor lTi festlegt.

3 z2 VL2 II, Z 3.

Gesucht sei der den Vektor II2 in den Vektor II,
überführende Operator, sowie dessen Betrag und
Versor. Aus dem Gegebenen folgt:

it, Z, Z2 ii2. (35*)

Der gesuchte Operator ist gleich dem Produkt
der beiden gegebenen Operatoren. Dieses soll nun
unter Berücksichtigung des gemachten Ansatzes
berechnet werden. Man erhält:

Z,Z2 =ZiwZ2w+./ (ZlwZ2b+ZlbZ2w)-(-j2z,vz2b.

Berücksichtigt man, dass gemäss Gl. (9) für j
zufolge der dadurch angedeuteten zweimaligen
Verdrehung um einen rechten Winkel — 1 gesetzt
werden darf, so erhält man für das Produkt von
zwei Operatoren die Rechnungsregel:

Z, z2 zlwz2w -ZlbZ2b
+J (Ziw z2b -t- Z, b Z2w).

(35)

Hieraus kann gemäss Gl. (19) der Betrag
berechnet werden.

Z, Z2 — i/(ZlwZ2w—Zlbz2b)- + (zlwz2b+zlbz2w)-.

Multipliziert man diesen Ausdruck aus und ordnet

man, wobei sich einige Glieder herausheben,
so erhält man:

|Z, Z2| - ]/(Zfw+Zfb) (Z|w+Zfb).
Die rechte Seite dieser Gleichung stellt das

Produkt der Beträge der beiden gegebenen Vektoren
dar. Man erhält somit für den Betrag des Produktes

von zwei Operatoren die Rechnungsregel :

Z, Z2 z, z2 (36)

Für die Produktbildung ist die Verwendung der
Produkt-Form der Operatoren, insbesondere die
Schreibweise mit e-Potenzen vorteilhaft.

Z, Z, e-»s Z> ei 9z

Die Beträge Zx und Z2 sind nach Gl. (19) zu
ermitteln. Man erhält:

z,= ]/Zr» •Z,2b Z2 i/~Z|w + Zfb

Aus der Binom-Form lassen sich gemäss den
Gl. (21a) und (21b) auch die Funktionen cos und
sin der von den Vektoren eingeschlossenen Winkel
Vi

cos cpx

sin cpx

und <p, berechnen. Es werden:
Ziw Z2w

ZT cos^2 -z2

Zib z2b
sin cp2 - _£\ Zj\3

Hieraus kann man die Winkel q>x und q>2

bestimmen. Es sind somit die für die Produkt-Form
nötigen Bestimmungsstücke der beiden Operatoren
bekannt. Durch Bildung des gesuchten Produktes
erhält man:

Z, Z, — Z, ei9i Z2 ei?*.

Indem man die den rechtwinkligen Versor j
enthaltenden Potenzen von e wie gewöhnlich e-
Potenzen multipliziert, d. h. die Exponenten
addiert, erhält man für das Produkt von zwei
Operatoren die weitere Rechnungsregel :

Z,Z2 Z,Z2 ei<9i+9z) (37)

Für den Betrag findet man daraus wieder die
in Gl. (36) ausgedrückte Rechnungsregel. Für den
Versor findet man:

e$9i ei9% ei <9\ +9z) (38)

Diese Gleichung kann ausführlicher geschrieben
werden :

(cos cpx -|- / sin tpx) (cos cp2 + / sin cp2)

cos (cpl^-cp2) + / sin (cpx-{-cp2).
(39)

Aus Fig. 23 gehen die in den Gl. (36), (37),
(38) und (39) ausgedrückten Rechnungsregeln un-
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mittelbar hervor. Wenn die Länge U1 des Vektors
11 das Z,-fache der Länge I des Vektors beträgt,
und die Länge I selbst das Z2-fache der Länge U2

des Vektors 112 beträgt, ist der Vektor 11, offenbar
Z, Z2-mal so lang wie der Vektor U2. Ebenso
ersieht man, dass sich der Winkel zwischen den
Vektoren Iii und U2 a's Summe der Winkel <pt und cp2

darstellt.
Ein äusserst wichtiger Spezialfall ist das

Produkt konjugierter Operatoren:

Z Zw-f / Z„ und Zw Zw - / z2.

Man erhält dann: ZZk =; Z\-\zZ\.

Fig. 24.

Berücksichtigt man, dass gemäss Gl. (9)
wiederum y gleich — 1 gesetzt werden darf, so
erkennt man in der rechten Seite der Gleichung das

Quadrat des Betrages des gegebenen Operators Z-
Man erhält also für das Produkt von zwei zueinander

konjugierten Operatoren die Rechnungsregel

:

Z Zu — Z2 (40)

Das Produkt konjugierter Operatoren ist ein
reiner Faktor, nämlich das Quadrat ihres Betrages.

Da die Beträge der beiden gegebenen
konjugierten Operatoren gemäss Gl. (27) einander gleich
sind, erhält man aus Gl. (36) für den Betrag des
Produktes konjugierter Operatoren die Rechnungs-
regel :

ZZu Z2 (41)

Da das Produkt und der Betrag des Produktes
einander gleich sind, muss der Versor zu einem
reinen Faktor vom Betrage 1 degenerieren. Fig. 24
veranschaulicht die Zusammenhänge.

234.

Quotient.
Gegeben seien in Binom-Form die beiden

Operatoren :

Zi Ziw + /Zib Z2 Z2w + /Z2b5

die zusammen mit einem Vektor die beiden
Vektoren II, und 1I2 festlegen.

u, z, 3 z2 3.
Gesucht sei der den Vektor U2 in den Vektor 11,

überführende Operator, sowie dessen Betrag und
Versor. Aus dem Gegebenen folgt:

II, _
ZA u2.
Z2

(42)

Der gesuchte Operator ist gleich dem Quotient
der beiden gegebenen Operatoren. Ihre gegebenen
Binom-Formen sollen zur Berechnung dieses
Quotienten beiiiitzt werden. Man erhält:

z,
z2

/ z, b

JZ2

Dieser Ausdruck lässt sich nicht ohne weiteres
durch Ausmultiplizieren und Ordnen in einen
Operator von Binom-Form umformen. Um dieses Ziel
zu erreichen, benützt man den Kunstgriff, dass man
den Ausdruck mit einem Operator erweitert, der
zu dem im Nenner stehenden Operator konjugiert

ist.

Zi Z,Z2k
Z2 Z2 Z2k

Gemäss der in Gl. (40) ausgedrückten Rech-
nungsregel, wonach das Produkt konjugierter
Operatoren gleich dein Quadrat ihres Betrages wird,
erhält man:

Z, Z2k ZI
Drückt man den Betrag gemäss Gl. (19) durch

die beiden Glieder der Binom-Form aus und setzt
man für die im Zähler stehenden Operatoren
gleichfalls ihre Binom-Formen, so wird:

Z, Zgit

Z2 z2k

(ZIw-L/Z,b) (Z2w — / Z2b)

Multipliziert man diesen Ausdruck aus, ordnet
man und setzt man j2 gleich — 1, so erhält man
für den Quotienten von zwei Operatoren die Recli-
liungsregel:

z,
Z2

Z, w Z2 w
I Z, b Z2 b

zITTzi^
Z1 w Z2 b ~~ Z,bZ2w

(43)

/ Z2b

Hieraus kann gemäss Gl. (19) der Betrag
berechnet werden.

Z,

z2

ZIWZ2W+Z, b Z2 z,wz2b — Z,bZ2
zi7+z22b

Multipliziert man diesen Ausdruck aus und
ordnet man, wobei sich einige Glieder herausheben,
so erhält man:

z,
z2

7-A,, Zib
z2v

Die rechte Seite dieser Gleichung stellt den
Quotienten der Beträge der beiden gegebenen
Operatoren dar. Man erhält somit für den Betrag des

Quotienten von zwei Operatoren die Reclinuiigs-
rejtel :

z,
z2

z,
z2

(44)
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Auch für die Bildung des Quotienten ist die
Verwendung der Produkt-Form der Operatoren,
insbesondere die Sehreibweise mit e-Potenzen
vorteilhaft:

Z[ Z, und Z2 Z2eJV2.

Durch Verwendung dieser Ansätze erhält man:

ZL _ Z, eM
z2 z2 eif'! '

Daraus findet man für den Quotienten von zwei
Operatoren die weitere Rechnungsregel:

(45)

Für den Betrag geht daraus wieder die in
Gl. (44) ausgedrückte Rechnungsregel hervor. Für
den Versor findet man daraus die Rechnungsregeln:

eifi
ei? 2

eiCPi-fi

cos cp\ + j sin (/>,

cos cp2 -\- j sin cp2

cos (cp, - cp2)

+ / sin (<ßi - <p2)-

(46)

(47)

Es soll nun noch der Spezialfall untersucht werden,

dass die beiden gegebenen Operatoren
zueinander konjugiert sind. Die beiden Vektoren II
und 11 k liegen dann gemäss Fig. 20 symmetrisch zu
einem Vektor 3, wenn die Gleichungen gelten :

11 z 3 Z Zei?
ttk=Zk3 Zk=Z e~if.

Gesucht sei der Operator, der den Vektor 11

in den Vektor Uk überführt. Aus dem Gegebenen
folgt:

nk -Zk h
z

Der gesuchte Operator ist gleich dem Quotient
der gegebenen Operatoren. Es wird:

Zk _ Ze-i?
Z ~ Zei?

Man erhält so für den Quotient von zwei
konjugierten Operatoren die Rechnungsregeln:

zk

z
e~i2? Zk

z
(45)

Der Quotient konjugierter Operatoren ist ein
reiner Versor.

24.
Variable Vektoren unci Operatoren, Ortskurven10).

Es soll der Vektor 33 durch Multiplikation mit
dem Operator v aus dem Vektor 31 hervorgehen.
Ist der Operator v eine stetige Funktion eines Para-

la) Die Bezeichnung «Ortskurven» wurde aufgebracht
durch das in dieser Materie grundlegende Werk: Otto Bloch,
Die Ortskurven der graphischen Wechselstromtechnik, Verlag

Rascher & Co., Zürich, 1917.

meters p, so verändert sich offenbar der Vektor SB

ebenfalls stetig und die Gesamtheit der Orte, an
denen seine Spitze liegen kann, lässt sich durch
eine Kurve, durch die sogenannte Ortskurve angehen,

Ganz allgemein lässt sich der variable Operator
v in einen konstanten Anteil m und in einen
variablen Anteil rp zerlegen.

v m-f rp

Der variable Operator rp lässt sich seinerseits
als Produkt von zwei Operatoren auffassen,

rP rp
wovon der erste Operator konstant sein soll. Der
zweite Operator dagegen soll in Produkt-Form aus
einem variablen Betrag und aus einem variablen
Versor bestehen20).

p p eiWi»

Man erhält so für den Vektor 33 den Ausdruck:

33 m 91 + r p ei*to> 31

Die Ortskurve des Vektors 33 wird beschrieben
durch einen veränderlichen Vektor

)RP rpe^fptai
dessen Fusspunkt durch die Spitze des konstanten
Vektors

3)1 m 31

gebildet wird. Man kann somit den Vektor 33 als
Summe eines konstanten und variablen Vektors
auffassen.

33 TO + 5R„

Die durch den variablen Vektor:

Fig. 25.

0L rp eii'lP) 31

für sich allein dargestellte Ortskurve lässt sicli
offenbar durch Verschiebung um den Vektor
mit der durch den Vektor S3 beschriebenen Kurve
zur Deckung bringen. Je nach der Art der
Veränderlichkeit des Operators

rp rp ei^<v)

ergehen sich verschiedene Ortskurven. Einige
Fälle, die zu einfachsten geometrischen Kurven
führen, sollen nachfolgend kurz erwähnt werden.

241.
Gerade.

Verändert sich nur der Betrag des Operators

rp rp, so dass sein Versor konstant bleibt, indem
der Operator p, zu einem reinem Faktor p degeneriert,

so hat der Vektor eine konstante Richtung.
33p rp 3t

Für verschiedene Werte des Parameters p hat
er aber verschiedene Längen, so dass seine Spitze

,J0 Der Parameter p kann dabei seihst eine Funktion
eines weitern Parameters sein.
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und damit auch die Spitze des Vektors 33 gemäss
Fig. 26 auf einer Geraden läuft.

Der veränderliche Vektor 33, dessen Spitze bei
stetiger Veränderung des Parameters p eine Gerade
beschreibt, genügt der Gleichung:

23 (m -L r p) 21 (50)

Der Geraden-Operator g, der einen konstanten
Vektor in einen veränderlichen Vektor überführt,

Fig. 26. Fig. 27.

dessen Spitze hei stetiger Veränderung des
Parameters eine Gerade beschreiht, genügt der
Gleichung :

g m + r p (51)

242.
Kreis.

Verändert sich im Gegensatz zu vorher der

Betrag des Operators rp nicht, ist aber sein Versor
vom Werte des Parameters p abhängig, so gilt die
Gleichung:

rp r eWM

Für veränderliche Werte des Parameters p
rotiert dann der Vektor

9ip r eW(P> 21

ohne seine Länge zu ändern: Fr beschreibt einen
Kreis. Da die Spitze des Vektors 9îp gemäss Fig. 27
die Spitze des Vektors 33 führt, beschreibt auch
diese einen Kreis.

Der veränderliche Vektor 33, dessen Spitze hei
stetiger Veränderung des Parameters p einen Kreis
beschreibt, genügt der Gleichung:

2) — (m -f- r 21 (52)

Der Ivreis-Operator k, der einen konstanten
Vektor in einen veränderlichen Vektor überführt,
dessen Spitze bei stetiger Veränderung des
Parameters einen Kreis beschreibt, genügt der
Gleichung :

k (53)

Dieser die Produkt-Form eines Operators
enthaltende Ausdruck des Kreisoperators k kann so

umgeformt werden, dass er ausschliesslich Operatoren

in Binom-Form enthält. Man macht hiezu
Gebrauch von Gl. (48), nach der ein reiner Versor
gleich dem Quotient konjugierter Operatoren ist.

Man setzt:

jiV'dü

Dann wird der in Gl. (53) in Produkt-Form
auftretende Operator:

r ei $ (P>
' ~

Dabei gelten für die beiden konjugierten Ope
ratoren Z und Z die Bestimmungsgleicliungeii :

1

Z — Zw + j Zb

Zk Zw — j Zb

Zw Z COS I -y)p(p)
Zb Z sin ip (p)

Für den Versor ei ^(v) ist der Betrag Z der
Operatoren Z und Zk ohne Einfluss. Er kann beliebig
gewählt werden. Wesentlich ist das Verhältnis
der beiden Komponenten Zb und Zw, denn dieses
legt den Winkel ip (p) fest.

jh tt (~iv(e) (54)

Der in Gl. (54) ausgesprochenen Bedingung,
wonach das Verhältnis der beiden Komponenten
Zb und Z„ die Funktion tangens des Winkels

—~ y (p) bestimmt, genügen die Ansätze :

Zw cw + p' dw Zb cb + pJ db

Damit erhält man für Gl. (54) :

P' dw

P' db
tg

1

V (P)

Durch teilweise Ausführung der Division auf der
linken Seite dieser Gleichung erhält man :

dw

du

C\\r Cu
dw

db

cb ~\~ P' db
tg

1

v(p) (55)

Es kann nach Gl. (55) zu jedem Wert des Winkels

ip (p) ein Wert des neuen Parameters p'
gefunden werden. Die Grössen (/„. und db sind
dabei frei wählbar. Es muss lediglich darauf
geachtet werden, dass der Ausdruck :

cw
dw

von Null verschieden bleibt. Es darf somit
gesetzt werden :

Zw — j z„
Zw +.7 Zb

Cw+P'dw—jcb — jp' db

cw + P' dw + j cb + ./>' db

Setzt man zur Abkürzung:

e-i f(P)

eif(v)

C,+JCb c

dw+ jdb d

Cw J Cb — Ck

dw — j db (ik
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erhält man schliesslich :

ejip(p) _

Damit wird: r

ck+p'dk
c-\-p'd
ck+P'dk

(56)
c -|- p' a

Bezeichnet man fortan den neuen Parameter p\
der nach Gl. (55) aus dem alten Parameter hervorgeht,

(1er Einfachheit halber mit p, so muss man
festhalten, dass er im allgemeinen trotzdem einen
vom alten Parameter der Gl. (52) und (53)
abweichenden Wert hat. Man erhält so für den
Kreisoperator

21 :

• ck-\-pdk
r .—

c -\- p d

mc-\-pmd-\-rck-\-pr dk

k

fc

c -f- p d

Setzt man zur Abkürzung:
m c -\-r ck a

m d

(57a)

(57b)

so erhält der Kreisoperator die sehr gebräuchliche
Form :

rdk b

k a -)- p b

c-\~p d
(58)

Aus den Gl. (57a) und 57h) errechnet sich für
den Mittelpunkts-Operator die Gleichung:

a dk — b ck

c dk — ck d
(59)

Analog erhält man für den konstanten Teil des

Radius-Operator :

b c — ad
c dk — ck d

(60)

243.

Ellipse.
Verändert sich schliesslich im Gegensatz zu den

beiden vorherigen Fällen sowohl der Betrag wie
der Versor des veränderlichen Operators

rp — rpei^dP
so entsteht eine allgemeine Kurve. Macht man die
besondere Festsetzung, dass sich der veränderliche
Operator rp aus zwei verschiedenen Operatoren
zusammensetzt, deren Beträge konstant und deren
Versoren entgegengesetzt gleich sind, wie das in
Gl. (61) ausgedrückt ist, so beschreibt die Spitze
des veränderlichen Vektors

35 {r p) 21

21) Diese Art der Darstellung eines Kreisoperators
veröffentlichte der Autor in einem Aufsatz «Eine neue
symbolische Kreisgleichung der Wechselstromtechnik» in der
Schweizerischen Technischen Zeitschrift, 1928, S. 545.

eine Ellipse. Das soll nachstehend kurz dargetan
werden.

— r ei $ q e~j $ (P> (61)
Der Winkel, den gemäss Fig. 28 die beiden
Vektoren r 21 und q 21 miteinander einschliessen sei
2 ô genannt.

rDa der Betrag des Operators r das -fache

des Betrages des Operators q beträgt, kann man
schreiben:

r
r

q e-i2 e

q

Man kann nun den Operator r noch in zwei
Summanden zerlegen, wovon der erste denselben
Betrag hat wie der Operator q.

sertâ'6

Fig. 28. Fig. 29.

r q ei2 ä
y- q e-i2 ä — qe-i2 '

r q ei2 s + T ~ g
q ei 2'6

9

Damit erhält man für den Operator rp den
Ausdruck :

rp ej 2tf Lr-q - q ei2 d I f- q <P>

Klammert man auf der rechten Seite dieser
Gleichung den Ausdruck q e'6 aus und fasst man die
e-Potenzen zusammen, so wird :

rp =q |
r ^ ej(ip(p)+é)_^_

Setzt man zur Abkürzung :

V (p) + <5 «, (62)
so wird :

rp q ei ô I e>a r—q
9

Dafür kann man schreiben :

po \ p-j a

.1 r — 9
r„ q e1 6 I cos a -\-j sin a + eJ a-\-

-f- cos a — j sin a

Hieraus erhält man :

rp (]e'"|
^ eja -{- 2 cos a J (63)
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2 q ej 6 cos a 91 (64)

Verwendet man für den Operator rp den in GL
(63) gegegebenen Ausdruck, so bekommt man für
den veränderlichen Vektor 35 die Gleichung:

95 m -| — q ei ei a

\ q

Dieser Ausdruck ist in Fig. 29 graphisch interpretiert.
Diese Figur stellt die bekannte22) Konstruktion

einer Ellipse aus den beiden Halbachsen dar. Vom
Endpunkt des Vektors mA aus gerechnet, werden
die beiden grossen Halbachsen dargestellt durch
die Vektoren:

±(J q

q
q ei â -f- 2 q ei ë 91

Zieht man die beiden Glieder zusammen, so
findet man:

±r-±^qei^
q

Hieraus errechnet sich leicht der Betrag a der
grossen Halbachse:

(r + q) A (65)

Ebenfalls vom Endpunkt des Vektors m'A aus
gerechnet, werden die beiden kleinen Halbachsen
dargestellt durch die Vektoren:

±.j ' ~q '/failli
eraus errechnet sich leicht der Betrag b der

kleinen Halbachse:

b — (r — q) A (66)

22) Diese Konstruktion erwähnt die Hütte, Des Ingenieurs
Taschenbuch, Band I, 25. Auflage, S. 100, Fig. 20, Verlag
Wilhelm Ernst & Sohn, 1925.

Der in Gl. (64) für den veränderlichen Vektor S3

enthaltenen Konstruktionsvorschrift liegt der
veränderliche Operator rp gemäss Gl. (63) zugrunde.
In diese Form konnte der ursprünglich gemäss
Gl. (61) angesetzte Operator rp umgemodelt werden.

Verwendet man den alten Ansatz für die
Aufstellung der Gleichung des veränderlichen Vektors
S3, so beschreibt dieser offenbar immer noch
dieselbe Ellipse.

Der veränderliche Vektor S3, dessen Spitze bei
stetiger Veränderung des Parameters p eine Ellipse
beschreibt, genügt der Gleichung:

95 — (m 4- r ei Vfv) -f- q e-i^d») 91 (67)

Der Ellipsen-Operator e, der einen konstanten
Vektor in einen veränderlichen Vektor überführt,
dessen Spitze bei stetiger Veränderung des
Parameters p eine Ellipse beschreibt, genügt der
Gleichung :

r ei^(p) q e -j Tp (P) (68)

In den meisten praktischen Fällen ist das Glied
m nicht vorhanden. Der Mittelpunkt solcher Ellipsen

liegt dann im Fusspunkt des veränderlichen
Vektors S3.

Wird der Betrag des Operators r gleich dem
Betrag des Operators q, so verschwindet in Gl. (64)
das zweite Glied : Die Ellipse degeneriert zu einer
(begrenzten) Geraden.

Wird der Betrag des Operators q zu Null, so
verschwindet in Gl. (67) das dritte Glied: Die
Ellipse degeneriert zu einem Kreis.

(Fortsetzung folgt)

Bericht über die BisUussion sVersammlung
für Fragen über Förderung der ElekritzitätsVerwertung

Dienstag, den 14. und Mittwoch, den 15. Oktober 1930
in Bern.

(Fortsetzung von Seite 74)

Die Lichtreklame, ihre häufigsten Ausfiihrungsformen und ihre Bedeutung
für die Elektrizitätswerke.

Referat von J. Guanter, dipl. Ing., Osram A.-G., Zürich.
628.974

Zusammenfassung.

Im Geschäftsleben spielt die Lichtreklame in ihren
vielfachen Varianten heute eine derartige Rolle, dass darauf
nicht mehr verzichtet werden kann. Technisch massgebend
für die erfolgreiche Wirkung einer Lichtreklame ist
hauptsächlich die Einhaltung folgender allgemeiner Gesichtspunkte

:

1. Gute Erkennbarkeit. Die Schriftzüge sollen klar und
deutlich in Erscheinung treten. Die Lesbarkeit bei
Leuchtbuchstaben ist abhängig vom Verhältnis ihrer Leuchtdichte

zur Helligkeit des Hintergrundes, von der Form und von
den Abmessungen. Anhand von Versuchen an Leuchtbuchstaben

verschiedener Ausführungsart ist ermittelt worden,
dass die Buchstabenhöhe mindestens V350 der grössten
Entfernung zu betragen hat, aus der die Schrift gut lesbar
sein soll.

2. Ausreichende Leuchtdichte. Bei der Festlegung der
Leuchtdichte sind die Entfernung, auf die eine Lichtreklame
zu wirken hat, der Hintergrund und die Umgebung zu be-
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