Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 19 (1928)

Heft: 13

Artikel: Die Selbstkosten für Abgabe elektrischer Energie

Autor: Strickler, A.

DOI: https://doi.org/10.5169/seals-1060561

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZ. ELEKTROTECHNISCHER VEREIN

BULLETIN

ASSOCIATION SUISSE DES ÉLECTRICIENS

Generalsekretariat des Schweiz. Elektrotechnischen Vereins und des Verbandes Schweizerischer Elektrizitätswerke REDAKTION
Zürich 8, Seefeldstr. 301

Secrétariat général de l'Association Suisse des Electriciens et de l'Union de Centrales Suisses d'électricité

Verlag und Administration {

Fachschriften-Verlag & Buchdruckerei A.-G. Zürich 4, Stauffacherquai 36/38

Editeur et Administration

Nachdruck von Text oder Figuren ist nur mit Zustimmung der Redaktion und nur mit Quellenangabe gestattet Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources

XIX. Jahrgang XIX^e Année Bulletin No. 13

Juli I Juillet I 1928

Die Selbstkosten für Abgabe elektrischer Energie.

Von Dr.-Ing. A. Strickler, Bern.

621.311(002)

Der Autor zeigt anhand einiger typischer Beispiele, wie die Gestehungskosten der elektrischen Energie ab Kraftwerk oder ab Verteilnetz auf verschiedene Abnehmer und verschiedene Energie-Verwendungsarten anteilig ausgeschieden werden können. Insbesondere wird eine Näherungsmethode entwickelt zur Untersuchung des Einflusses der Benützungsdauer, der Anschlussgrösse, der Blindleistungen etc. auf die Gestehungskosten der Detailenergie. Die für mittlere schweizerische Verhältnisse ermittelten Selbstkosten für Licht-, Motoren- und Wärmeenergie, sowie für die Ausfuhr, werden sodann mit den durchschnittlichen Einnahmen der schweizerischen Werke für diese Verwendungsarten verglichen.

L'auteur montre à l'aide de quelques exemples typiques comment il y a lieu de répartir les frais de revient de l'énergie électrique compté depuis la centrale ou le réseau, sur les différents consommateurs et suivant le genre d'utilisation d'énergie. Il développe en particulier une méthode approximative permettant d'examiner l'influence de la durée d'utilisation, de la puissance installée, de la puissance réactive etc. sur les frais de revient de l'énergie de détail. Il compare enfin le prix de revient obtenu en moyenne en Suisse pour l'énergie destinée à l'éclairage, aux moteurs et au chauffage de même que le prix de l'énergie exportée, aux recettes que les centrales suisses retirent en moyenne de la vente de l'énergie électrique déstinée à ces divers usages.

Die schweizerische Oeffentlichkeit beschäftigt sich seit einiger Zeit eingehender mit Tariffragen, wobei manchmal unrichtige Auffassungen zutage treten. Die Meinung ist weit verbreitet, dass die Werke alle Detailpreise für die Energie mehr willkürlich, z. B. entsprechend ihrer Konkurrenzfähigkeit mit andern Energiebeschaftungsarten für die betreffende Verwendung ansetzen, anstatt dass sie dieselben den wirklichen Selbstkosten entsprechend bemessen; dass sie infolgedessen Strom für Motorenbetrieb weit unter den Selbstkosten abgeben, weil dies aus Konkurrenzgründen notwendig sei, dass sie dagegen für Lichtstrom, um die Verluste auf Motorenstrom wieder hereinzubringen, einen weit höheren Preis verlangen, als den Selbstkosten plus einem normalen Gewinn entspreche. Auch die scheinbar sehr niedrigen Preise für Exportenergie rufen in der Oeffentlichkeit oft einer heftigen Kritik, namentlich wenn es sich dabei um Winterenergie handelt, während die niedrigen Preise von Sommer-Exportenergie den gleichen Kritikern ohne weiteres verständlich scheinen.

In den nachfolgenden Untersuchungen soll an einigen typischen Beispielen gezeigt werden, wie weit im allgemeinen die vorgenannten Auffassungen den Tatsachen entsprechen. Eine eingehende Erörterung der Frage, ob und aus welchen Gründen eine solche Tarifgebarung berechtigt wäre, wenn sie allenfalls tatsächlich bestünde, fällt jedoch nicht in den Kreis dieser Untersuchungen.

Zur Einführung in diese Beispiele seien einige allgemeine Bemerkungen vorausgeschickt, deren Gegenstände zwar als bekannt vorausgesetzt werden können¹), deren kurze Rekapitulation aber zur Vereinfachung der späteren Darlegungen anlässlich der Behandlung der Beispiele beiträgt.

Um die gesamten Selbstkosten der Energieerzeugung und -Verteilung auf einzelne Abnehmer und Kategorien (verschiedene Netze, Verwendungszwecke, jahreszeitliche Konzentration usw.) ausscheiden zu können, muss man sich vorerst die Elemente vor Augen halten, aus welchen sich die Selbstkosten aufbauen:

1. Jährliche Kapitalkosten (Zinsen des Anlagekapitals, Erneuerungsrücklagen oder Abschreibungen, ev. Kapitaltilgungsrücklagen);

2. Betriebskosten (Bedienung, Unterhalt, Reparaturen, Betriebsstoffe, namentlich Brennstoff bei thermischen Werken);

3. Generalunkosten (Steuern, Abgaben, Verwaltung).

Bei der Zerlegung dieser Kostenelemente nach Abnehmern und Kategorien sind die folgenden Hauptkennzeichen der abgegebenen Energie massgebend:

a) die Maximalleistung (absolute Grösse);

b) die elektrische Arbeit (Energiemenge):

- c) aus a) und b) zusammen die ideelle Benützungsdauer der Maximalleistung;
- d) die zeitliche Gestaltung des Energiebezuges (Aufeinanderfolge innerhalb des Tages und des Jahres);
- e) der Detaillierungsgrad der abgegebenen Energie.

Darnach kommen bei der Zerlegung der Kostenelemente folgende Gesichtspunkte in Betracht:

1. Kapitalkosten.

Diese sind bei hydraulischen Werken meist in überwiegendem Masse durch die in Anspruch genommene Maximalleistung bedingt ("Leistungsanlagen"), denn je grösser die installierte Gesamtleistung, um so grösser (nicht genau proportional!) sind die Anlage-, somit auch die Kapitalkosten (Zentralen mit maschineller Einrichtung, Schaltanlagen usw.). Bei andern Objekten sind die Anlage- und jährlichen Kapitalkosten in der Hauptsache von der zu erzeugenden Energiemenge abhängig (grosse Staubecken für Jahresspeicherung); denn die im Winter zu erzeugende Energiemenge bedingt den grossen, teuern Speicher; zur Erzeugung der Leistung allein (für ganz kurze Zeit) könnte auch ein billiger Tages- oder Wochenspeicher genügen.

Von Bedeutung bei der Zerlegung der Kapitalkosten ist die jahreszeitliche Gestaltung der Energieabgabe. Aus den bekannten Eigenschaften unserer schweizerischen Gewässer ergibt sich die Notwendigkeit der Unterteilung des Jahres in mindestens zwei Perioden, Sommer und Winter. Es empfiehlt sich, die Kapitalkosten für diejenigen Leistungsanlagen, welche das ganze Jahr benützt werden, auf Sommer und Winter je hälftig zu verteilen, denn die Zinsen des ganzen Anlagekapitals laufen gleichmässig Tag für Tag. Bei reinen Winterwerken scheint es jedoch gegeben, die gesamten Jahreskosten auf das Winterhalbjahr zu konzentrieren. Bei geringer jährlicher Ausnützung wäre die Ansetzung einer kleineren Einlage in den Erneuerungsfonds wegen der geringeren Abnützung der Maschinen gerechtfertigt; die Lebensdauer wird aber häufig nicht durch die Abnützung, sondern durch den technischen Fortschritt bedingt; in den Beispielen ist daher die Höhe der Kapitalkosten unabhängig von der Benützungsdauer der Anlagen angesetzt.

Die jährlichen Kapitalkosten können in einfacher Weise als Prozentsatz der ursprünglichen Anlagekosten dargestellt werden, und zwar sind für die behandelten Beispiele folgende, für schweizerische Wasserkraftwerke und Verteilanlagen massgebende Mittelwerte angenommen worden²):

¹⁾ Siehe z. B. Dr.-Ing. G. Siegel, Der Verkauf elektrischer Arbeit.
2) Unter Benützung der Zusammenstellung der Betriebsergebnisse schweizerischer Werke im "Führer durch die Schweiz. Wasserwirtschaft", II. Band (herausgegeben vom Schweiz. Wasserwirtschaft") schaftsverband, 1926).

für Kraftwerke und Fernleitungen: $5^{1/2}$ % Zins +1,5% Rücklagen 3) = 7% für Verteilanlagen: $5^{1/2}$ % Zins $+4^{1/2}$ % Rücklagen 3) = 10% Zum Zinssatz von $5^{1/2}$ % ist zu bemerken, dass von allen heute bestehenden Werken eine grosse Zahl schon teilweise abgeschrieben ist, und dass somit $5^{1/2}\%$ vom ursprünglichen Kapital im schweizerischen Gesamtdurchschnitt einen etwas grösseren Prozentsatz vom Buchwert der Anlagen darstellen. Die wirklichen Erträge des Kapitals werden, soweit sie $5^{1/2}\%$ 0 übersteigen, in vorliegender Studie als eigentlichen Unternehmergewinn betrachtet.

2. Betriebskosten.

Bei hydroelektrischen Werken können die jährlichen Betriebskosten, ebenfalls wie die Kapitalkosten, durch einen bestimmten Prozentsatz der Anlagekosten ausgedrückt werden; sie können daher auch in gleicher Weise wie diese nach den in Anspruch genommenen Maximalleistungen, nach den bezogenen Energiemengen und nach Jahreszeiten anteilig ausgeschieden werden auf verschiedene Abnehmer.

Bei thermischen Werken, wo der grössere Teil der Betriebskosten auf den Brennstoff entfällt, hat die Ausscheidung auf die einzelnen Abnehmer und Energiekategorien in erster Linie nach der bezogenen Energiemenge zu geschehen. Wo die beanspruchten Leistungen im Laufe des Tages sehr stark schwanken, ist auch noch die Verminderung des Wirkungsgrades und der dadurch bedingte Mehrverbrauch an Brennstoff zu berücksichtigen; die ideelle Benützungsdauer allein gibt in einem solchen Fall kein genügendes Mass für die Berechnung der Selbstkosten.

3. Generalunkosten.

Die Wasserzinsen sind in der Hauptsache von der Leistung abhängig (in der Schweiz machen sie etwa 10 bis 15% der gesamten Jahreskosten der Energieerzeugung aus); die Vermögenssteuern sind ebenfalls überwiegend auf die Leistung anzurechnen, wenigstens bei den "Leistungsanlagen", deren Anlagekosten und somit deren Vermögenswert durch die Leistung bedingt ist; bei Staubecken hat hingegen, wie bei der Aufteilung der Kapitalkosten, die bezogene Energiemenge als Massstab der Kostenanteile zu gelten.

Bei den Verwaltungskosten wirkt ein anderer Umstand in hohem Masse mit, nämlich der Detaillierungsgrad bei der Energieabgabe. Die Acquisitionstätigkeit und Abonnentenkontrolle für die Kleinabonnenten (Haushaltungen und Kleingewerbe) ist pro Leistungseinheit um das vielfache teurer als bei grossen Abonnenten (z. B. Industrieanschlüssen oder Wiederverkäufern, Gemeindewerken, Genossenschaften usw.). Im Interesse der Einfachheit sei in den behandelten Beispielen folgender Gedanke den Berechnungen zugrundegelegt: für die Energieerzeugung, wo die Verschiedenheit in der Detaillierung der Abgabe noch nicht zum Ausdruck gelangt, können die Verwaltungskosten ohne weiteres mit einem einheitlichen Prozentsatz auf die Maximalleistung, die Energiemenge und Jahreszeit anteilig verrechnet werden. Bei der Energieverteilung, welche ja die höheren Verwaltungskosten verursacht, begeht man wohl keinen grossen Fehler, wenn man sie ebenfalls nach dem gleichen Grundsatz aufteilt; denn infolge der höheren spezifischen Anlagekosten (pro kW) der Verteilanlagen für die weitgehend detaillierte Energieabgabe wird bei Annahme eines einheitlichen Jahreskostenprozentsatzes für sämtliche Verteilanlagen ohnehin die weitergehend detaillierte Energie mit einem viel höhern Anteil an Verwaltungskosten belastet (vgl. Beispiel C, Tabelle 3, Zeile 11: spezifische Anlagekosten des Lichtnetzes Fr. 1380. - pro kW Maximalleistung, beim Kraftnetz Fr. 572.— pro kW, für Abgabe ab Primärnetz in Drehstrom Fr. 215. pro kW). Es kann sich in der vorliegenden Studie nicht um die Frage handeln, ob nun eine solche summarische Aufteilung der Verwaltungskosten genau oder nur

³) Bezüglich Rücklagen vgl. Dr. R. Haas: Die Rückstellungen bei Elektrizitätswerken und Strassenbahnen (auf Verteilanlagen wurden in den letzten Jahren von den meisten schweizerischen Werken grössere Rückstellungen vorgenommen, als von Dr. Haas angegeben, nämlich etwa $4^{1}/2^{0}/0$).

annähernd die wirklichen Verhältnisse treffe; angesichts der sonstigen Schwierigkeiten, welche meistens nur die wesentlichen Punkte zu erfassen gestatten, wäre sie nicht angebracht, umso weniger als die eigentlichen Verwaltungskosten (Acquisition und Abonnentenkontrolle) einen bescheidenen Bruchteil der gesamten Jahreskosten ausmachen. In anormalen Fällen kann besondern Umständen ohne weiteres durch eine weitergehende Differenzierung Rechnung getragen werden.

Fasst man diese allgemeinen Betrachtungen zusammen, so ergibt sich die Möglichkeit, den wesentlichen Faktoren dadurch gerecht zu werden, dass bei der Aufteilung der gesamten Selbstkosten auf die einzelnen Abnehmer und Energiekategorien einheitliche Prozentsätze der Anlagekosten angenommen werden können. Für die durchgerechneten Beispiele (Wasserkraftwerke und elektrische Verteilanlagen) wurden zugrunde gelegt:

	Kapitalkosten Zinsen Rücklagen		Betriebs- kosten	General- unkosten	Total
	0/0	0/0	0/0	0 0	0/0
Kraftwerke (Leistungsanlagen)	5,5	1,5	2	2	11
Staubecken	5,5	0,3	1	,2	7
Fernleitungen	5,5	1,5	1	1	9
Verteilanlagen	5,5	4,5	5	5	20

Für kommunale oder rein staatliche Werke mit teilweiser oder ganzer Steuer- und Abgabenbefreiung kann natürlich mit etwas geringeren Sätzen gerechnet werden. Im übrigen beziehen sich alle Prozentsätze auf das ursprüngliche, noch nicht durch Abschreibungen verminderte Anlagekapital. Bei vielen Werken wird für die Verteilanlagen mit weniger als 20% Jahreskosten zu rechnen sein, namentlich bei Ueberlandwerken; die in den Beispielen errechneten Selbstkosten sind daher eher etwas zu hoch als zu gering.

I. Die Selbstkosten für Abgabe elektrischer Energie an Grossabnehmer.

Verhältnismässig einfach ist die Kalkulation der Selbstkosten der verschiedenen Energiekategorien, wenn ein Grosskraftwerk, das nicht in Parallelbetrieb mit andern Werken arbeitet, seine Energie an einige wenige Grossabnehmer abgibt.

Im Beispiel A (s. Tabelle 1) ist ein reines Niederdruckwerk von 40000 kW installierter Leistung und einem Anlagekapital von 28 Millionen Fr. (700. – Fr./kW) vorausgesetzt, bei dem im Winter die Leistung wegen Wasserrückgangs normalerweise bis auf 23000 kW sinkt, und bei Hochwasser bis auf ca 30000 kW zurückgehen kann. Ein Tagesausgleichbecken ist nicht vorhanden⁴). Das Werk bedient vier Grossabnehmer:

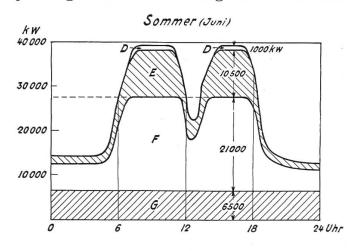
- 1. Abnehmer D, ein städtisches Elektrizitätswerk mit eigener Zentrale, bezieht vom Werk A Ergänzungsenergie, und zwar im Sommerhalbjahr etwa 1000 kW für kurzdauernde Spitzen, im Winter bis zu 6000 kW, bei 5 Millionen kWh Energiemenge im Winterhalbjahr, also ebenfalls Spitzenenergie;
- 2. Abnehmer E, ein Elektrizitätswerk in ländlichem Absatzgebiet mit Kleingewerbe, Industrie und Landwirtschaft, ohne eigenes Kraftwerk. E bezieht seinen gesamten Energiebedarf von A, im Sommerhalbjahr maximal 9000 kW, 14 Mill. kWh, im Winterhalbjahr maximal 10000 kW mit 17 Mill. kWh. Der Energiebedarf von E ist also über das Jahr zwar nicht gleichmässig verteilt, aber doch besteht ein bemerkenswert kleiner Unterschied zwischen Sommer und Winter;
- 3. Abnehmer F, im Ausland, mit eigenen thermischen Zentralen und einem grossen Verteilnetz im Industriegebiet. F bezieht im Sommerhalbjahr bis 18000 kW

⁴) Diese Ziffern entsprechen einem verhältnismässig schwachen Ausbau (ca. 7- bis 8 monatige Wassermenge) der Wasserkraft. Das Beispiel soll in erster Linie die Teilung der Selbstkosten beleuchten; die Frage nach der günstigsten Ausbaugrösse spielt jedoch hier keine Rolle.

bei hoher Benützungsdauer, 45 Mill. kWh; im Winter liefert A, je nach Disponibilität, im Minimum etwa 4000 kW, und zwar im letztern Fall etwa 20-stündig. Die thermischen Zentralen dieses Abnehmers stellen eine Leistungsreserve des Werkes A dar;

4. Abnehmer G, Elektrochemie, bezieht Ueberschussenergie im Sommer, soweit disponibel, bis zu 5500 kW, 24stündig.

Beispiel A. Niederdruckwerk 40 000 kW.


Tabelle 1.

			40 000 K			111	belle 1.
1	Abnehmer	Total	D.	Е	F,	G	
2	Sommerleistung, Uebergabestelle		1 000	9 000	18 000	5 500	kW
3	Sommerleistung, im Kraftwerk .	39 000	1 000	10 500	21 000	6 500	"
4	Extreme Winterleistung, Ueber-						=
	gabestelle		6 000	10 000	4 000		31
5	Extreme Winterleistung im Kraft-						
	werk	23 000	6 600 max.	12 000 ¹)	4 400 min.	1	"
6	Mittlere Winterleistung im Kraft-						
_	werk	25 000	5 500	11 500	8 000		"
7	Sommerenergiemenge, Ueber-						
	gabestelle	80 Mill.	1 Mill.	14 Mill.	45 Mill.	20 Mill.	kWh
8	Winterenergiemenge, Uebergabe-						
	stelle	46 Mill.	5 Mill.	17 MIII.	24 Mill.		"
9	Jahresenergiemenge im Kraft-	150 3500					
4.0	werk ca	150 Mill.	_	_			"
10	Idelle Benützungsdauer der Max						
	Lstg., Uebergabestelle:	.2	1 000	1 550	2 -00	2.620	
	a) Sommerhalbjahr	_	1 000	1 550	2 500	3 630	h
	b) Winterhalbjahr	2.750	830	1 700	2.020		"
	c) Ganzjährig	3 750	1 000	3 100	3 830	_	"
11	Anlagekosten der Zentrale	28 000 000	200,000	1 900 000 9)	2000000	500 000	Fr.
12	Anlagekosten der Fernleitungen	4 500 000	200 000	18000002)	2000000	500 000	"
13	Jahreskosten der Zentrale (11 ⁰ / ₀)	3 080 000	_	_	_		
14	Sommerhalbjahreskosten der	1 5 40 000	40.000	415 000	830 000	225 000	
15	Zentrale	1 540 000	40 000	415 000	000 000	225 000	"
15		1 540 000	340 000	710 000	490 000		
17	trale	1 340 000	340 000	710 000	490 000		"
17	Fornleitung	225 000	9 000	81 000	90 000	45 000	
18	Fernleitung	223 000	9 000	81 000	90 000	45 000	"
10	leitung	180 000	9 000	81 000	90 000		
-	0						"
4.0	Jahr	3 485 000	398 000	1 287 000	1500000	300 000	"
19	Gesamte Selbstkosten Sommer	_	49 000	496 000	920 000	300 000	"
,	Winter	_	349 000	791 000	580 000		,,
20	Selbstkosten pro ab- (Jahr	2,75	6,65	4,15	2,2		Rp.
	gegebene kWh (Ueber- Sommer	2,2	4,9	3,55	2,05	1,5	,,
	gabestellen) Winter	3,75	7,0	4,65	2,4	_	"
21	Selbstkosten pro kW (Jahr	_		128.70	_		
	zur Verfügung ge- { Sommer	_	49. —	55.—	51.—	_	
	stellt Winter	_	(58)	79. –			
22	Selbstkosten pro Jahr	2,05	,				Rp.
	erzeugte kW Sommer	1,06			_	-	"
	(ab Zentrale) Winter	2,8		_	_	_	"
- 1		I	L.	1	I.		i

¹⁾ Effektive Leistung nur ca. 11 300 kW; wegen schlechtem Leistungsfaktor (cos $\varphi=0.65$) sind 12 000 kW eingesetzt 2) Abgabe in Mittelspannung, ab Unterwerk, dem Werk A gehörend; Anlagekosten von Fernleitung und Unterwerk zusammen 1,8 Mill. Fr.

In Fig. 1 ist der Tagesverlauf der Leistungen dieser vier Abnehmer dargestellt. In Tab. 1 sind die Selbstkosten des Kraftwerkes A (inkl. normaler Kapitalverzinsung, Dividende usw.) nach dem angenommenen Betriebsplan auf die vier Abnehmer ausgeschieden, und zwar getrennt für Sommer- und Winterhalbjahr. Der Grundsatz, nach welchem diese Unterteilung vorgenommen wurde, besteht in der in der Einleitung entwickelten Auffassung, dass die Kostenanteile in jedem Halbjahr

proportional nach den in Anspruch genommenen Leistungen (in kW) jedes Abnehmers bemessen werden sollen. Für ein Niederdruckwerk von der Art des Beispiels A ist dieses Verteilungsprinzip jedenfalls das gegebene. Wenn ein Abnehmer die in Anspruch genommene Leistung nicht während aller 24 Stunden des Tages benützt,

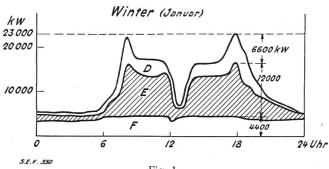


Fig. 1.

Tages-Leistungsdiagramme, Beispiel A (Niederdruckwerk) mit Anteilen der 4 Abnehmer *D, E, F* und *G*.

so ist dies seine Sache, und die dem liefernden Kraftwerk entstehenden Selbstkosten werden im angenommenen Fall durch schlechte Ausnützung der maximalen Leistung nicht geringer. Entsprechend der geringern verfügbaren Leistung im Winter wird naturgemäss der Selbstkostenpreis der vom Abnehmer in Anspruch genommenen Leistungseinheit (kW) grösser. Beispiels-weise kostet für den Abnehmer E des Beispiels A das kW pro Winterhalbjahr Fr. 79.-, pro Sommerhalbjahr nur Fr. 55. - (vgl. Tab. 1, Zeile 21). (Dass das Kraftwerk A dem Abnehmer E genau nach diesen Selbstkostenansätzen verrechnen müsse, ist damit noch in keiner Weise gesagt; es kann die gesam-Jahresselbstkosten 1 287 000.— durch eine beliebige Tarifform zu decken suchen, z. B. durch einen Jahresansatz von Fr. 128.70 pro kW der in Anspruch genommenen Maximalleistung, also Fr. 128.70 für das "Jahres-Kilowatt", oder durch einen Ansatz von 4,2 Rp./kWh mit Minimalgarantie von Fr. 1287000.— usw.)

Durch die verschieden intensive Benützung der Maximalleistung entstehen die bekannten grossen Unterschiede in den durchschnittlichen Selbstkosten pro effektiv abgegebene Kilowattstunde (vgl. Tab. 1, Zeile 20). Für die dem im Beispiel angenommenen elektrochemischen Werk G gelieferte Sommerenergie betragen die Selbstkosten des Kraftwerkes 1,5 Rp./kWh, für die dem Abnehmer D (städtisches Elektrizitätswerk) gelieferte Winter-Ergänzungsenergie ("Spitzenkraft") dagegen 7,0 Rp./kWh.

Wenn an einen Abnehmer im Ausland von der Art F im Winter Energie (einschränkbar je nach Disponibilität) zu einem Durchschnittpreis von 2,4 Rp./kWh geliefert wird (Tab. 1, Zeile 20), so stellt dies keinen "Schleuderpreis" dar, wie häufig angenommen wird, sondern entspricht bei einem Werk wie in Beispiel A durchaus den Selbstkosten, inkl. normalem Gewinn, obschon er unter den "durchschnittlichen Selbstkosten" der Gesamtabgabe (3,75 Rp./kWh) im Winter liegt.

In einem zweiten Beispiel, B (Tab. 2), sei angenommen, dass das Niederdruckwerk des Beispiels A in der in der Schweiz üblichen Weise mit Jahresspeicher im Verbundbetrieb arbeitete. Dadurch entsteht nicht nur die Möglichkeit, die Wintereinbusse an Leistung des Niederdruckwerkes zu decken, sondern bei richtiger Wahl der Ausbaugrösse des Hochdruckwerkes ist dadurch auch eine volle, beinahe 24stündige Ausnützung des Niederdruckwerkes möglich (abgesehen von Samstagen und Sonntagen). Die Verhältnisse im Beispiel B sind in diesem Sinne gewählt, d. h. ein Ausbau des Hochdruckwerkes auf 60 000 kW angenommen. Die Belastungs-

verhältnisse sind in Fig. 2 dargestellt. Das angenommene Hochdruckwerk kennzeichnet sich somit nicht als reines Winterwerk, sondern es läuft auch im Sommer, allerdings mit wesentlich kleinerer Belastung⁵). Die Verhältnisse der Energieerzeugung sind aus Tabelle 2, Zeilen 4 bis 6 ersichtlich; im Vergleich zu Beispiel A (Tab. 1,

Beispiel B.
Niederdruckwerk wie in A, installiert 40 000 kW
dazu Hochdruckakkumulierwerk, installiert 60 000 kW.

Tabelle 2.

1		Niederdruck- werk	Hochdruck- werk	Total	
2 3	Maximalleistungen: a) Sommer	40 000 23 000	20 000 57 000	60 000 80 000 (z.1 nur 74000) Verlust 6000 i.	kW "
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	a) Sommer	130 Mill. 100 Mill. 230 Mill. 5 730 28 000 000 700 3 080 000 1,35 1 540 000 1,2 1 540 000 1,55	40 Mill. 110 Mill. 150 Mill. 2 500 60 000 000 1 000 20 000 000 5 800 000 1 400 000 3,85 735 000 1,9 3 665 000 1 400 000 5,1	Verb. L. 170 Mill. 210 Mill. 380 Mill. 3 800 88 000 000 880 8 880 000 2,35 2 275 000 1,35 38 5 205 000 1 400 000 70 Fr./kW + 0,7 3,3	kWh " " Fr. " Rp./kWh Fr./kW Fr. Rp./kWh "
	Abnehmer		D	E *)	
19 20 21 22 23 24 25	Kosten der Sommerkraftbezüge der Abnehmer ab Zentrale I		38 000 49 000 498 000 517 000 556 000 (398 000) 9,3 4,9 10,3	400 000 481 000 980 000 1 061 000 1 542 000 (1 287 000) 5,0 3,45 6,25	Fr. " " " Rp. " "
	*) Ab Unterwerk in Mittelspannung.				

Zeilen 7 bis 9) ist das Niederdruckwerk im Fall B wesentlich besser ausgenützt (Erzeugung 230 Mill. kWh gegen ca. 150 Mill. kWh.) Das grösstmögliche Maximum an Ausnützung stellt dieser Fall zwar noch nicht dar; das Niederdruckwerk könnte jährlich etwa 280 Mill. kWh erzeugen. Immerhin steigt die "ideelle Benützungsdauer" der installierten Leistung dieser Zentrale von 3750 Stunden auf 5730 Stunden im Jahr.

Als Anlagekosten für die Einheit der installierten Leistung sind für das Hochdruckwerk 1000. – Fr./kW angenommen (beim Niederdruckwerk 700. – Fr./kW) entsprechend den heutigen, im grossen Durchschnitt herrschenden Verhältnissen.

⁵⁾ Die Frage, ob die Ausbaugrössen der beiden Werke am günstigsten gewählt seien, kann hier ausser Betracht bleiben. Vergl. hierüber Bericht No. 61 der Weltkraftkonferenz 1926 in Basel: Prof. Dr. Wyssling, Stand und Entwicklung der Verwertung der schweizerischen Wasserkräfte.

In dieser Ziffer seien auch die Uebertragungsleitungen in das Zentrum des Konsumgebietes inbegriffen, als welches der Standort des Niederdruckwerkes angenommen wird.

Die Unterteilung der gesamten Jahreskosten nach Sommer- und Winterhalbjahr kann auf folgende Weise vorgenommen werden:

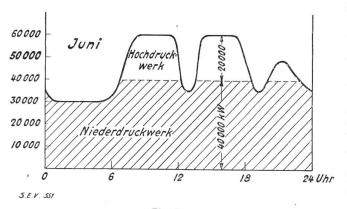


Fig. 2. Tages-Leistungsdiagramme, Beispiel B. (Kombination zwischen Nieder- und Hochdruckwerk.)

Auf die Sommerkosten (Tab. 2, Zeile 14) entfällt die Hälfte der Jahreskosten des Niederdruckwerkes, sowie ein Drittel der halben Jahreskosten des Hochdruckwerkes ohne Stau-(Maximalleistung der Hochdruckzentrale im Sommer: 20000 kW = ein Drittel der installierten Leistung). Als Ansatz für die Selbstkosten im Sommerhalbjahr ergibt sich die Ziffer von 38. – Fr./kW. Die Winterkosten (Tab. 2, Zeilen 16 und 17) setzen sich zusammen aus der zweiten Hälfte der Jahreskosten des Niederdruckwerkes, aus dem Rest der Jahreskosten des Hochdruckwerkes abzüglich Staubecken, sowie den ganzen Jahreskosten des Staubeckens. Letzterer Betrag (Fr. 1400000. –) ist nicht auf die in Anspruch genommene Leistung (in kW) im Winterhalbjahr anteilig zu verrechnen, sondern auf die gesamte effektive Energieerzeugung (in kWh) der Kraftwerksgruppe im Winter, weil die Kosten des Staubeckens in überwiegendem Masse durch die im Winter notwendige Energieerzeugung, W, nicht aber durch die maximal beanspruchte Leistung, Pm, der einzelnen Abnehmer bedingt sind. Auf diese Weise ergibt sich die Form der Selbstkosten pro Winterhalbjahr zu

 $A = 70 \text{ Fr./kW} \cdot \text{Pm} + 0.007 \text{ Fr./kWh} \cdot \text{W}.$

(Dabei ist vorausgesetzt, dass die Leistungen, sowie die aus dem Staubecken stammende Energie voll plaziert seien.) Diese Kosten beziehen sich auf den Ort der Niederdruckzentrale, weil in den Jahreskosten des Hochdruckwerkes die Kosten der Uebertragungsleitungen inbegriffen sind. Für die Abgabepunkte bei den Abnehmern erhöhen sich diese Selbstkosten um die Kosten der Uebertragung vom Niederdruckwerk bis zu den Abnehmern.

Vergleichsweise sind in Tabelle 2, Zeilen 19 bis 22 die Halbjahreskosten für Energieabgabe an die gleichen Abnehmer D und E (wie im Beispiel A, und für gleiche Verhältnisse) zusammengestellt, berechnet nach obiger Formel. Danach werden die gesamten Selbstkosten für die Lieferung im Sommerhalbjahr ganz wenig geringer, im Winterhalbjahr dagegen merklich höher als im Beispiel A. Trotzdem für das Hochdruckwerk nicht mit extremen Anlagekosten (nur mit 1000. – Fr./kW installierter Leistung) gerechnet wurde, und obschon durch den Verbundbetrieb das Niederdruckwerk viel intensiver ausgenützt werden kann, stellen sich die Selbstkosten für Lieferung von Winterkraft an die Abnehmer D und E höher als im Fall A, wo die fehlende Winterleistung und -Energie in thermischen Zentralen im

Ausland erzeugt werden. Eine allgemeine Schlussfolgerung kann aus diesem Zahlenbeispiel natürlich nicht gezogen werden.

Die vorstehende Methode der Selbstkostenberechnung kann man als "Proportionalkalkulation" bezeichnen, weil die gesamten Kosten proportional den Maximalleistungen verteilt werden. Wie bei industrieller Produktion kann man aber auch

im Energiegeschäft die "Differenzialkalkulation" anwenden, in vielen Fällen mit ebenso gros-Berechtigung wie die erste Metho-Beispielsweise kann ein Wärmekraftwerk die Selbstkosten für die während der Tages- und Abendstunden abgegebene Energie derart berechnen. dass dieser Energie ausser den Brennstoff- und Personalkosten dieser Betriebszeit sämtliche Kapitalkosten angerechnet werden. Die Nachtstromabgabe, für welche eine ge-Nachfrage ringere vorhanden ist, und die somit als "Ueberschuss- oder Abfallenergie" betrachtet werden kann, ist dann nur mit den entsprechenden Brennstoff- und Personalkosten allein belastet, dagegen nicht mit Kapitalkosten. Diese differenzielle Behandlung der letztern führt zu wesentlich geringeren Selbstkostenziffern

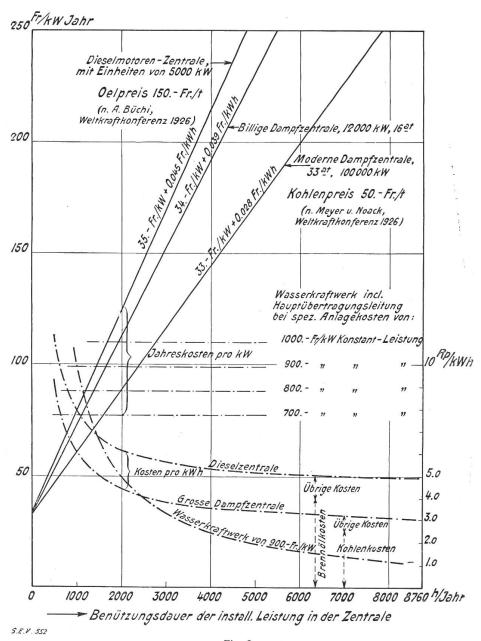


Fig. 3. Vergleich der Jahreskosten von Wasser- und Wärmekraftwerken.

der Nachtkraft (z. B. 2,8 Rp./kWh für Nachtkraft von 1000 Stunden jährlicher Benützungsdauer, ca. 4,5 Rp./kWh für Tageskraft bei 2000 Stunden; s. Fig. 3⁶). Die Proportionalkalkulation ergäbe hier den einheitlichen Ansatz von 3,9 Rp./kWh).

In ähnlicher Weise könnte das Prinzip der Differenzialkalkulation auch auf das Beispiel A angewendet werden. Die Lieferung von Restkraft an den Abnehmer G

⁶) Aus dieser Figur kann ersehen werden, dass mit einer grossen Dampfzentrale die Energie (bei 2500 Stunden Benützungsdauer) zu ungefähr demselben Preis erzeugt werden kann, wie mit dem Hochdruckwerk im Beispiel B. Der ganze Fragenkomplex, der beim Entscheid über die Wahl Wasserkraft oder Dampfkraft auftaucht, soll in dieser Abhandlung nicht erörtert werden.

wäre demnach nicht mit anteiligen festen Kosten zu belasten, sondern nur mit dem sehr kleinen Betrag, der durch direkte Betriebskosten, durch einen Teil Abschreibungen, sowie durch die Fernleitung bedingt ist, also mit höchstens etwa Fr. 100 000.—, währenddem die übrigen Fr. 200 000.— den andern Abnehmern zu belasten wären, deren Selbstkosten auf diese Weise um ca. 8 % höher erscheinen. Die Berechtigung zu dieser Betrachtungsweise kann dadurch als erbracht gelten, dass im Falle, wo die Sommer-Restleistung nicht verkauft werden könnte, auf die andern Abnehmer allein die gesamten Jahreskosten entfallen, für so lange, als eben die Restleistung nicht abgesetzt werden kann. Wenn der Abnehmer G den Durchschnittspreis von 1,65 Rp./kWh nicht tragen kann, und das Werk A mit dem Preis bis auf 0,5 Rp./kWh herunterginge, so könnte auch dieser noch als "Selbstkostenpreis" (allerdings nach der Differenzialmethode) bezeichnet werden.

Aus allen diesen Darlegungen ist ersichtlich, dass der Begriff "Selbstkosten" kein eindeutiger ist. In vielen Fällen scheint die Proportionalmethode angebrachter zu sein; als Grundlage für Doppeltarifierung ist jedoch die Betrachtungsweise der Differenzialmethode unstreitig am Platz.

Zu den Beispielen A und B sei noch bemerkt, dass A einen verhältnismässig günstigen Fall darstellt (mit sehr guter Ausnützung der Leistung), während B (mit höheren Anlagekosten) etwas ungünstiger ist, als den durchschnittlichen Verhältnissen der Schweiz entspricht. Dies geht hervor aus den Darstellungen von Ehrensberger, die er im Bericht No. 80 der Weltkraftkonferenz 1926 in Basel veröffentlicht hat. Dieser Autor nennt als mittlere Gestehungskosten der konstanten Jahresenergie in Oberspannung ab Kraftwerk (bei neuern, günstigen Projekten) folgende Ziffern, denen die entsprechenden Zahlen der Beispiele A und B gegenübergestellt sind:

	8760 h	4380 h	2190 h
	Fr.	Fr.	Fr.
Kosten des kW-Jahres, nach Ehrensberger	120. —	$90\div 120$	70. – ÷ 90. ·
Kosten des kW-Jahres, gemäss Beispiel A	95. —	95.—	95. —
Kosten des kW-Jahres, gemäss Beispiel B	138	123. –	115.—
Kosten des kW-Jahres, gemäss Beispiel B	138. –	123. –	115.

Um diese Verhältnisse auch mit sämtlichen in der Schweiz bestehenden Werken (Jahr 1922) vergleichen zu können, diene nachfolgende Zusammenstellung:

Jährliche Benützungsdauer der installierten Leistung:	3800 h	3300 h	3000 h
,		Rp./kWh	
Selbstkosten pro kWh der im Werk erzeugten Energie, Beispiel A	2,05	(2,3)	(2,55)
Selbstkosten pro kWh der im Werk erzeugten Energie, Beispiel B	2,35	(2,7)	(2,95
Gesamtdurchschnitt aller schweiz. Werke 1922 (Approximativwert)			
a) exklusive Ausfuhr			2,9
b) inklusive Ausfuhr		2,6	

(Die in Klammern beigefügten Zahlen sind zum Vergleich mit den schweizerischen Gesamtdurchschnitten für 3300 und 3000 Stunden angegeben; sie sind durch Umrechnung entstanden.)

Auch hieraus ergibt sich, dass Beispiel A günstigere, Beispiel B dagegen um eine Kleinigkeit höhere Erzeugungskosten ergibt als der schweizerische Durchschnitt 1922. Im übrigen können natürlich die Ziffern dieser zwei Beispiele nicht in jeder Hinsicht verallgemeinert werden.

Als Gestehungskosten konstanter hydroelektrischer Energie in etwa 10000 kW-Leistung bis zum *Gebrauchsort* übertragen und in *Mittelspannung* transformiert, ergeben sich:

Jährliche Benützungsdauer der Konstantleistung:	4000 h	3000 h	2000 h
7		Rp./kWh	
Kosten der kWh, gemäss Beispiel A (Abnehmer E)	3,2	4,3	6,4
Kosten der kWh, gemäss Beispiel B	3,95	5,2	7,5
Kosten der kWh, ungefährer Mittelwert für die Schweiz	3,8	5,0	7,0

II.

Die Verkaufspreise (Tarif- oder Vertragspreise) für Abgabe elektrischer Energie an Grossabnehmer.

Die im Abschnitt I an zwei Beispielen gezeigte Selbstkostenberechnung stellt eine Nachkalkulation dar, d. h. die Berechnung auf Grund des wirklichen Betriebes einer abgelaufenen Zeitperiode. Wie in der Industrie, besteht auch bei der Erzeugung und Verteilung elektrischer Energie ein Hauptzweck der Nachkalkulation darin, die Grundlagen zur Vorkalkulation, d. h. zur Selbstkostenberechnung künftiger Lieferungen, oder mit andern Worten, die Grundlagen für Tarife und Verträge zu liefern.

Die Tarife und Vertragspreise brauchen sich nicht unbedingt auf die Selbstkostenform

oder
$$A = c_1 Pm + c_2 W$$
 ("Gebührentarif") oder $A = c Pm$ ("Pauschaltarif")

zu stützen. Wie bereits erwähnt, kann das Werk seine gesamten Selbstkosten durch andere Tarifformen zu decken suchen, wenn hiezu eine Notwendigkeit vorliegt.

Solche Notwendigkeiten liegen z. B. in den Wünschen und Anschauungen des Abnehmers, der in vielen Fällen lieber die wirklich bezogene Energiemenge, anstatt die vielleicht nur kurze Zeit in Anspruch genommene, vertraglich vereinbarte Maximalleistung bezahlt. Diesem Wunsch kann durch die Einführung eines reinen kWh-Preises und einer Minimalgarantie entsprochen werden; der Abonnent beurteilt diese als Produkt aus dem Kilowattstundenpreis und gesamter voraussichtlich zu beziehender Energiemenge; das Kraftwerk berechnet ihre Grösse hingegen auf Grund der Selbstkosten.

Die wirklichen Selbstkosten des Kraftwerkes für Lieferung an einen bestimmten Abnehmer können durch beliebige Tarifformen vollständig gedeckt werden, ohne dass notwendigerweise ein anderer Abnehmer bevorzugt oder benachteiligt zu werden braucht. Es soll hingegen an dieser Stelle festgehalten werden, dass bei der Mehrzahl der in der Schweiz bestehenden Energielieferungsverträge für Grossabnehmer, auch für solche im Ausland, angemessene, den Selbstkosten entsprechende Preise vereinbart sind. Aus den Geschäftsberichten des Bundesrates für die Jahre 1924 und 1925 ergibt sich, dass im Jahre 1924 ins Ausland ausgeführt wurden:

1. April bis 30. September: 291,5 Mill. kWh 1. Oktober bis 31. März: 275,5 Mill. kWh total 567 Mill. kWh

zu durchschnittlich 2,3 Rp./kWh.

Die Winterausfuhr betrug 48,5 %, die Sommerausfuhr 51,5 % der Jahresausfuhr. Beim Vergleich des Durchschnittspreises von 2,3 Rp./kWh mit den im Beispiel A für ungefähr gleiche Benützungsdauer ermittelten Selbstkosten nach der Proportionalmethode (Tab. 1, Abnehmer F, Zeilen 10 und 20) ist noch zu berücksichtigen, dass ein Teil der Ausfuhrenergie aus Werken stammt, die wesentlich geringere Anlagekosten als 700. – Fr./kW erfordert haben. Ferner ist in Betracht zu ziehen, dass in den Wintermonaten des Jahres 1924 bei Wasserknappheit die Leistung bis auf 72 000 kW hätte reduziert werden dürfen.

Die Abgabepreise für Energielieferung in Oberspannung aus grossen Kraftwerken an die kantonalen Werke für allgemeine Energieverteilung schwanken im

allgemeinen zwischen etwa 140 und 150 Fr. pro Jahreskilowatt Konstantkraft; häufig sind auch die Doppelansätze in Verwendung mit etwa 70. – Fr./kW + 0,02 Fr./kWh. Damit ergeben sich folgende Preise per kWh:

```
bei Benützungsdauer der Maximalleistung  \begin{cases} 2500 \text{ h}: 4.8 \div 6.0 \text{ Rp./kWh} \\ 3000 \text{ h}: 4.35 \div 5.0 \\ 3500 \text{ h}: 4.0 \div 4.3 \\ 4000 \text{ h}: 3.5 \div 3.75 \\ 4500 \text{ h}: 3.1 \div 3.55 \\ \end{cases},
```

Diese Preise stehen mit den Selbstkosten in den meisten Fällen in guter Uebereinstimmung (vergl. S. 423).

III. Die Selbstkosten für Detailabgabe elektrischer Energie.

a) Die mittleren Selbstkosten für Licht, Kraft und Wärme.

Die Art und Weise, wie die Selbstkosten für Detailabgabe berechnet werden können, soll ebenfalls an zwei Beispielen gezeigt werden, wovon das eine eine städtische Stromversorgung, das andere ein Ueberlandnetz betreffen soll.

Beispiel C. Städtische Energieversorgung mit getrennten Netzen. (Drehstrom für Kraft und Eisenphasenstrom für Licht)

Tabelle 3

11 Anlagekosten pro kW Max. Leistung ("940") 572 1 380 " 12 Jahreskosten 550 000 588 000 800 000 1 100 000 Fr. 13 Sommerkosten 275 000 53 600 400 000 550 000 " 14 Winterkosten 275 000 535 000 400 000 550 000 " 15 a) Sommer — — 610 000 668 000 " 16 b) Winter — 915 000 845 000 " 17 Jahreskosten für jedes Netz — 1 525 000 1 513 000 " 17 Durchschnittliche Selbstkosten pro abgegebene kWh — — 1 525 000 1 513 000 "		(Drehstrom für Kraft	und Eis	enphasenstro	om für Licht)	Ta	belle 3.
Anschlussgrösse			7entrale	bezug aus	Drehstromnetz	Einphasennetz	
Maximalleistungen a) Sommer 6 000 1 000 7 000 4 000 3 5 000 6 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 7 000 4 000 7 000			Zentrate		Motoren Appa- Umform. rate	Lampen Appa- rate	
Maximalleistungen a) Sommer 6 000 1 000 7 000 4 000 3 5 000 6 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 4 000 7 000 7 000 4 000 7 000	1	Anschlussgrösse	_	_	15 000 4 000	13 000 2 000	kW
a) Sommer 6000 1000 7000 4000 7000 4000 7000 4000 7000 4000 7000 4000 7000 4000 7000 7000 4000 70000 700000 70000 70000 70000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000 7000000	2	Durchschnittsgrösse der Anschlüsse Maximalleistungen	_		15,0	2,0	"
Sexual Response of the sexual response of t		a) Sommer			7 000	4 000	
5 Davon im Sommer — — — 11 Mill. 4 Mill. 7 Mill. , m.	3	Erzeugte Energiemengen					kWh
Davon im Winter		An Abonnenten abgegeben	_				,,
Ideelle Benutzungsdauer (ganzjährig)	0.70	Davon im Sommer	_				
7		Ideelle Benutzungsdauer (ganzjährig)			12 141111.	, 141111.	"
9 Anlagekosten		a) der Anschlüsse					h
Anlagekosten pro kW Max. Leistung (,940") 572 1 380 340 1 340 550 550 550 5000 588 580 550 5	2.30	b) der Maximalleistung	5 680 (3	640) 1 000 1/ 5 350 000*\			
Anlagekosten pro kW Max. Leistung (,940") 572 1 380 340 1 340 550 550 550 5000 588 580 550 5	10	Anlagekosten pro kW Anschluss		_			
Sommerkosten 275 000 53 600 400 000 550 000 350 000	11	Anlagekosten pro kW Max. Leistung		40")			"
Winterkosten Communication Communication		Jahreskosten					Fr.
Gesamtkosten pro Netz (inkl. Stromk.)		Winterkosten					
16 b) Winter — — 915 000 845 000 " 17 Jahreskosten für jedes Netz — — — 1 525 000 1 513 000 " 18 a) Sommer — — — 5,5 — 16,7 Rp./kWh 19 b) Winter — — — 7,6 — 12,0 " 20 c) Jahr — — — — 7,6 — " " Anteile der Anlagekosten: Primärleitungen — — — 1 500 000 — Fr. Transformatoren — — — 1 200 000 800 000 " Sekundärleitungen — — — 300 000 1 700 000 " Zähler —		Gesamtkosten pro Netz (inkl. Stromk.)		000 000	100 000		,,
Jahreskosten für jedes Netz -		a) Sommer	·				"
Durchschnittliche Selbstkosten pro abgegebene kWh a) Sommer - - 5,5 16,7 Rp./kWh 19 b) Winter - - 7,6 12,0			_	-	-		77
gegebene kWh a) Sommer	17		_	-	1 525 000	1 513 000	"
18 a) Sommer — — 5,5 16,7 Rp./kWh 19 b) Winter — — — 7,6 12,0 " 20 c) Jahr — — — — — 7,6 12,0 " Anteile der Anlagekosten: — — — — — — — — " Primärleitungen — — — — — — — — — " " Transformatoren — — — — — — — — — — — — " </td <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td>			4				
19 b) Winter	18	a) Sommer	_				Rp./kWh
Anteile der Anlagekosten: 1 500 000 1 000 000 Fr. Primärleitungen 1 200 000 800 000 " Transformatoren 1 000 000 2 000 000 " Sekundärleitungen 300 000 1 700 000 " Zähler 300 000 5 500 000 "		b) Winter	1 60 /0				21
Primärleitungen 1500 000 1000 000 Fr. Transformatoren 1200 000 800 000 " Sekundärleitungen 1000 000 2000 000 " Zähler 300 000 1700 000 " 4000 000 5500 000 "	20	c) Janr	1,02 (2,	85) 9,8	0,03	13,7	21
Primärleitungen 1500 000 1000 000 Fr. Transformatoren 1200 000 800 000 " Sekundärleitungen 1000 000 2000 000 " Zähler 300 000 1700 000 " 4000 000 5500 000 "							
Transformatoren 1 200 000 800 000 " Sekundärleitungen 1 000 000 2 000 000 " Zähler 300 000 1 700 000 " 4 000 000 5 500 000					1 500 000	1 000 000	г.
Sekundärleitungen 1 000 000 2 000 000 " Zähler 300 000 1 700 000 " 4 000 000 5 500 000 "		Primärleitungen	* * * ,*				
Zähler		Sekundärleitungen					
4 000 000 5 500 000 "		Zähler					
		a y			4 000 000	5 500 000	,,

Verhältnismässig leicht ist die Trennung der Selbstkosten für die zwei hauptsächlichsten Anwendungsgebiete "Licht" und "Kraft", bei solchen städtischen Werken, wo für die beiden Arten getrennte Netze, z. B. Drehstrom für Kraft und Einphasen-Wechselstrom für Licht bestehen.

In Beispiel C (Tab. 3) ist für eine grössere Stadt (ca. 100000 Einwohner) eine solche Verteilung angenommen, und zwar bei Verhältnissen bezüglich Ausnützung und Anlagekosten (Zeilen 7 bis 9) wie sie gegenwärtig für grössere Schweizerstädte als normal gelten können. Die Stadt besitze eine eigene Wasserkraftzentrale und beziehe ausserdem Fremdstrom, namentlich im Winter. Dieses Beispiel entspricht dem "Abnehmer D" im Beispiel B. Die Trennung der Anlagekosten nach den beiden Netzten bietet keine Schwierigkeiten, ebensowenig die Teilung der Maximalleistungen. Die Jahreskosten der Verteilanlagen seien mit 20 % der Anlagekosten, also reichlich hoch angenommen. Die Stromkosten sind gemäss den Anteilen der Maximalleistungen für das Winterhalbjahr auf die beiden Netze verteilt. Aus Zeilen 18-20 ergeben sich somit durchschnittliche Selbstkosten, die für das Drehstromnetz im Sommer 5,5, im Winter 7,6 und im Jahresdurchschnitt 6,6 Rp. für die an den Abonnenten abgegebene Kilowattstunde betragen. Im Einphasennetz, das höhere Anlagekosten pro Einheit der Anschlussgrösse (Zeile 10) und pro Einheit der Maximalleistung, sowie geringere Benützungsdauer der Anschlüsse und Maximalleistungen aufweist, sind die Selbstkosten im Jahresdurchschnitt naturgemäss höher, nämlich 13,7 Rp./kWh. (Das auf den ersten Blick etwas paradox erscheinende Resultat, dass die Selbstkosten im Sommer höhere sind, als im Winter (Zeilen 18 und 19) erklärt sich aus dem Umstand, dass die Ausnützung des Netzes im Sommer viel geringer ist, und dass die reinen Netzkosten (Zeilen 13 und 14) die Stromkosten überwiegen.

Im Beispiel D (Tabelle 4) ist ein Ueberlandwerk (Elektrizitätswerk ohne eigenes Kraftwerk) mit fast ausschliesslich Freileitungen und eigenen Sekundärnetzen in allen Ortschaften dargestellt. Als Stromsystem ist Drehstrom für Licht und Kraft angenommen, mit Gebrauchsspannung 380/220 Volt. Die Summe aller Anschlüsse ist beinahe gleich gross wie im Beispiel C, jedoch sind entsprechend den mehr

Beispiel D.

Ueberlandwerk mit gemeinsamer Drehstromverteilung für Kraft, Wärme und Licht.

380/220 Volt.

Tabelle 4

	380/220	VOII.			Ta	belle 4.
		Fremd- strom- bezug	Motoren	Wärme- apparate	Licht	Dimen- sion
1. Anschlüsse	ergiemengen	10 000 31 Mill. 26,5 Mill. 3 100 1 400 000 4,5 total 1 200 000 2 000 000 1 600 000 700 000 5 500 000	15 000 6 000 21 Mill. 18 Mill. 1 200 3 500 (3 000) 2 500 000 167. – 415. – 500 000 1 340 000 7,5 700 000 1 300 000 400 000 1 00 000 2 500 000	10 000 2 500 7 Mill. 6 Mill. 600 2 800 (2 400) 1 500 000 150. — 600. — 300 000 650 000 10,8 300 000 400 000 600 000 200 000 1 500 000	6 000 1 500 3 Mill. 2,5 Mill. 2,5 Mill. 417 2 000 (1 670) 1 500 000 250. — 1 000. — 300 000 510 000 20,4 200 000 300 000 600 000 400 000 1 500 000	kW kWh kWh h h Fr. Fr./kW Fr. Fr. Rp./kWh

ländlichen Verhältnissen (Landwirtschaft, Gewerbe, Industrie) weniger Licht-, dafür mehr Wärmeanschlüsse vorhanden (viel elektrische Kochapparate, weil kein Gaswerk im Versorgungsgebiet).

Die Anlagekosten des Netzes, sowie die Maximalleistung, müssen in diesem Falle, wo ein gemeinsames Netz besteht, schätzungsweise unterteilt werden auf die drei Kategorien Motoren, Wärmeapparate und Licht. Eine gewisse Willkür kann dabei nicht ganz vermieden werden. Die wirklichen Maximalleistungen jeder Kategorie können grösser sein als die "gleichzeitigen Maximalleistungen" (Zeile 2), welche den Anteil in demjenigen Zeitpunkt darstellen, in dem die grösste Gesamtleistung auftritt.

Die durchschnittlichen Selbstkosten für die an die Motorenabonnenten abgegebene Energie sind mit 7,5 Rp./kWh etwas höher als im Beispiel C. Die bei D geringeren Anlagekosten pro kW Lichtanschluss (Zeile 8) werden durch die geringere Benützungsdauer (Zeile 5) mehr als aufgewogen. Die Stromkosten (Erzeugung bezw. Fremdstrombezug), die bei D auf die erzeugte kWh bezogen, mit 4,5 Rp. höher sind als bei C, tragen noch weiter dazu bei.

Nachfolgende Zusammenstellung zeigt die Verschiedenheit in der Zusammensetzung der mittleren Gesamtselbstkosten pro abgegebene kWh Licht-, Motorenund Wärmestrom nach Kosten für die Energieerzeugung, Uebertragung und Verteilung.

	Werk	Werk C (städtisches Werk)				Werk D (Ueberlandwerk)					
	Lichtnetz		Kraftnetz		Licht		Motoren		Wär	me	
	Rp./kWh	0/0	Rp./kWh	0/0	Rp./kWh	0/0	Rp./kWh	0/0	Rp./kWh	0/0	
Kraftwerk (Energieerzeugung). Fernleitung und Unterwerk	3,75	27,3	3,15	47,5	6,8 1,6	33,5 7,8	3,75 0,90	50,4 12,1	4,67 1,13	43,2 10,5	
Primärnetz	1,80	13,1	1,30	19,6	1,6	7,8	0,78	10,5	1,00	9,2	
netz (inkl. Zähler)	8,20	59,6	2,18	3 2, 9	10,4	50,9	2,00	27,0	4,00	37,1	
Total	13,75	100	6,63	100	20,4	100	7,43	100	10,80	100	

In den beiden Beispielen überwiegen bei Lichtstrom die Kosten der Transformierung und Sekundärverteilung, bei Motorenstrom die Kosten der Energieerzeugung.

b) Der Einfluss der Benützungsdauer des Anschlusses auf die Selbstkosten.

Bei den unter III a erwähnten Ziffern handelt es sich, wie bereits erwähnt, um Mittelwerte aus allen Abnehmern der betreffenden Kategorie. Es soll nachstehend versucht werden, die Selbstkosten zu ermitteln für Abnehmer, die hinsichtlich Benützungsdauer und Benützungszeit (Tag oder Nacht) verschieden sind.

Bei dieser Differenzierung ist von der bekannten Erfahrungstatsache auszugehen, dass die in der Zentrale oder den Unterwerken benötigte Maximalleistung umso weiter unter der Summe der Anschlussgrössen bleibt, je grösser bei gleicher Summe der angeschlossenen Leistungen die Zahl der Anschlüsse und je geringer die Benützungsdauer der Anschlüsse unter sonst gleichen Verhältnissen ist. Eine theoretische Grundlage zu entsprechenden Berechnungen hat Prof. Dr. W. Kummer gegeben 7). Auf Grund der von ihm berechneten Funktion (Fig. 1 loc. cit.) des Schwankungsverhältnisses (Verhältnis zwischen maximaler und mittlerer Leistung im Kraftwerk) ergibt sich der in Fig. 4 gezeigte Zusammenhang zwischen der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer T_a der Anschlüsse der Abnehmer und der jährlichen Benützungsdauer der Anschlüsse der Abnehmer und der jährlichen Be

⁷⁾ s. Bulletin des S. E. V. 1926, No. 7, S. 289.

zungsdauer T'_{ν} im Werk 8). Bei dieser Darstellung ist vorausgesetzt, dass die sämtlichen Abnehmer gleichartig bezüglich Anschlussgrösse u. Benützungsdauer seien, und dass sie sich lediglich im zeitlichen Verlauf der von ihnen in Anspruch genommenen Leistung unterscheiden.

Wird für den Fall des Beispiels D, Kategorie Motorenabonnenten diese Annahme vorerst als genau erfüllt betrachtet, so lassen sich auf Grund der Kummer'schen Grundlagen die in Tabelle 5 a enthaltenen Selbstkostenberechnungen aufstellen für verschiedene Benützungsdauern der Anschlüsse, die aber jeweils für

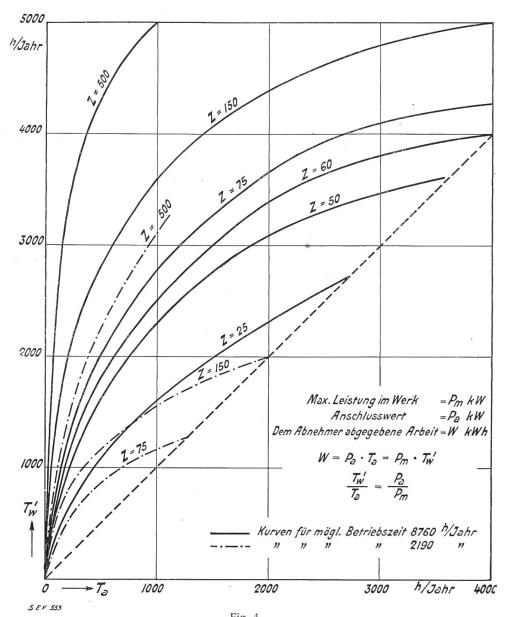


Fig. 4. Kurven der Benützungsdauer $T_{\mathbf{w}}$ im Werk in Abhängigkeit von Benützungsdauer $T_{\mathbf{a}}$ der Anschlüsse (nach Prof. Kummer).

alle Anschlüsse ungefähr gleich sein müssen.

Aus dem Verhältnis $\frac{T'_w}{T_a} = \frac{3000}{1200} = 2,5$ (s. Tab. 4, Zeilen 5 und 6) ergibt sich gemäss Fig. 4 eine scheinbare Abnehmerzahl Z=75, denn bei diesem Parameter entspricht dem Abszissenwert $T_a=1200$ ein Ordinatenwert $T'_w=3000$. Die wirkliche Abonnentenzahl ist natürlich viel grösser; da aber unter den Abnehmern jeweils zahlreiche Gruppen mit fast genau gleichem Verlauf des Energiebezugs vorhanden sind, und nach den Voraussetzungen von Prof. Kummers Untersuchung jede dieser Gruppen nur als je ein Abnehmer zu rechnen ist, wird die rechnungsmässige oder scheinbare Abnehmerzahl geringer als die wirkliche.

Je grösser die Benützungsdauer T_a wird, um so kleiner ist die mögliche Anschlussgrösse bei gegebener Maximalleistung 6000 kW (Kolonne 1 und 4 der Tabelle 5a). Gleichzeitig werden aber auch die Netzanlagekosten für diese Fälle geringer (Kolonne 5, Tab. 5a). Die Abstufung dieser Anlagekosten ist hier der

⁸⁾ $T'_{1V} = \frac{\text{den Abonnenten } abgegebene \text{ Energiemenge (nicht erzeugte!)}}{\text{Maximalleistung im Werk}}$.

$Selbstkosten\ f\"{u}r\ Motorenstrom,\ Werk\ D.$

a)

500

1 000

2 000

4 000

2 200

3 100

 $4\ 000$

4700

4,4

3,1

2,0

1,18

30 800

21 600

 $14\ 000$

8 200

 $4\,800\,000$

 $4\ 170\ 000$

3 650 000

3 260 000

 $1\,685\,000$

 $1\,555\,000$

 $1\ 455\ 000$

1 375 000

55. –

72.-

104. -

168. -

11,0

7,2

5,2

4,2

Abstufung nach Benützungsdauer.

Tabelle 5.

a)			А	siajang naai	Benutzungsaauer.		1	abelle 3
				Mögliche	Anteil an Netz-	Jahreskosten	Selbstk	osten
	T_{a}	T_{w}'	$T_{ m w'}/T_{ m a}$	Anschlüsse $6000 \times T_{\rm w}'/T_{\rm a}$	anlagekosten 2 Mill. Fr. + 33 Fr./kW	inkl. Fremd- strom	pro kW Anschluss	pro kWl
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	250	1 400	5,6	33 500	3 100 000	1 460 000	44. —	17,5
2	500	2 000	4,0	24 000	2 800 000	1 400 000	58. —	11,6
3	1 000	2 800	2,8	16 800	2 560 000	1 350 000	80. —	8,0
4	2 000	3 650	1,32	10 900	2 360 000	1 310 000	120. –	6,0
5	3 000	4 100	1,37	8 200	2 270 000	1 295 000	158	5,2
6	4 000	4 300	1,08	6 500	2 215 000	1 285 000	198. —	5,0
7	5 000	5 000	1,0	6 000	2 220 000	1 280 000	213.—	4,2
- 1		ı	I.	ı.	191			
b)			Selbs	stkosten für V	Värmestrom, Werk	D.		
				$25~0 imes T_{ m w}'/T_{ m a}$	0,7 Mill. +80 Fr./kW			
	250	1 500	6,0	15 000	1 900 000	730 000	49. –	19,5
	500	2 200	4,4	11 000	1 580 000	665 000	60. —	12,0
	1 000	3 100	3,1	7 800	1 320 000	615 000	79. –	7,9
	2 000	4 000	2,0	5 000	1 100 000	570 000	114. –	5,7
	4 000	4 700	1,18	2 950	935 000	535 000	181.—	4,5
	5 000	5 000	1,0	2 500	900 000	530 000	212.—	4,2
			247	**				
					*			
c)				Lichtstron	ı, Werk D.			
P				$1500 imes T_{ m w'}/T_{ m a}$	0,5 Mill. + 167 Fr./kW			
	200	1 100	5,5	8 250	1 880 000	585 000	71.—	35,5
	400	1 620	4,05	6 060	1 550 000	520 000	86. —	21,5
	600	1 950	3,25	4 900	1 320 000	472 000	97.—	16,2
	800	2 250	2,8	4 200	1 200 000	450 000	107. –	13,4
	1 000	2 500	2,5	3 750	1 120 000	435 000	116. —	11,6
9								
d)				Motorenstro	m, Werk C.			
Í	1	1		$7000 \times T_{\rm w}'/T_{\rm a}$	2,7 Mill. + 68 Fr./kW			
	250	1 500	6,0	42 000	5 550 000	1 835 000	43.50	17,4

Einfachheit halber so angenommen, dass ein fester Betrag von Fr. 2000 000. – (für Primärleitungen und Transformatoren bei 6000 kW Maximalleistung) plus einem Zuschlag von Fr. 33. – pro kW-Anschluss (für Sekundärleitungen) genommen wird. Man könnte gegen diese Berechnung einwenden, dass bei steigender Benützungsdauer T_a und somit abnehmendem Gesamtanschluss (bei gleicher Maximalleistung) auch die Primärleitungen und Transformatoren für etwas geringere Leistungen bemessen werden können, und dass daher die Summe dieser Anlagekosten nicht konstant 2 Millionen Franken sei, sondern ebenfalls abnehme. Bei der Berechnung des Wertes T'_{ν} in Tabelle 5a ist aber stillschweigend angenommen worden, dass bei steigendem T_a und sinkender Anschlussgrösse die scheinbare Abnehmerzahl konstant bleibe, nämlich 75, während sie in Wirklichkeit eher kleiner wird; somit ist der mögliche Gesamtanschluss etwas zu gross angenommen. Da aber mit steigendem Wert T_a nach dem oben gesagten auch die Anlagekosten etwas zu gross angenommen sind, so kompensieren sich diese zwei Fehler, wenigstens teilweise, sobald man die Selbstkosten pro kW-Anschluss durch Division der gesamten, etwas zu grossen Jahreskosten durch den etwas zu grossen Anschlusswert berechnet. Eine genauere Untersuchung ist wegen der Unsicherheit der anzunehmenden Variation der in Frage kommenden Grössen nicht angezeigt. Die Jahreskosten (Kolonne 6) setzen sich aus der festen Summe von Fr. 840 000. – für Strombezug (Fr. 140. – pro Jahreskilowatt und 20 % der Netzanlagekosten zusammen. In Kolonnen 7 und 8 der Tab. 5 sind schliesslich die durchschnittlichen Selbstkosten pro Jahreskilowatt und pro kWh, bei verschiedener Benützungsdauer berechnet. Das Jahreskilowatt verursacht also, wie ersichtlich, dem Elektrizitätswerk umso höhere Selbstkosten, je grösser die Benützungsdauer des betreffenden Anschlusses ist; bei etwa 5000 Stunden ist aber in diesem Beispiel eine obere Grenze mit 213.— Fr./kW vorhanden, denn wenn die Anschlüsse 5000 Stunden benützt werden, so ist nach den Kummer'schen Grundlagen ein Belastungsausgleich nicht mehr zu erwarten; die Maximalleistung des Werkes ist dann gleich der Summe der Anschlussgrössen.

Im wirklichen Betrieb des Werkes D, wo die Voraussetzung der Gleichartigkeit der Abnehmer hinsichtlich der Benützungsdauer nicht vorhanden ist, wo also Abnehmer mit kurzer und solche mit langer Benützungsdauer vorkommen, sind die Selbstkosten von den in Tabelle 5a berechneten natürlich verschieden. Da aber die Tarife nie genau auf die Selbstkosten für jeden einzelnen Abnehmer eingerichtet sein können, genügt für praktische Zwecke die oben entwickelte Näherungsmethode vollständig⁹).

In Tabelle 5b ist in gleicher Weise die Abstufung der Selbstkosten für Wärmestrom aus Werk D durchgerechnet, ebenso in 5c die Lichtstromkosten. Die Resultate der Tabellen 5a und 5b sind in Fig. 5 graphisch dargestellt; daraus ergeben sich die Selbstkosten bei weniger als 4000 h Benützung

für Motorenstrom zu 45.- Fr./kW + 3,75 Rp./kWh¹⁰), für Wärmestrom zu 47.- Fr./kW + 3,3 Rp./kWh.

Bei Benützung über 5000 Stunden sind die Kosten für Motorenstrom 213.- Fr./kW.

Anhand dieser formelmässigen Resultate ist es nun auch leicht möglich, die Selbstkosten für Tages- und Nachtkraft abzustufen. Unter der Annahme, dass ein Motorenabonnent vorläufig nur Tageskraft bezieht, bei z. B. 2000 stündiger Benützung, sind die Selbstkosten des Werkes hiefür Fr. 45 + 2000 · 0,0375 = 120. – Fr./kW oder 6,0 Rp./kWh. Bezieht dieser Abonnent nun ausserdem noch Nachtenergie ohne grössere Leistung als am Tag, so verursacht er die Grundkosten von Fr. 45. – natürlich für die Nacht nicht noch einmal, sondern die Selbstkosten für jede weitere bezogene kWh (in der Nacht, oder auch am Tag) sind nur 3,75 Rp./kWh. Für Nachtkraft sind also die Selbstkosten nach dieser Betrachtungsweise einheitlich

⁹⁾ Es wird ja auch meist davon abgesehen, die höheren Selbstkosten für Lieferung an einzelne, vom Versorgungsgebiet abgelegene Abnehmer in den Tarifen besonders zu berücksichtigen.

 $^{^{10}}$) Für die untersten T_a -Werte ist der Verlauf nicht mehr ganz linear (s. Fig. 5).

3,75 Rp./kWh, unabhängig von der Benützungsdauer, solange diese nicht im Ganzen über 5000 Stunden steigt, während sie bei Tageskraft eine bedeutende Rolle spielt (Tab. 5a, Kolonne 8). Ist die gesamte Benützungsdauer jedoch über 5000 Stunden,

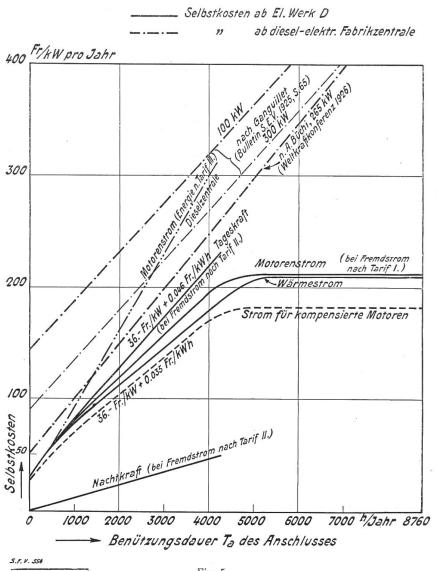


Fig. 5.
Selbstkosten für Motoren- und Wärmestrom ab Werk D und Vergleich mit dieselelektrischer Energie ab Fabrikzentrale.

so verursacht die in der Nacht abgegebene Energie überhaupt keine Kosten, sofern die Leistung diejenige des Tages nicht übersteigt.

Für Wärmestrom aus Werk D sind gemäss Fig. 5 die Nachtströmkosten 3,3 Rp./kWh; für Lichtstrom in der Niedertarifzeit betragen die Selbstkosten 5 Rp./kWh.

Die Tabelle 5a ist auf der Voraussetzung aufgebaut, dass die "scheinbaren 75 Anschlüsse" ungefähr gleich gross seien. Jede dieser Anschlussgruppen hat eine Grösse 15000

von $\frac{15000}{75}$ = 200 kW.

Die Gesamtzahl der angeschlossenen Motoren betrage 4000; die Durchschnitts-Leistungsaufnahme eines Motors ist also 15000

10000 = 3,75 kW. Da unter sonst gleichen Umständen die Benützungsdauer der Maximalleistung im Werk umsomehr sich der Benützungsdauer der Anschlüsse nähert, je grösser und

infolgedessen desto weniger zahlreich bei gegebener Maximalleistung die Anschlüsse sind, ist leicht einzusehen, dass die Stromselbstkosten für grosse Anschlüsse höher sein müssen als für kleine. Teilweise wirkt der genannten Ursache allerdings der andere Umstand entgegen, dass die Netzanlagekosten, sowie die Verwaltungskosten pro kW Anschluss bei grossen Anschlüssen geringer werden. Das Zusammenwirken dieser beiden Umstände ist in Abschnitt III f untersucht.

c) Einfluss der Kostenform der Energieerzeugung auf die Detailkosten.

In Tabellen 5a und 5b ist die Voraussetzung zugrundegelegt, dass das Werk D den Fremdstrom lediglich nach der beanspruchten Maximalleistung, und zwar mit 140.— Fr./kW bezahlen müsse (Tarif I). Trotzdem sind die Selbstkosten für Detailabgabe, wie gezeigt, von der Form 45.— Fr./kW -+ 0,0375 Fr./kWh, für Benützungsdauern unter 4000 Stunden.

Wird der Fremdstrom, wie häufig üblich, nach einem Doppelansatz, z. B. mit $70.-\text{Fr./kW}+\left\{ egin{array}{ll} 0.02 & \text{Fr./kWh} & \text{am Tag} \\ 0.01 & \text{Fr./kWh} & \text{in der Nacht} \end{array} \right\}$ bezahlt (Tarif II), so berechnen sich

Motorenstrom-Selbstkosten bei andern Tarifen.

Für Fremstrombezug (Werk D).

Tabelle 6.

7	An-	Verteila	nlagen	Ene	rgie	Stromkosten bei		Total-Kosten		Kosten pro kW	
T _a	schlüsse	Anlage- kosten	Jahres- kosten	Abgabe	Bezug	70.— Fr./kW + 2 Rp./kWh	35 Fr./kW + 45 Rp./kWh	Tarif II	Tarif III	Tarif II	Tarif III
h	kW	Mill. Fr.	Mill. Fr.	Mill.	kWh	(Tarif II) Fr.	(Tarif III) Fr.	Mil1.	Fr.	Fr./	kW
(1)	(2)	(3)	(4)	(5)	(6)	(7)	. (8)	(9)	(10)	(11)	(12)
500	24 000	2,80	0,560	11,0	13,0	840 000	795 000	1,40	1,355	58,5	56,5
1000	16 800	2,56	0,512	15,0	18,0	Minimalgarantie 840 000	1 020 000	1,352	1,532	80,0	91,0
2000	10 900	2,36	0,472	20,4	24,3	906 000	1 300 000	1,378	1,772	127,0	162,0
3000	8 200	2,27	0,454	22,7	27,4	970 000	1 440 000	1,424	1,894	174,0	231,0
4000	6 500	2,22	0,444	24,0	28,8	995 000	1 510 000	1,439	1,954	221,0	300,0

Selbstkosten bei kompensierten Motoren (Werk D).

Tabelle 7.

_	T_{a} $T_{w'}/T_{a}$	Mögliche Anschlüsse	Verteila	nlagen	Strombezugs-	Tot-11-04	Kosten pro kW	
T_{a}	$T_{w'}/T_{a}$	$10000\frac{T_{\mathrm{w}}{}'}{T_{\mathrm{a}}}$	Anlagekosten	Jahreskosten	kosten	Totalkosten		
h		kW	Mill. Fr.	Fr.	Fr.	Mill. Fr.	Fr./kW	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
500	4,0	40 000	2,80	560 000	1 400 000	1,960	49,0	
1 000	2,8	28 000	2,56	512 000	1 400 000	1,912	68,5	
2 000	1,82	18 200	2,36	472 000	1 400 000	1,872	103,0	
4 000	1,08	10 800	2,22	444 000	1 400 000	1,844	171,0	
5 000	1,0	10 000	2,20	440 000	1 400 000	1,840	184,0	

Selbstkosten für Abgabe in Mittelspannung an Wiederverkäufer und Grossabonnenten (Werk D, Fremdstrom nach Tarif 1).

Tabelle 8.

T a" T w"		$\frac{T_{w''}}{T_{a}}$	Mögl. Gesamt- anschluss von	Anlagekosten	Jahres- kosten	Strom- kosten	Jahreskosten		
h	h	T_{a}	Transformatoren in kW, bei $\cos \varphi = 0.65$	Primärnetz Fr.	Primärnetz Fr.	Fr.	total Fr.	pro kW Fr./kW	pro kWh Rp./kWh
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
500	1 500	3,0	30 000	1 900 000	380 000	1 400 000	1 780 000	59.50	11,9
1 000	2 150	2,15	21 500	1 500 000	300 000	1 400 000	1,700 000	79.—	7,9
2 000	2 850	1,43	14 300	1 250 000	250 000	1 400 000	1 650 000	115.—	5,8
3 000	3 200	1,07	10 700	1 150 000	230 000	1 400 000	1 630 000	153 —	5,1
4 000	4 000	1,0	10 000	1 100 000	220 000	1 400 000	1 620 000	162.—	4,0

Bei dem wirklichen Netz D, mit 10000 kW Maximalleistung sind Transformatoren mit total 20000 kVA aufgestellt; bei $\cos \varphi = 0.65$, also 13000 kW Transformatorenanschluss.

die Selbstkosten der Detailabgabe bei sonst gleichen Verhältnissen (Werk D) gemäss Tabelle 6 zu 36. – Fr./kW + { 0,046 Fr./kWh am Tag 0,012 Fr./kWh in der Nacht. } In Fig. 5 sind die zwei Fälle graphisch dargestellt, und mit den Erzeugungskosten in kleineren Fabrik-Dieselzentralen (100 bis 300 kW) verglichen. Der ähnliche Verlauf bis zu 4000 h der Kosten der Elektromotoren- und der Diesel-elektrischen Kraft ist somit aus natürlichen Selbstkostengründen zu verstehen; die hie und da gehörte Meinung, die Werke setzen den Verlauf und die absolute Höhe der Tarife mit Rücksicht auf die Konkurrenz kalorischer Motoren zu niedrig an, ist irrig. Auch für eine Benützungsdauer von nur 1000 Stunden kann das Werk D Motorenstrom zu Selbstkosten billiger abgeben, als er in einer Fabrik-Dieselzentrale erzeugt werden kann. Bei kurzer Benützungsdauer kann sogar der Bezug elektrischer Energie aus einem Verteilnetz, das durch eine grosse Dieselzentrale gespiesen wird, billiger sein als die Erzeugung diesel-elektrischer Energie in einer Fabrikzentrale von 200 bis 300 kW (Tab. 6 und Fig. 5).

d) Kosten der Blindleistung.

Von den zahlreichen Faktoren sekundärer Art, welche auf die Selbstkosten der Detailenergie Einfluss haben, sei nachfolgend nur der Leistungsfaktor kurz untersucht. Es sei angenommen, dass im Netz des Werkes D zur Maximalbelastungszeit ein Leistungsfaktor von $\cos\varphi=0.65$ vorhanden sei. Nach den Untersuchungen von Oberingenieur Schiesser 11) kann für Netze von der Art D der Blindleistungsverbrauch der Motoren zu etwa 75 %, derjenige der Transformatoren zu etwa 20 %, und derjenige der Freileitungen zu etwa 5 % der gesamten Blindleistung des Netzes angenommen werden. Demnach ergibt sich für das Beispiel D: ($\cos\varphi=0.65$, $\sin\varphi=0.76$)

Wären alle angeschlossenen Motoren vollkommen kompensiert, d. h. ganz ohne Blindleistungsverbrauch, so würden die 8800 BkW wegfallen, und die Verhältnisse wären folgende:

Da nun aber die Verteilanlagen für 15 400 kVA bemessen sind, kann bei voller Ausnützung derselben, wenn nur kompensierte Motoren verwendet werden, die maximale Leistung 15 400 · 0,955 = 14 700 kW betragen, d. h. es können soviel Motoren mehr angeschlossen werden, dass die auf diese Kategorie entfallende maximale Leistung 10 700 kW statt nur 6000 kW beträgt (der bessere Belastungsausgleich infolge höherer Abnehmerzahl sei nicht weiter berücksichtigt). In der Tabelle 7 sind die Selbstkosten auf Grund dieser Annahme durchgerechnet (unter Abrundung der 10 700 kW auf 10 000). Die Jahreskosten des Kilowatt sind gegenüber Tabelle 5a um 13 bis 15 % geringer. Man kann somit sagen, dass die Blindleistung der Motoren im Netz D, bei Benützungsdauern über 4000 Stunden, rund 18. – Fr./Blind-kW durchschnittliche Selbstkosten verursache, oder bei 2000 stündiger Benützung etwa 0,6 Rp./BkWh.

Diese Berechnung hat natürlich nur approximativen Charakter; sie nimmt keine Rücksicht auf die Verschiedenheit im $\cos \varphi$ bei Vollast während der (ideellen) Benützungsdauer, und bei einer mittleren Teilbelastung während der wirklichen Betriebszeit. Zu der oben berechneten Ermässigung der Netzselbstkosten bei kom-

¹¹⁾ Bulletin des S. E. V. 1924, S. 433 u. ff., namentlich 447.

pensierten Motoren (welch letztere zwar teurer sind als gewöhnliche Kurzschlussoder Schleifringmotoren, s. M. Schiesser, Bulletin S. E. V. 1924, S. 457) kommt auch noch eine Selbstkostenermässigung für das liefernde Kraftwerk hinzu. Sind die Generatoren beispielsweise für eine Scheinleistung von 14000 kVA bemessen, welche im Verhältnis 1:0,75 zur Volleistung der Antriebsmotoren (10500 kW) steht, und ist der Wirkungsgrad der Generatoren bei voller induktiver Belastung mit cos φ = 0,65 zu 0,92 angenommen, so kann eine maximale Effektivleistung des Antrieb-14000 kVA · 0,65 motors von höchstens -= 9900 kW, oder nur 94% seiner Lei-0.92 stungsfähigkeit ausgenützt werden. Werden aber im Netz des Werkes D die Motoren soweit kompensiert, dass der Leistungsfaktor im Kraftwerk A nicht unter etwa 0,7 sinkt, so ermässigen sich die Selbstkosten der Energieerzeugung um etwa 6 %, und betragen statt 140. – Fr./kW nur 130. – Fr./kW im Jahr. Kommt diese Ermässigung auch der Detailabgabe zugute, so resultiert für letztere im Maximum (d. h. bei voller Kompensation aller Motoren) eine Ermässigung von etwa 18 bis 20 %. In Grosslieferungsverträgen ist mit Rücksicht auf den soeben dargelegten Umstand manchmal die Bestimmung enthalten, dass bei Unterschreitung des Wertes 0,7 des Leistungsfaktors, eine Minimalleistung bezahlt werden muss, die trotzdem gleich dem 0,7 fachen der Scheinleistung ist, also höher als die effektive Leistung.

e) Selbstkosten für Abgabe ab Primärnetz an Wiederverkäufer und Industrieabonnenten.

Während es sich bei allen vorstehenden Darlegungen um Detailabgabe von Energie in Niederspannung handelte, soll auch noch eine entsprechende Selbstkostenberechnung für Abgabe von Energie ab Primärleitungsnetz D (Mittelspannung) an Wiederverkäufer und Industrieabonnenten durchgeführt werden. Es kann dabei von der Annahme ausgegangen werden, dass am Primärnetz nur Grossabonnenten mit ihren Transformatoren angeschlossen seien; der Anschluss besteht dann für die angenommenen wirklichen Verhältnisse aus den 250 Transformatoren von insgesamt 20 000 kVA, d. h. 13 000 kW bei $\cos \varphi = 0.65$. Die Benützungsdauer dieser 250 als gleichartig betrachteten Abnehmer ist $T''_a = \frac{30 \text{ Mill. kWh}}{13\,000 \text{ kW}}$ = 2300 h. Die entsprechende Benützungsdauer $T''_{\rm w}$ der Maximalleistung im Unterwerk ist $\frac{30~{
m Mill.\,kWh}}{10\,000~{
m kW}}$ = 3000 h. Aus diesem Verhältnis sind in Tabelle 8 anhand der Fig. 4 die Selbstkosten für verschiedene Benützungsdauern der Transformatoren berechnet (scheinbare Abnehmerzahl Z=40). Für Werte von T''_a zwischen 1000 und 3000 h ergeben sie sich zu 40.- Fr./kW + 0,038 Fr./kWh. (Beim Vergleich von Tab. 8 mit Tab. 5a ist die Nicht-Identität zwischen T_a und T''_a nicht ausser acht zu lassen. Will man einen Mittelwertvergleich ziehen, so ist z. B. der Detailpreis von 8,0 Rp./kWh bei $T_a = 1000 \text{ h}$ einem Preis für Wiederverkäufer von etwa 5,8 Rp. bei $T''_a = 2000 \text{ h}$ gegenüberzustellen.)

f) Einfluss der Grösse des Anschlusses auf die Selbstkosten.

Auf Grund der im vorhergehenden Abschnitt gefundenen Resultate kann nun leicht ein ungefährer Anhaltspunkt gefunden werden über den Einfluss der Grösse des Anschlusses auf die Selbstkosten. Denkt man sich die Energie in Niederspannung abgegeben, sonst aber unter gleichen Voraussetzungen wie in IIIe, so wäre an jedem Transformator durchschnittlich ein Anschluss von $\frac{13\,000~\text{kW}}{250} = 52~\text{kW}.$ Gegenüber dem in IIIe behandelten Fall (Abgabe in Mittelspannung) erhöhen sich die Selbstkosten des Werkes D um die Jahreskosten der Transformatoren, d. h. um $\frac{2~\text{Mill. Fr.} \cdot 0,20}{13\,000~\text{kW}} = 31. - \text{Fr. pro kW der Anschlussgrösse. Sekundärleitungen}$

fallen in diesem Fall weg, da man annehmen muss, dass die Transformatoren am Ort der Verwendung (Industrieanschlüsse) aufgestellt sind. Die Selbstkosten des Werkes D betragen daher für 50 kW-Anschlüsse in Niederspannung:

			Benützungsdauer				
		500 h	1000 h	200 0 h	3000 h	4000 h	5000 h
Für 50 kWh-Anschlüsse	Fr./kW Rp./kWh Rp./kWh	90.50 18,1 11,6	110. — 11,0 8,0	146.— 7,3 6,0	184. — 6,2 5,2	193. – 4,8 5,0	193. – 3,85 4,2

Die Erhöhung der Selbstkosten bei "grossen Anschlüssen" (50 kWh) gegenüber mittleren (4 kW) betragen bei ganz kurzer Benützungsdauer über 50%; der Unterschied wird mit steigender Benützung geringer, und über ca. 4300 Stunden verursacht der grosse Anschluss geringere Selbstkosten, d. h. dann, wenn ein Belastungsausgleich auch bei kleinen Anschlüssen nicht mehr eintritt.

IV. Die Detail-Tarife.

Wie verhalten sich nun im allgemeinen die in der Schweiz angewendeten Detail-Tarife zu den bisher in den Beispielen ermittelten Selbstkosten? Es ist bekannt, dass diese Tarife auch heute noch von einer ausserordentlichen Vielgestaltigkeit sind; ferner sind die Verhältnisse bei den einzelnen Werken gegenüber den zwei Beispielen C und D natürlich sehr verschieden. Immerhin ergibt sich die allgemeine Schlussfolgerung, dass die *Lichtstrompreise* in grösseren Netzen mit wenigen Ausnahmen wesentlich über den Selbstkosten liegen. In städtischen Verhältnissen (Kabelnetze) können letztere für die Hochtarifzeit etwa mit 20 bis 30 Rp./kWh angenommen werden; die Tarife sind oft fast doppelt so hoch. Die Tatsache, dass städtische und Gemeindewerke den Energiekonsum, namentlich den Lichtstromverbrauch als Objekt der indirekten Besteuerung heranziehen, soll hier nicht weiter diskutiert werden. Es lassen sich volkswirtschaftliche Gründe dafür und dagegen anführen.

Unter dem proportionalen Selbstkostenpreis geben aber die meisten Werke den für Wärmezwecke benötigten Strom ab. Die mit Rücksicht auf die Konkurrenz der Gasküche angesetzten üblichen Einfachtarife von 6 bis 10 Rp./kWh für Kochstrom liegen meistens etwas unter den nach der Proportionalmethode berechneten Selbstkosten (ca. 11 Rp./kWh im Beispiel D). Die Spätnachttarife von 3,5 bis 5 Rp./kWh (z. B. für Speicheröfen) entsprechen jedoch den Selbstkosten ziemlich gut

Die Tarife für Motorenstrom können im ganzen als merklich über den Selbstkosten liegend bezeichnet werden, wenn man von der Eigentümlichkeit der meisten dieser Tarife absieht, für grosse Anschlüsse billigere Preise als für kleine zu gewähren, was nach den frühern Darlegungen vom Standpunkt der Selbstkostenberechnung aus nicht ganz gerechtfertigt erscheint ¹²).

Für einen Anschluss von 5 kW ergeben z. B. 3 beliebig herausgegriffene Tarife von 3 Werken:

	Benützungsdauer			
2	500 h	1000 h	2000 h	3000 h
Tarif 1: Rp./kWh . Tarif 2: Rp./kWh . Tarif 3: Rp./kWh .	35,2 19,6 11,9	24,2 18,6 10,4	17,1 16,8 9,2	14,3 15,9 8,4
Selbstkosten für Werk D (Tab. 5a)	11,6	8,0	6,0	5,2

Damit soll nicht gesagt werden, dass diese Tarifierung an sich unrichtig sei; die kaufmännischen und andern Gründe, die für sie sprechen, mögen das grössere Gewicht besitzen als die reinen Selbstkosten.

Für einen Anschluss von 50 kW ergeben sie dagegen:

	Benützungsdauer				
	500 h	1000 h	2000 h	3000 h	
Tarif 1: Rp./kWh .	17,5	12,5	9,7	8,7	
Tarif 2: Rp./kWh .	14,7	13,0	11,5	10,0	
Tarif 3: Rp./kWh .	7,4	6,7	5,8	5,5	
Selbstkosten für Werk D	18,1	11,0	7,3	6,2	

Bei 5 kW sind die Preise der 3 Werke höher als die Selbstkosten, z. T. sogar das Mehrfache; bei 50 kW ergibt der Tarif 3 in einigen Fällen Preise, welche die Selbstkosten nicht decken.

Die eingangs dieser Arbeit erwähnte, ziemlich verbreitete Ansicht, dass die Motorenstromtarife nur auf Kosten der Lichttarife so niedrig seien, dass Elektromotoren mit Wärmekraft, in Fabrikzentralen erzeugt, konkurrieren können, ist im allgemeinen unrichtig.

Die Selbstkosten für Motorenstrom betrugen 1922 im Durchschnitt aller schweizerischen Elektrizitätswerke bei $T_{\rm a}=1220\,$ h etwa 8,3 Rp./kWh; die Durchschnittseinnahme betrug 10,8 Rp./kWh.

Um neben diesen mehr auf Einzelheiten abgestellten Resultaten noch ein Gesamtbild der schweizerischen Energieabgabe zu erhalten, ist in Tab. 9 eine Schätzung versucht worden. Derselben sind zum grössten Teil Ziffern der Statistik der schweizerischen Elektrizitätswerke, aufgestellt vom Starkstrominspektorat, zugrunde gelegt worden ¹³), sodann sind einige Zahlen aus einem Vortrag von Dr. Bauer ¹⁴), sowie aus den Geschäftsberichten des Bundesrates benützt.

Aus Tab. 9, worin die Verhältnisse für die Gesamtheit aller schweizerischen Elektrizitätswerke (Primär- und Sekundärwerke) mit Energieabgabe zur Allgemeinversorgung (also reine Bahnkraftwerke und eigene Werke der elektrochemischen Industrien nicht inbegriffen) für die Jahre 1916 und 1922 zur Darstellung gebracht sind, ist folgendes ersichtlich:

- 1. Die Gesamteinnahmen aller Werke zusammengerechnet aus Lichtstromlieferung, betragen ungefähr das 1,5 fache der Selbstkosten;
- 2. Die Gesamteinnahmen für Motorenstrom übersteigen die Selbstkosten um etwa 30 %;
- 3. Die Gesamteinnahmen für Wärmestrom (durchschnittlich 3 Rp./kWh) erreichen nicht ganz die Hälfte der Selbstkosten;
- 4. Die Gesamteinnahmen für die ins Ausland abgegebene Energie decken ungefähr die Selbstkosten (im Jahre 1922).

Bei diesen Selbstkosten handelt es sich um die proportionalen Selbstkosten, gemäss den frühern Darlegungen; sie enthalten eine normale Verzinsung des investierten Kapitals. Die Differenz zwischen den Gesamtsummen der Einnahmen und der Selbstkosten (156,5–131 = 25,5 Mill. Fr. für 1922) stellt den reinen Unternehmergewinn dar. Dieser besteht zu etwa $^2/_3$ bis $^3/_4$ aus den Erträgen, welche die kommunalen Werke als Beiträge zum Gemeindehaushalt (indirekte Steuern) über die Verzinsung des Anlagekapitals hinaus liefern. Bei der unvermeidlichen Ungenauigkeit dieser geschätzten Zahlen können aus der zahlenmässigen Höhe dieser Differenz, die wegen der Unsicherheit von Subtrahend und Minuend doppelt unsicher ist, natürlich keine weitgehenden Schlussfolgerungen gezogen werden.

¹³) Siehe Prof. Dr. W. Wyssling, Die Ergebnisse der Statistik der Schweizerischen Elektrizitätswerke für 1922, Bulletin des Schweiz. Elektrotechnischen Vereins, 1922, S. 598.

¹⁴) Dr. B. Bauer, Wirtschaftliche Betrachtungen und Folgerungen aus der jüngsten Entwicklung unserer Elektrifizierung, Bulletin S.E.V., 1925, S. 277.

Tabelle 9a.

Aus der Darstellung auf Seite 435 ergibt sich (auf Grund der Proportionalkalkulation!), dass die Einnahmen aus Lichtstrom und Motorenstrom, welche die proportionalen Selbstkosten um 50 bezw. 30% übersteigen, einen grossen Teil der

Proportionale Selbstkosten und Einnahmen aller schweiz. Allgemeinwerke für Abgabe an Verbraucher.

Anschlüsse Uebertrag-Totale Anteil am Einnahmen Kraftwerke u. Verteil-Selbstkosten Hauptmaximum (im Winterfür Detail-1922 für Abgabe anlagen Abgabe Beabgabe und Grösse nutzg. durchschnitt) Ausfuhr Abonnenten Abonnenten Dauer Anteil a. d. Jahreskosten kW kWh kW Mill. Fr. Rp./kWh Mill. Fr. Rp./kWh Mill. Fr. Rp./kWh Mill. Fr. Rp./kWh h Licht . . 9,4 357 000 $125 \cdot 10^{6}$ 350 80 000 11,8 27,0 21,6 38,8 31,0 59,0 47,0 59,7 $715 \cdot 10^{6}$ 1220 190 000 28,0 3,9 31,7 8,3 78,0 10,8 Motoren. 585 000 4,4 Wärme . 447 000 $320 \cdot 10^{6}$ 720 30 000 4,4 1,4 17,8 5,6 22,2 7,0 9,5 3,0 1 389 000 $1160 \cdot 10^{6}$ 44,2 3,8 76,5 6,6 120,7 10,4 146,5 12.6 840 Ausfuhr . . $462 \cdot 10^{6}$ 60 000 8,8 1,85 1,5 10,3 2,2 10,0 2,15 En.-Verlust. $408 \cdot 10^{6}$ ca. 360 000 53,0 78,0 $2030 \cdot 10^{6}$ 131,0 156,5 Total. . (inst. 615 000) 388 Mill. Fr. 482 Mill. Fr. Tot. 870 Mill. Fr. Anlagekosten. (= 785.- FP./kW)1280 .- Fr. /kW Anschlussl

Tabelle 9 b

-	Anschlüsse					
1916	Grösse	Abgabe an Abonnenten	Be- nutzg Dauer			
	kW	kWh	h			
Licht	243 000	100 - 106	410			
Motoren .	357 000	590 - 106	1650			
Wärme	97 000	$60 \cdot 10^{6}$	620			
	697 000	750 · 106	1075			
Ausfuhr		$300 \cdot 10^{6}$				
EnVerlust.		$250 \cdot 10^{6}$				
Total		1300 · 106				

Kraftwerke

325 Mill. Fr. (= 810 Fr./kW inst.)

Verteilanlagen 264 Mill. Fr.

Total

(= 380 Fr./kW Ansehl.) 589 Mill. Fr.

zwecken decken müssen. Es wäre aber vollkommen unrichtig, daraus etwa den Schluss ziehen zu wollen, der Weiterentwicklung der Energieabgabe zu Wärmezwecken sei von den Werken, weil nicht lohnend, nicht dieselbe Aufmerksamkeit zu widmen, wie den besser zahlenden Energiekategorien Licht und Motoren. Dies kann anhand nachstehender überschlägiger Ueberlegung und Differentialkalkulation erkannt werden: denkt man sich die stattgefundene Entwicklung der Energieabgabe von 1916 bis 1922 (vergl. Tab. 9) insofern anders, dass nur Licht, Motoren und Ausfuhr sich tatsächlich so entwickelt haben, dass aber die Abgabe für Wärmezwecke sich nicht gesteigert hätte, so wäre die beanspruchte Maximalleistung um etwa 30 000 kW geringer, die Anlagekosten aller Kraftwerke wären etwa 445 Mill. Fr. (statt 482 Mill. Fr.) gewesen; die Zunahme der Anlagekosten der Verteilanlagen, nämlich 124 Mill. Fr. (von 264 Mill. auf 388 Mill. Fr.), hätte vielleicht nur

Selbstkosten für die Energieabgabe zu Wärme-

etwa ²/₃, d. h. ca. 83 Mill. Fr. betragen, da ungefähr ¹/₃ der Mehrkosten durch die Wärmeanschlüsse bedingt war. Unter diesen Annahmen ergeben sich für die abgegebene Wärmeenergie, diese somit differentiell kalkuliert, nur 3,75 Rp./kWh Selbstkosten im schweizerischen Gesamtdurchschnitt (vergl. Tab. 9c). Die Durch-

Selbstkosten mit differenzieller Behandlung der Wärmestromabgabe.

Tabelle 9c.

	Jahreskosten			C-11-11	
	Erzeugung	rzeugung Verteilung Total		Selbstkosten	
	Mill. Fr.	Mill. Fr.	Mill. Fr.	Rp./kWh	
Licht	11,9	32,0	43,9	35,0	
Motoren	28,2	36,5	64,7	9,0	
Ausfuhr	8,9	1,5	10,4	2,25	
	49,0	70,0	119,0		
Wärme	4,0	8,0	12,0	3,75	
	.,,,	3,0	,-	-,	

schnittseinnahmen nähern sich den differenziell berechneten Selbstkosten, mit Ausnahme des Lichtstromes, bedeutend besser:

•	180	Selbst proportional	Ein- nahmen	
Licht	. Rp./kWh	31,0	35,0	47,0
Motoren .	. Rp./kWh	8,3	9,0	10,8
Wärme .	. Rp./kWh	7,0	3,75	3,0
Ausfuhr .	. Rp./kWh	2,2	2,25	2,15

Welche Berechnungsmethode ist nun die richtigere? Solange die Abgabe für Wärmezwecke nicht nur in der Selbstkostenberechnung, sondern auch in Wirklichkeit differenziell behandelt wird, d. h. in der Hauptsache als Ueberschussenergie, ist auch gegen die Differenzial-Kalkulation nicht viel einzuwenden; wird aber der Wärmestromabgabe hinsichtlich aller sonstigen Bedingungen (Benutzungszeit, Einschränkungen usw.) der gleiche Rang eingeräumt wie den andern Kategorien, so ist natürlich die Proportionalmethode mehr am Platz. Die von den schweizerischen Werken angewandten Massnahmen zur Beschränkung eines Teiles des Wärmestromverbrauches auf gewisse Tageszeiten sind daher als Grundbedingung für die Gewährung der geltenden Tarife zu betrachten, die nur unter diesen Umständen sich den Selbstkosten einigermassen anpassen.

Technische Mitteilungen. – Communications de nature technique.

Ein Forschungs-Institut für Elektro-Wärmetechnik an der Technischen Hochschule Hannover 1).

Die Verwendung der Elektrizität zu Wärmezwecken macht überall rasche Fortschritte. Sie hat sich zu einem besondern Zweig der Elektrotechnik ausgebildet. Diese Entwicklung war zuerst vorwiegend auf die mit Wasserkraft arbeitenden Elektrizitätswerke beschränkt; nun beginnen sich auch die kalorisch arbeitenden Werke für diese Seite ihres Absatzes zu interessieren. Als Anwendungsgebiet kommt in erster Linie der Haushalt in Betracht, aber auch in industriellen Anlagen ergaben sich im Laufe der Zeit viele Anwendungsmöglichkeiten der Elektrizität zu Wärmezwecken.

Als ein Mangel wurde bisher empfunden, dass die wirtschaftlichen Grundlagen der Elektrowärmetechnik nur ungenügend erforscht und bekannt sind. Noch vielfach wird die Wirtschaftlichkeit vom Standpunkt der verbrauchten Wärmeeinheiten aus beurteilt, ohne genügende Rücksichtnahme auf den Nutzeffekt und die besonderen Vorzüge der elektrischen Erwärmung, die oft den Ausschlag geben. Erfahrungszahlen und Angaben über den wirtschaftlichen Erfolg werden selten veröffentlicht und, soweit sie es sind, befinden sie sich verstreut in Aufsätzen und Mitteilungen in den verschiedensten Zeitschriften.

Es zeigte sich ferner, dass die Fabrikation von elektrothermischen Geräten vielfach ohne genügende Erfahrung und Fachkenntnisse aufgenommen worden ist, was zu Missgriffen

¹⁾ Prof. Dr. ing. G. Dettmar in E. T. Z., Heft 17, 1928, S. 649.