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Mathematische Theorien für den Durchschlag
fester Isoliermaterialien.

Von Dr. ing. L. Dreyfus, Västeräs.

Der Verfasser behandelt den Durchschlag von
plattenförmigen Isoliermaterialien bei
Dauerprüfung zwischenflachen Metallelektroden. Je nach
der Dicke der untersuchten Schicht und dem Grade
der Inhomogenität des Materials sind die Gesetze
des Durchschlages entweder aus einer Theorie
für quasihomogenes Material oder aus einer
Kanaltheorie für inhomogenes Material herzuleiten. Für
beide Annahmen wird die Ableitung der Verlustwärme

durch das Isoliermaterial und die
Prüfelektroden eingehend untersucht und das Gesetz
der Durchschlagspannung aufgestellt. Die Kanaltheorie

führt im Gegensatz zu K. W. Wagner zu
dem Ergebnis, dass die Durchschlagspannung
keine einfache Funktion der Plattenstärke ist,
sondern wesentlich von der Ausdehnung der
kranken Stelle im inhomogenen Material abhängt.

L'auteur examine le percement d'isolants
divers, se présentant sous forme de plaques
soumises à l'action prolongée d'un champ électrique,
créé entre deux électrodes planes. Suivant l'épaisseur

et le degré d'homogénéité de la couche
isolante, les lois du percement doivent être déduites
soit d'une théorie des matières homogènes, soit
de la théorie des canaux élémentaires, valable
pour les substances hétérogènes. Dans les deux

j hypothèses l'auteur détermine la chaleur dissipée
dans le diélectrique et dans les électrodes, et il
exprime la loi de la tension de percement.
Contrairement aux conclusions de K. W. Wagner, la
théorie des canaux élémentaires montre que la
tension de percement n'est pas une fonction simple
de l'épaisseur du diélectrique, mais qu'elle est
influencée considérablement par le nombre et
l'étendue des défauts d'homogénéité dans l'isolant

considéré.

II. Teil1):
Die Prüfung von plattenförmigem Isolationsmaterial zwischen runden Metallelektroden.

Einleitung.
Die gebräuchlichste Art, ein Isolationsmaterial zu prüfen, ist die, dass man es

in Plattenform zwischen runden Elektroden untersucht (Fig. 1). Prüft man auf diese

') Der erste Teil dieser Arbeit ist im Bulletin 1924, No. 7, Seite 321 u. ff. erschienen.
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Weise sehr dünne Schichten, so pflegt der Durchschlag bald hier, bald dort unter
der Elektrodenfläche aufzutreten, ein Zeichen dafür, dass lokale Inhomogenitäten

den Durchschlag einleiten. Solange dies der Fall ist,
ist eine „Kanaltheorie" die richtige Behandlungsform.

Vergrössert man die Schichtdicke, so treten
alsbald mehr und mehr Durchschläge am Umfang der
Elektroden auf. Das deutet darauf hin, dass nunmehr
die am Rande herrschende hohe Feldkonzentration und
nicht mehr anderswo gelegene schwache Stellen für den
Durchschlag verantwortlich sind. Hier beginnt also mit
einem nicht scharf begrenzten Uebergange das Gebiet,

in dem wir das Isoliermaterial als „quasihomogen" betrachten dürfen.
Vergrössern wir die Schichtdicke noch mehr und verwenden dünne Elektroden,

so treten schliesslich die Durchschläge wieder mit grösserer Häufigkeit in dem
mittleren Gebiete unter den Elektroden auf. Offenbar ist jetzt die dort herrschende
höhere Temperatur im homogenen Felde für das Material gefährlicher als die
Feldkonzentration am Elektrodenumfang bei geringerer Temperatur.

Für die Beurteilung der Prüfungsergebnisse ist es natürlich von Wichtigkeit zu
wissen, ob der beobachtete Durchschlag unter die Gesetze der Kanaltheorie oder
der Theorie für quasihomogenes Material fällt. Da, wie oben erklärt, eine scharfe
Grenze zwischen beiden Gebieten nicht existiert, kann es bei dünnen Materialien
zuweilen schwierig sein, diese Frage zu entscheiden. Doch leisten oft folgende beiden
Kriterien gute Dienste:

Das erste Kriterium bildet die Grösse der Verluste. Wo immer man dazu imstande
ist, sollte man die Bestimmung der Durchschlagsspannung mit Verlnstmessungen
bis zur Nähe der Durchschlagsgrenze kombinieren. Der Eintritt des Kanaldurchschlages

ist die Folge einer grossen Verlustkonzentration auf geringem Raum. Die
Gesamtverluste sind daher klein, nur die lokalen Verluste sind hoch. Misst man die
Gesamtverluste und berechnet daraus die mittlere Verlustziffer für das ganze dem
Felde ausgesetzte Volumen, so wird man in vielen Fällen feststellen können, dass
diese viel zu klein ist, um den Durchschlag nach der Theorie für quasihomogenes
Material zu erklären.

Das zweite Kriterium bildet die Temperaturerhöhung des dem Felde ausgesetzten
Materiales und der Elektroden. Erfolgt die Prüfung in Luft, so ist es zu empfehlen,
unmittelbar nach dem Durchschlag die Temperatur der Elektroden und die
Oberflächentemperatur des Isolierstoffes unter den Elektroden zu messen oder durch
Betasten schätzungsweise festzustellen. Der Durchschlag von quasihomogenem Material
erfordert nämlich bei nicht zu grosser Plattenstärke so hohe spezifische Verluste,
dass diese bei der Dauerprüfung nicht ohne wesentliche Temperatursteigerung der
Elektroden an die Luft abgegeben werden können. Warme Elektroden deuten daher
immer auf quasihomogenes Material hin. Kalte Elektroden dagegen berechtigen
zu der Vermutung, dass ein Kanaldurchschlag vorliegt. Natürlich setze ich dabei
voraus, dass die Elektroden nicht mit anderen Körpern in einer die Wärme gut
leitenden Verbindung stehen.

Im folgenden werden die beiden Grenzfälle, der reine Kanaldurchschlag und
der Durchschlag quasihomogenen Materials, untersucht. Der Schwerpunkt wird dabei
auf die mathematische Erfassung der Wärmeströmung gelegt, und zwar nicht nur
der Wärmeströmung innerhalb des Isoliermaterials, sondern auch der Wärmeströmung

durch die Elektroden. Dadurch wird es möglich werden, die beiden
obengenannten Kriterien ziffernmässig auszudrücken. Die Behandlung des quasihomogenen

Materials stützt sich auf den ersten Teil dieser Arbeit, insbesondere auf die
graphische Näherungstheorie eindimensionaler ebener Wärmeleitungsprobleme. Das
mathematische Gewand, in dem die Kanaltheorie auftritt, ist neu und führt auch zu
neuen Erkenntnissen.

4L f

à

^ f Hochspannung E

Erde
Fig. 1.
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1. Die Dauerprüfung von quasihomogenem, plattenförmigem Material
zwischen runden Metallelektroden (Fig. 2).

Bei der Formulierung der Wärmeströmung können wir annehmen, dass die
y-Komponente symmetrisch zur Mittelebene (x- Ebene) und die x- Komponente
symmetrisch zur y-Achse liegt, also radial gerichtet
ist. Wir können daher von einem zweidimensionalen
Wärmeleitungsproblem sprechen.

Das Hauptinteresse konzentriert sich auf die
Frage: Bevorzugt die Ableitung der Verluste die
y-Richtung oder die x- Richtung. Wird nämlich
der grösste Teil der Verlustwärme innerhalb des
Materials in der y-Richtung abgeführt, dann spielt
die Schichtdicke à dieselbe Rolle wie beim Durchschlag

im homogenen Feld zwischen unendlich Ffe- 2.

grossen Elektrodenflächen, der schon im ersten
Teil dieser Arbeit aufgeklärt wurde. Sollte es sich dagegen zeigen, dass ein grosser
Teil der Verlustwärme innerhalb des Materials in der x-Richtung abfliesst, so sind für

die Abhängigkeit der Durchschlagfestigkeit von der Platten-
3 stärke neue Gesetzmässigkeiten zu erwarten.

Ich will versuchen, unter Verzicht auf mathematische
^ Strenge, diese Frage auf einem möglichst einfachen und

q. f Z2 • rlnoh vnirp t-1 öeeicron \Ä/o rro -rt\ Koanhunrfon Vi P1 \uirrl rrp_-.frm ] doch zuverlässigen Wege zu beantworten. Viel wird ge-- ijrr.-X) - wonnen) wenn man die Wärmeströmung in der y- und
Fi«. 2a. x-Richtung getrennt formuliert: Die Temperaturverteilung

in der y-Richtung wird jedenfalls gemäss Fig. 2 a eine

parabelähnliche Kurve bilden, welche durch die Uebertemperatur 0 der
Randschicht und der Elektroden2) über die Umgebung, die mittlere Uebertemperatur
0m — 0 des Isoliermaterials über die Randschicht und endlich das Temperaturgefälle

in den Randschichten y i ^ genügend beschrieben wird. Dieses

Temperaturgefälle ist deshalb wichtig, weil es die den Elektroden zugeführte achsiale

Wärmeströmung <?y ^ bestimmt. Gemäss früheren Untersuchungen (Teil I,

Abschnitt 2) setzen wir für y ^

„ dO />„, - 1) n<7v — /t —- c/i — - (1)vy dy à w
wobei der Koeffizient c nur wenig kleiner als 6 ist. Die genaueren Werte können
Teil I, Fig. 7, entnommen werden, k bedeutet die Wärmeleitzahl des Isoliermaterials
(Watt/cm •0 C).

Die Wärme, die innerhalb der Isolierplatte in der *- Richtung strömt, ist
proportional dem mittleren Temperaturgefälle in dieser Richtung, also:

~ dx ' (2)

wobei wir nicht zu untersuchen brauchen, wie sich diese Wärmeströmung über den
Querschnitt verteilt.

Den Mittelwert der Verlustziffer über die Plattenstärke bezeichnen wir wie früher
mit p„, und denken ihn uns in Abhängigkeit von der mittleren Temperatur t)m durch
eine Verlustkurve p„, G> (dm) graphisch gegeben.

2) Die Annahme: „Oberflächentemperatur des Isoliermateriales Elektrodentemperatur" setzt
guten Kontakt zwischen Elektroden und Isoliermaterial voraus.
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Unter diesen Voraussetzungen lautet die Wärmeleitungsgleichung des Isolationsmaterials

unter den Elektroden (x<x):

A X
d2K 1 d0,„
d x2 x d x - 2c X

0m d

A Pm -4=0

und ausserhalb der Elektroden (Uebertemperaturen f„, und t):

.1 À
d2 L
d x2 x d x

O
tu, - t2c/ — —A

0

(3)

(4)

Ausserhalb der Elektroden (x j> x) tritt die Wärmeströmung qy direkt in die Luft
oder das umgebende Medium aus, wozu eine gewisse Uebertemperatur t erforderlich

ist. Wir haben für diesen Wärmeübergang früher die Annahme:

<7> /< t

eingeführt, wobei für Prüfung in Luft ,u 0,001

0,012

Watt

Watt
cm2 "C

cm2 0 C
gesetzt werden konnte. In unserem Falle ist daher:

(5a)

in Oel /I 0,01 rw

;L-tc / h t.A (5)

Auch die Elektroden besitzen eine Wärmeleitungsgleichung.- Wir wollen uns
die Elektroden plattenförmig vorstellen (Dicke A\ Wärmeleitzahl /'), so dass in
ihnen die Wärme vorzugsweise in der x-Richtung strömt. Dagegen wird in der

j)m - 0
y-Richtung von dem Isolationsmaterial Wärme empfangen c X -

A und ein

Teil davon an die Umgebung abgegeben (/i'ö). Insgesamt lautet daher die Wärmebilanz

einer Elektrode:

A' X'
d2t)
dx2 -p

1 dt)
x d x

>')„

-h CA - -
I)

A - ft t) 0

Als Grenzbedingungen für den Elektrodenumfang (x x) beobachten wir:

dJ)

d x
0 (7a) L (7b)

d tm

d x
djL
d x

(6)

(7c)

Dagegen ist im allgemeinen für x x nicht t 0 sondern t <C t), da wir durch
unseren Ansatz sehr schnelle Aenderungen der Temperaturverteilung bei konstanter
mittlerer Temperatur dm zugelassen haben.

Wir wollen jetzt die Gleichungen unter der vereinfachenden Annahme lösen,
dass die mittlere Verlustziffer pm überall unter den Elektroden dieselbe Grösse habe.
Diese Annahme ist nicht so unzutreffend, wie man zuerst annehmen könnte, da in
den meisten Fällen die mittlere Temperatur des Isoliermaterials unter den Elektroden
beinahe konstant ist. Die Lösung gelingt am schnellsten auf folgendem Wege.
Wir bilden 3jA X — 6 KjA' X' und erhalten:

d2 (iL - K
d x2

1 d(jL-Kb)
x d x

2c2_
A2

t)m 1 + k

t) 1 -p K

A X

2 1' X'

I 111K
2 A' X' '/' /' 2 c

pm
X

(B)
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Betrachten wir êm — K 0 als neue Variable, so müssen wir K so bestimmen, dass
auch die eckige Klammer dieser neuen Variablen proportional wird. Hierfür lautet
die Bedingung:

1 K(^A ^2'
K \ 2 A' X'

1

A'X' 2 c

1 +K
A X

oder:

Die Lösung liefert 2 Werte:

2 A' X'

A X

K1 Q* 1

Ko ^ -

2 A' X' A' X' 2 c

A' X'

-1=0.

Setzen wir noch:

2c
a\ A2

1 +KX
A X

2 /•

2c
z/2

2 A' X'

A X

2c
z/2

A X

2 A' À'

1 -
A' X'

2c
z/2

1 + A X

2 A' X'

2 c( A X
co — I 1 -b~ K% ~

A 2 2 z/' x'

z/ X

2 z/' x'

1

A' X'

A X

2 A' X'

AX^ 2 A' X'

A X z/ x
2 A' X'

so erhält Gleichung (8) die leicht integrierbare Form:

d.'1 (<?„, — KO) 1 d(dm-Kd)
d x2 cf x

«2 (d„, - K &) - 7
Die Lösung lautet:

bezw.: 0m

Ö <1

da-K9= Pf^-BJ0{iax)

__
At ß2 J0 (ta2x) - K.2 Bv ,/„ (t ax x)

- K2

B„ J0 (i x) - ßj J0 (/ Oj x)
X - K2

'

mit: iL d„, -
/ / /

2 Uc
>, ^ 1

(9)

(10)

(11)

(12)

(13)

(13a)

(13b)

(14a

(14b)
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Die Werte und gelten für unendlich grosse Elektroden, für welche B1 und
B2 verschwinden.

Die Besseische Funktion3) erster Art J0 (iz) und ihre erste Abgeleitete - i J, (iz)
sind in Fig. 3 für z < 3 abgebildet. Beide
Funktionen spielen bei zylindrischen Problemen

genau dieselbe Rolle wie die cos h und
die sin/z-Funktion bei ebenen Koordinaten.
Für z> 2 ist mit guter Annäherung:

c 2

Fig. 3.

Die Funktionen /o (/z) und — /'A {iz).

3 Z

Jo(i'z)
y 2 m z

_i \—\^ 8,3 z - 6,8

~tJl{lz)=ff7T0 ~ 2J37-T3)y 2 jtz

und für z > 1,5 :

Jp(iz)

(15)

i'h (iz)
1 + 2z - 1,7

(16)

Ausserhalb der Elektroden gilt für die
mittlere Uebertemperatur im Isoliermaterial
eine Differentialgleichung, welche durch
Kombination von Gleichung (4) und (5) mit Hilfe
der Substitution:

„2 ~ 2
AX A* AI
K C

(17)

erhalten wird:
d2 L
d x2

1 dL
x d x

y2tm 0 (18)

und dieselbe Gleichung gilt auch für die Oberflächentemperatur t, da diese t„,

proportional ist (vgl. 5):

t (5a)
1 fi A

c X

Die Lösung lautet: tm C ili0a) (iyx) (18a)

Die Besseische Funktion dritter Art iH0{V< (iz) und ihre erste Abgeleitete - Htil) (iz)
entsprechen der Dämpfungsfunktion e-z bei ebenen Problemen. Für z > 0,5 ist
mit guter Annäherung:

e
iH0m(iz)

l/f«
H^(iz)

1/f
1 +

8z + 4

1

2,7 z + 0,6

(19)

3) Bezüglich der Besseischen Funktionen siehe Jahnke und Emde, Funktionentafeln, Teubner 1909.
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und für z " > 0,3 :
iM0(l) (iz)
- (iz)

1 -
1

2z + 1,3
(20)

Aus den Grenzbedingungen (7) folgt für die Integrationskonstanten:

mit:

B1

B«

ex
1

2^ — ia1J1(ialx)

s x2^ — ia2J2(ia2x)

r JLm
£ x

1

_2i — y Hxm (iyx)

(21)

£ X
iM0"> (iyx) - K2 J0(iaix)

y

Kx Jo(ia2x)
— y Hxw (iyx) Kx - K2 _ Ql i Jx (i ax x) Kx — K2 - a2 i Jx (i a2 x)

1 +
A

^
1

__
A À

_

2 y fl' a' y y

(22)

(22a)

s bedeutet, wie sich leidtit zeigen lässt, das Verhältnis der ausserhalb der
Elektroden (x > x) an die Umgebung abgeführten Verluste zu den Gesamtverlusten
unter den Elektroden. Je grösser daher e, .um so mehr werden die Elektroden von
der Wärmeableitung entlastet, und um so kleiner wird die Temperatur ß0 der
Elektrodenmitte im Verhältnis zu der Grenztemperatur ßoo, die bei unendlich grossen
Elektroden zu erwarten wäre. Die Ausrechnung liefert:

ß0 1 - b2
£ XA A K

/' a Bj ]
i-^J (23)

oder fast genau: ß ~ ß
«-'Q L/o:

a9 X

- i Jx (a2 x) _

(23a)

Wenn man nun bei einem Laboratoriumsversuch die Temperatur ß0 der wärmsten
Stelle der Elektroden beobachtet, darf man dann für Erwärmung und Durchschlag
dieselben Gesetze anwenden, wie für die Wärmeströmung zwischen unendlich grossen
Elektroden bei gleicher Randtemperatur? Diese Frage, deren Wichtigkeit von Anfang
an betont wurde, lässt sich jetzt im bejahenden Sinne beantworten. Während wir
nämlich bei unendlich grossen Elektroden ein Temperaturgefälle:

ß - ß
Zf2

2ci (14c)

zu erwarten haben, erhalten wir unter der Mitte endlicher Elektroden:

>U - \ (^~ - !Q
1 - K2

Ki - K>
Bi

Ki - 1

KI-K2
b9 (24)
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Pn
A°-

2 c Â
1 - A À

2 A'À'

a, x

- 2 iJx (i «j x)

A À «2 x
2 x' —2iJ1(ia.,x)

A 2

2 c 2
1 4- .'/ /

x
2 /;— 2iJl (i«| x)

(24a)

Da nun e < 1 und -4- eine sehr grosse Zahl ist, wird der Klammerwert meist sehr
x nahezu gleich 1, d. h. das Wärmegefälle

unter der Elektrodenmitte ist nur
unmerklich kleiner als für eindimensionale
Wärmeströmung. Die radiale Leitfähigkeit

auch sehr dünner Elektroden ist
eben soviel grösser als die radiale
Leitfähigkeit auch ziemlich dicken
Isoliermaterials, dass die Elektroden nahezu
Isotherme bilden, auf welche die Wärme
achsial zuströmt.

Die gewonnenen Ergebnisse
gestatten eine einfache graphische
Interpretation. Wir denken uns die Funktion
pm (iL) graphisch gegeben (Fig. 4),
wobei ich daran erinnere, dass alle
Temperaturen i> und t Uebertemperaturen
über die Umgebung bedeuten. Ferner
berechnen wir aus Gleichung (23 a) und

(24a) die mittlere Temperatur iVm0 nach erreichtem Wärmegleichgewicht:

Fig. 4.

Anwendungsbeispiel der graphischen Methode.

mit:

<'A„„ p„, ctg t
A 2 /

C,gr (27i + 2>
". -v

2 / J(f«o x) \ j _|_

A2

2c À

2 A' a'
~ A À

—Y
2/1'

(25)

Legen wir dann durch den Nullpunkt 0 unserer Temperaturskala eine Gerade unter
dem Neigungswinkel r, so schneidet diese die Verlustkurve in dem Gleichgewichts
punkte P. Legt man durch P eine Gerade mit dem Neigungswinkel r, wobei:

Ctg r Ao_A z/2

2 c /
1

«n X

1 +
2 4'/.' —2 iJ2(ia.,x)

A Â

(24b)

so bestimmt der Schnittpunkt mit der Abszissenachse die Elektrodentemperatur i)0.
Wie man mit Hilfe dieses Punktes den Wert von c kontrollieren kann, ist in Teil I

dieser Arbeit (Abschnitt 2, Fig. 7) auseinandergesetzt und soll hier nicht wiederholt
werden. Erhöht man die Prüfspannung, bis die Verlustkurve im Verhältnis tg r'\ tg rmi„
höher liegt als die ursprüngliche Kurve, so schlägt das Material bei Dauerprüfung durch.

Um unerwünschte Durchschläge unter dem Rande der Elektroden zu vermeiden,
ist es wichtig, dass die dort herrschende Temperatur wesentlich geringer sei als die

0-0-l!:ng?t'ungste

Nullpunkt für,9-

iPmlrnax

I

max—
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Temperatur unter der Elektrodenmitte. Gemäss (7b) und (18a) beredinen wir
für x — x :

pm ex iH0n)(iyx)
2 x 7 — H{{U{iyx)

Unter Zuhilfenahme von Gleichung (25) folgt daraus:

(26)

£ —
— v X
2 '

iH00)(iyx)
— Hi{]> (i}'x) >"

1 + /lu
C X

1 +
C X

- £
a„ x

— 2 iJ (i «2 x)
1 4-

4^
Ci

1 + 2 4'

1
4 x //

2 4'x' /7

(27)

(27a)

Obgleich die letzte abgekürzte Formel nicht sonderlich genau ist, zeigt sie doch deutlich,

worauf es bei der Vermeidung von Randdurchschlägen ankommt: Gute Kühlung
des nicht dem Felde ausgesetzten Materials (p) bei nicht zu kleinen Wandstärken /i ;

möglichst dünne Elektroden '' mit möglichst kleiner Wärmeleitzahl x' und geringer
Wärmeabfuhr (,«').

Zum Schlüsse möge ein Zahlenbeispiel die gewonnenen Gesetzmässigkeiten
noch anschaulicher machen: Ein aus Bakelitpapier gewickelter Zylinder von 3 mm
Wandstärke, wie er häufig zur Isolation zwischen Hoch- und Niederspannungswicklung

von Transformatoren verwendet wird, soll in 70° heissem Oel auf Durch-

1,
cm

/

/
/
/

vmc |)m -M
\ It

| Tii
fornix 77?!
Dm -0.0235'

/
Ir J

0
•»mm

l

«0 '0

Fig- 5.

30 "C

Die Vcrlustziffer als Funktion der
Temperatur.
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/
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Fig. 6.

Die Verlustziffer in Funktion der Feldstärke.

schlag geprüft werden. Als Elektroden dienen runde Stanniolblättchen von 4 cm
Durchmesser und 0,1 mm Dicke, die mittelst Bakelitlösung auf dem Zylinder
aufgeklebt werden. Die Verlustziffer bei 40 kV/cm Feldstärke ist durch Fig. 5 als
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Funktion der Temperatur gegeben. Fig. 6 illustriert die Abhängigkeit der Verlustziffer

von der Feldstärke bei 70° C. Welches ist die grösste Spannung £max, welche
bei dieser Prüfung dauernd ertragen wird?

Gegeben: 4 0,3 cm

Â 0,00165
cm °C

/'

/'

0,01 cm

0,63
cm °C

Geschätzt:

Berechnet:

nach GL.(10) :

OD:

(16):

(17):

(20):

(22):

(22a) :

(14):

(23a) :

(24a):

(26):

(27):

(27a):

jLl' JU 0,01

c 5,7.

Kx 1,012,

«? 132

ai 1,53,

J0(iai x)

Watt
cm2 0 C x — 2 cm.

tf2 25,2 ;

«j 11,5 jc 23

«2 1,24

1,023,

a2 x 2,48 ;

Jo (i <h x)
— i Jx (i a2 x)

yx 11,05 ;

3,24
2,48

1,307 ;
— i Jx (i «! x)

y2 30,6 y 5,25

'WCrÄ. 0,957 ;

- //j") (cpx)

x 0,219, e 0,1095;

s x 0,222 (also gute Annäherung);
i?moo 19,8pm öco 15 pm (für unendlich grosse Elektroden);

Ä) 14,2 pm ;

4no- '^0 4,8 pm dmo,-dx ;

(^m)x 11,5 pm ;

a)r
$m0

(Ml

0,605 ;

0,568 (also brauchbare Annäherung).

Damit sind alle Werte ermittelt, .deren man zur Anwendung der graphischen Methode
bedarf. Aus Fig. 5 entnimmt man für 40 kV/cm:

ctg Tmin 370
°C

Watt/cm3

Berechnet wurde: ctgr 19.

An der Grenze der Stabilität dürfen daher die Ordinaten der Verlustkurve im
Verhältnis 370: 19, das ist 19,5 mal höher sein als in der für 40 kV/cm gezeichneten
Kurve (Fig. 5). Nun beträgt aber die Verlustziffer bei 40 kV/cm und 70 0 C :

0,015 Watt/cm3. Also darf die Verlustziffer in Wirklichkeit bei gleicher Temperatur
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19,5 • 0,015 • 0,293 betragen. Dem entspricht nach Fig. 6 eine Feldstärke von 107 kV/cm,
also eine höchste Prüfspannung von:

à • 107 32 kV.

Damit ist die gestellte Aufgabe gelöst und ich will nur noch einige interessante
Details anführen: Die Tangente durch 0 (Fig. 5) berührt die Verlustkurve in einem
Punkte mit der Verlustziffer 0,0325 und der Temperatur 82°. Die mittlere Temperatur

des Zylinders unter der Elektrodenmitte steigt also auch bei der Prüfung mit
32 kV auf 82° und die Verlustziffer auf 19,5-0,0325 0,635 Watt/cm3. Dieser
Verlustziffer entspricht eine grösste Elektrodentemperatur von 70+ 14,2 • 0,63 79°.

Unter dem Elektrodenende ist die mittlere Temperatur des Zylindermaterials
geringer. Sie beträgt 70° + 0,605 #m0 77,2 °. Die Verlustziffer beträgt dabei
19,5 • 0,0235 0,0458, d. i. 72 % der Verlustziffer unter der Elektrodenmitte. Falls

28
also die Feldkonzentration die mittleren Verluste nicht mehr als um 100^ 39%
erhöht, so werden keine Randdurchschläge auftreten.

Endlich kann man noch die Schätzung c 5,7 nach der im ersten Teil, Abschnitt 2,
angegebenen Methode wie folgt kontrollieren: Man legt durch den der grössten
Elektrodentemperatur entsprechenden Punkt der Abszissenachse ($o + 70 79°)
die Tangente an die Verlustkurve der Fig. 5 und bestimmt deren Neigung durch:

ctg rmi„ 160

Zieht man ebenfalls durch 79 0 die Gerade nach dem Berührungspunkt P der
70°-Tangenten, so findet man:

Ctg T
0,0325 Watt/cm3

92,2 '

Daraus berechnet man einen Parameter:

92 2
ô T6t=°'576

und findet : c ^ 6 — 0,3 à 5,8

Die Schätzung c — 5,7 verursacht also keinen erheblichen Fehler.

2. Der Durchschlag fester Isolierstoffe bei Dauerprüfung nach der Kanaltheorie.

Die Kanaltheorie in der Form, welche K. W. Wagner4) ihr gegeben hat, behauptet,
die Durchschlagspannung fester Isolierstoffe sei der Schichtdicke proportional. Abweichende

experimentelle Ergebnisse seien auf die Feldkonzentration an den Rändern
der Elektroden zurückzuführen. Demgegenüber habe ich gezeigt, dass nach der
Theorie des Durchschlages von quasihomogenen, festen Isolierstoffen die
Durchschlagspannung auch im homogenen Feld immer langsamer als die Plattenstärke
zunimmt und sogar mit wachsender Plattenstärke einem gewissen Grenzwert zustrebt.

Man könnte versucht sein, daraus folgenden Schluss zu ziehen: Solange die
Durchschlagspannung proportional der Schichtstärke wächst, gilt die Kanaltheorie;
wächst sie dagegen langsamer, so gilt die Theorie für quasihomogene Stoffe.

In Wirklichkeit ist jedoch eine solche Trennung weder zulässig noch möglich:
Zunächst lässt Gleichung (11), Teil I, der Theorie für quasihomogenes Material die
Möglichkeit zu, dass die Durchschlagspannung in sehr dünnen Schichten nahezu

*) The physical nature of the electrical breakdown of solid dielectrics, Journal of the A.I.E.E.,
Vol. 41, Dec. 1922.
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proportional der Plattenstärke zunimmt, nämlich dann, wenn in dem Exponential-
£

gesetz der Verlustziffer p als Funktion der Feldstärke F —j-:

p=c(|)" to

der Exponent n eine sehr grosse Zahl ist. Wir haben Grund zu der Annahme,
dass bei dünnen Platten n in der Tat sehr viel grösser als 2 ist.

Abgesehen davon ist es aber nicht einmal richtig, wenn nach der Kanaltheorie
allgemein eine strenge Proportionalität zwischen Durchschlagspannung und Plattenstärke

behauptet wird. Vielmehr fordert in vielen Fällen auch eine konsequent
durchgeführte Kanaltheorie, im Gegensatz zu Wagner, dass die Durchschlagspannungen
langsamer als die Plattenstärke wachsen. Nur sind bei gleichem Verlustgesetz (1)
die Abweichungen von der Proportionalität kleiner als für quasihomogenes Material.

Die Schwäche der Wagnerschen Theorie liegt in ihrer unscharfen mathematischen
Formulierung. In dem Bestreben, die Theorie allgemein zu halten und sich nicht
auf eine bestimmte Form des Kanales festzulegen, entging Wagner der Einfluss
der Plattenstärke auf die Wärmeableitung und damit auf die Erwärmung und
Durchschlagfestigkeit des Materials. Um diese Gesetzmässigkeiten mit möglichst einfachen
Mitteln ableiten zu können, wollen wir umgekehrt die physikalische Aufgabe auf
einen geometrisch voll bestimmten Fall zurückführen, wenngleich dieser wesentlich
einfacher ist als die Wirklichkeit, die er abbilden soll. Wir wollen nämlich annehmen,
dass in dem zwischen grossen ebenen Elektroden untersuchten Gebiete nur ein
einziger Kanal von abnorm hoher Verlustziffer p„,0 enthalten sei, ferner dass dieser

Kanal die Form eines Kreiszylinders vom
Radius r und der Länge ' Plattenstärke)
besitze (Fig. 7) und endlich, dass die anormal
hohe Verlustziffer pm0 des Kanales und die
normale Verlustziffer p„, des gesunden Materials

nach erreichtem Wärmegleichgewicht als
Konstante betrachtet werden dürfen. Offenbar
übertreiben wir durch die letzte Annahme die
Rolle, welche das den Kanal unmittelbar
umgebende gesunde Material für die radielle
Ableitung der Kanalverluste spielt. Denn da

der Kanal die angrenzenden Schichten des gesunden Materials erwärmt, erhöht
er deren Verlustziffer und Temperatur und vermindert damit das radiale Temperaturgefälle.

Doch sind dies Feinheiten von untergeordneter Bedeutung gegenüber der
prinzipiellen Frage nach dem Einfluss der Plattenstärke zf.

Hier sind die wichtigsten Fragen offenbar folgende:
Erstens: Wird innerhalb des Zylinders die Wärme hauptsächlich in radialer

oder achsialer Richtung abgeleitet? Und

Zweitens: Wenn die radiale Wärmeleitung innerhalb des Kanals überwiegt,
tritt dann auch in dem gesunden Material das grösste Temperaturgefälle in radialer
Richtung auf, oder wird hier gemäss Fig. 7 die Wärmeströmung so schnell
abgelenkt, dass das Temperaturgefälle in achsialer Richtung überwiegt? Trifft dies zu,
so muss die Plattenstärke von wesentlichem Einfluss auf die Erwärmung des Kanals
sein und bei dem guten Leitvermögen auch der dünnsten Metallelektroden erscheint
die Verwirklichung dieses Falles von vorneherein recht wahrscheinlich.

Bei der quantitativen Unterordnung des oben beschriebenen und durch Fig. 7

festgelegten Problems bedient man sich mit Vorteil derselben Vereinfachungen, die
wir schon bei der Behandlung des zweidimensionalen Wärmeleitungsproblems für
quasihomogenes Material (Fig. 2) eingeführt haben. Mit den gleichen Bezeichnungen

Wärmeströmung im inhomogenen Material.
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wie dort erhält man Differentialgleichungen derselben Bauart, so dass ich auf ihre
Aufstellung und den Weg zu ihrer Lösung hier nicht näher einzugehen brauche.

Innerhalb des kranken Kanals, d. h. für x — 0 bis x r gilt für das Isolationsmaterial5)

:

d^L+^dK_2c{)) ä)=z_Po_ (2g)
dx2 x dx ^2 v x

und für die Elektroden zwischen denselben Grenzen :

d2d 1 dd 2c2 àl - /on,d¥ + ^d^ + ^2WT^--^ lr^S- <29>

Ausserhalb des Kanals gilt für das gesunde Isolationsmaterial:

d2 t I dt 9 r2 - n^+ (3°)d x- x d x À

und für die Elektroden genau wie oben:

dH '
1 dt 1

2c2
t- (31)dx2 x dx ' <d2 2A'Ä' vm ' A' X'

Beide Gebiete gehen für x r stetig ineinander über, so dass wir als
Grenzbedingungen:

4—= 4^' 7 7
> 4-= 4^ (32)d x dx d x dx

erhalten. Denken wir uns ferner die Platte aus Isoliermaterial und die Prüfelektroden

unendlich ausgedehnt, so muss sich die Temperaturverteilung mit wachsendem

x den Grenzwerten:
1 / A 1 \Lœ pm^-(~} 1 r) (33a)

2 \ A c ,u'

tco Pm ~2
~ ~t (32b)

annähern.
Die Lösung der Differentialgleichungen lautet mit den früher eingeführten

Substitutionen :

Kx K2 (allgemein K) a.x a2 (allgemein a)

und den früher erklärten Zeichen J und H für Besseische Funktionen:

dm - Kß P-f- ~ - B J0(i a x) (34)

L-K ~t ^ "I" 1 C tf0(l) (,iax) (35)

'>) Alle Temperaturen sind Uebertemperaturen über die Umgebungstemperatur.
f)m bezw. tm bezeichnen den Mittelwert der Uebertemperatur im Isolationsmaterial über die

Schichtdicke J an irgend einer Stelle x.
â bezw. t sind die Oberflächen-Uebertemperaturen, die bei gut anliegenden Elektroden mit der

ïlektrodentemperatur an gleicher Stelle übereinstimmen.
Die Wärmeableitung erfolge symmetrisch zur x -Ebene und zur Kanalachse.
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oder:
ß — fum ' m CO

d=i

tm Leo

t foo4

pmo _
7?2 Jo (i a2 x) A2 B1 Jq (fUj x)

Pm A1

Pmo Jp (i «2 *) - ^1 Jq (' «1 *)
Pm Ky ~ K2

/<*! C2 i fi(,'1 ' (r x) — K2 C, r //,/" (i ax je)

^
C2 ///,/" (f«2x) - Cx 2//0(,) (i'öi*)

kx-K2

(36)

(37)

(38)

(39)

Aus den Grenzbedingungen folgt für die Integrationskonstanten Bx, B2 (5) bezw.
Cx, C2 (C):

£ Pm0 - Pm 1 1

A a2
i J1 i a r)

Q Pm 0 Pm ^

J0(iar) ifi0n> (iar)
- i Jy (ia r) — ///'* (t a r)

1

A a
—Hyw(iar) J0(iar) i Pf0(l) (iar) 1

— i Jy (i a r) - HyP>(iar)

(40)

(41)

Wir wollen von einer eingehenden Diskussion dieser Lösung absehen und nur
das herausgreifen, was zur Beantwortung der vorher gestellten Fragen dienlich
erscheint: Die erste Frage betraf die Wärmeleitung innerhalb des kranken Kanales.

Wir unterscheiden die Gesamtverluste des Kanals:

Po r== Pmo r2?r j
und die zusätzlichen Kanalverluste oder den Verlustüberschuss:

Pz (pmo - Pm) A

über die normalen Kanalverluste:

P Pm r2 Jt A

Von den Gesamtverlusten P0 wird schon innerhalb des Kanals ein Teil:

2 c i ßm — ß) 2 x it d x

(42a)

(42b)

(42c)

(42d)

in achsialer Richtung an die Elektroden abgeleitet. Hierbei kann $m — ß aus
Gleichung (34) eingesetzt werden, da sich für alle praktisch in Betracht kommenden
Fälle Ky nicht merklich von der Einheit unterscheidet. Die Ausrechnung liefert:

Py P0~ Pz f{air)AÀ-^P+R(l-f(ayr)
1 + Kl Ya7!'

Die Funktion:

/" («i r)
ay r J0(iatr) iH()'A)(i'iy r)

2 — i Jy (i ay r) -My^(iayr)

(43a)

(43b)
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kann Fig. 8 entnommen werden, wobei zu beachten ist, dass der Parameter:

<hr= jf2c ^ ]/3 2jr (44)

dem Verhältnis aus Kanaldurchmesser und Kanallänge proportional ist.
Gleichung (43a) lehrt,

dass die normalen
Kanalverluste P stets in achsialer
Richtung abgeleitet werden,
von dem Verlustüberschuss
Pz dagegen nur ein gewisser
Prozentsatz, den die Funktion

1 - f(air) angibt. Aus
Fig. 8 sehen wir, dass für
sehr dünne Kanäle, nämlich
für:

r 0,35

2r
'

A
bezw. V-,

Py — P rS. 0,08 Pz erhalten
wird, also mit guter
Annäherung vernachlässigt
werden kann. Mit der
Verbreiterung des Kanales steigt
jedoch die in der achsialen
Richtung abgeleitete Verlustwärme

sehr schnell und
schon bei:

1,7 bezw.

Fier. 8.

Die Funktion f{ar).

2 r
'A

wird nicht weniger als die Hälfte des Verlustüberschusses Pz schon innerhalb des
Kanals an die Elektroden abgeführt. Von da an überwiegt die achsiale Wärmeleitung

und für:

« r — 5 bezw. 3

werden mindestens 80 % des gesamten Verlustüberschusses Pz auf diesem Wege
abgeleitet, so dass für den Kanal schon nahezu dieselben Gesetzmässigkeiten der
Erwärmung und der Durchschlagspannung als Funktion der Schichtdicke A gelten
wie für quasihomogenes Material von gleicher Verlustziffer im homogenen Feld.

Ich übergehe die Behandlung der Wärmeströmung ausserhalb des Kanals und
wende mich gleich zum Kernpunkte unseres Problems, das ist der Erwärmung des
Kanals und dem Einfluss der Schichtdicke A auf diese Erwärmung: Zweckmässig
unterscheidet man die mittlere Uebertemperatur des Kanals über die Raumtemperatur

oder die Temperatur des umgebenden Mediums, also:
r

Mittl. (dm) H 2 X7tdmdx (45)

o

und die mittlere Uebertemperatur des Kanals über das gesunde Isolationsmaterial,
also das radiale Temperaturgefälle innerhalb des Isolationsmaterials:

Mittl. (0mz) Mittl. (&m) - tmoo (46)
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Hierfür berechnen wir:

Mittl. (0ral) PmO Pm
(1+ -21FV)

A A

2 A'A'

1

1 1 ~ f («2 0
2 A' A' a\

A À

(Pm 0 Pm)

— (Pm n Pm) ^

(Pm 0 - Pm) ^

1 1 - /"(«if) _
1

_

1 ~ f(^r)
A A a\ 2 A' A' a\

1 1-fKr)
A y 2 c «1

2c/ (1 2V(1 -f(a*r))

1 1 ^r)
2 yj' a2

î

(47)

(47a)

(47b)

(47c)

oder wenn wir das Temperaturgefälle auf die totalen zusätzlichen Kanalverluste P7

beziehen:

Mittl. (0mz) ^ 71

Pz

r 7t

Pz

1 1 - f("t r) 1 1 -fi'hd
A A («j r)2 2T/7 (a,r)2

1 1 ~ /"("i r) 1 1 - f («2 r)

z V 2 c «, r 2 y J' /' («2 r)

2c A {X-f^r))'2W

(48a)

(48b)

(48c)

In allen diesen Gleichungen setzt sich die berechnete Uebertemperatur aus zwei
Summanden zusammen. Der erste Summand ist der grösste und wichtigste. Er hat
nichts mit den Elektroden zu schaffen, sondern hängt ausschliesslich von den
Eigenschaften des Isoliermaterials ab, von seiner Dicke, Wärmeleitfähigkeit, Verlustziffer
und dem Durchmesser des Kanals, Dieser Summand ist daher selbst wieder eine
für das Material charakteristische Grösse.

Der zweite Summand dagegen kennzeichnet den Einfluss der Elektroden auf
die Kanalerwärmung. Er enthält deren Dicke, Leitfähigkeit und Wärmeabgabe-
konstante, während die Vorgänge im benachbarten Dielektrikum nur durch die zusätzlichen

Kanalverluste und den Kanaldurchmesser ausgedrückt werden. Soll die Prüfung
dünner Isoliermaterialien zwischen Metallelektroden objektive Ergebnisse liefern,
so muss dieser zweite Summand klein sein und glücklicherweise ist dies auch in
der Regel der Fall, wie ich später an einem Zahlenbeispiel zeigen werde. Wir
können uns daher bei der Diskussion der gefundenen Lösung auf die Untersuchung
des ersten Summanden beschränken.

Der erste Summand in Gleichung (47) und (48) (wir bezeichnen ihn mit
Mittl. (#„,z)i) ist der Funktion 1 — f («j r) proportional. Diese Funktion kann in drei
aufeinanderfolgenden Gebieten, nämlich zwischen den Grenzen:

«r 0 bis ar 0,35 a r 0,35 bis «r 1,7 ar 1,7 bis «r=oo
durch drei verschiedene Näherungsgleichungen ausgedrückt werden und demgemäss
wechselt auch der Einfluss der Materialstärke A auf die Kanalerwärmung.
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Den geringsten Einfluss besitzt A für den ersten Bereich:

A
a, r : 0,35 bezw. -y—

5 (für c 6)

Hierfür gilt mit sehr guter Annäherung:
1 -f(^r)

(ary
0,183 + 4-In 1

2 a r

und daher:

Mittl. (ßmi\ ~ P-m° p-a-r°-(0,183

4r

1 1

0 In
2 «j r

pm 0 Pm

2 A - - 0,182 (füre 6)

(49)

(50)

(50a)

Gemäss Fig. 9 wächst die Erwärmung in diesem Gebiete langsamer als die Schicht
dicke, vorausgesetzt, dass Verlustziffer
und Kanaldurchmesser ihre Werte bei- h 0,102

behalten.
/+

Eine stärkere Abhängigkeit von der +

Schichtdicke zeigt die Erwärmung in 3
dem folgenden Bereich:

«! r 0,35 ^1,7
bezw. 4 0,2 bis 1 (für c — 6)

///

Hier gilt nämlich näherungsweise (vergl.
Fig. 8):

1 -f(ar)

10 20 30 40 50 CO 70 EO

Fig. 9.

ar
0,31

und daher:

Mittl. (dm2), ^ P-° P
r 4 ^ 0,09 PmV- r A (für c 6)

x y 2 c x

oder auch:

Mittl. (d^),
0,31

m il/2<
0,0286

r À (für c 6)

(51)

(52)

(53)

Die Erwärmung wächst also hier bei konstanter Verlustziffer und Kanalweite direkt
proportional der Materialdicke.

Endlich kommt das letzte Gebiet mit:

ai r > 1,7 bezw. —7~4> 1
•A

Hier wird die Verlustwärme schon innerhalb des Kanals mehr und mehr in achsialer
Richtung abgeleitet und damit steigt der Einfluss der Schichtdicke. Als Näherungsgesetz

gilt hier (vergl. Fig. 8) :

f(ar)
1

0,2 + ar
(54)
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und daher:

Mittl Pm^2cÂ (1
0,2 + ajr

Pz .1

2 c À r2 n
1 - 0,2 + axr

(55)

(56)

kV
8

7

6

5

4
3
2

1

0

m ax 6 ,5 kV

/ s

iniax 4,3 W\
y \

\Dufchst•hl a
•5 k

N

o

StanioleUktrod«
A= 5cmJ

^îû -0,007cm^

ï:fE

l Gleichstrom

01 2 3 4-567 8 9 10 ^iA
Fig. )0.

Die Abhängigkeit der Erwärmung von der Schichtstärke nähert sich also bei
gleichbleibender Verlustziffer dem quadratischen Gesetz, das wir früher für quasihomogenes

Material gefunden haben.
Die vorigen Untersuchungen lehren uns, dass sich über die Abhängigkeit der

Erwärmung und Durchschlagspannung von der Schichtstärke des Dielektrikums
nichts aussagen lässt, solange nicht der ungefähre Durchmesser der kranken Stellen
bekannt ist. Daher erscheint mir die Bestimmung dieser charakteristischen Grössen
für verschiedene Isoliermaterialien eine wichtige und lohnende Aufgabe der
experimentellen Forschung. Es ist bedauerlich, dass das reiche Versuchsmaterial der

Wagnerschen Arbeit nur eine
einzige Kurve aufweist, die hierzu

herangezogen werden kann.
Es ist dies Fig. 10, welche die

Widerstand! I Volt-Ampère-Charakteristik
v-E 1 / eines aus „Zellulose hergestell¬

ten" Dielektrikums enthält. Diese
Kurve konnte in der durch
Fig. 10a skizzierten Anordnung
bis zum Eintreten des labilen

Fitf. ioa. Wärmegleichgewichtes, das den
Durchschlag einleitet, aufgenommen

werden. Unmittelbar vor dem Durchschlag betrugen die Verluste:

6,5 kV X 4,3 ft A 0,028 Watt.

Nun ist es zwar keineswegs sicher, dass diese Verluste allein oder hauptsächlich
in dem einen kranken Kanal auftraten, dessen Durchschlag später beobachtet
wurde; es können unter der 5 cm2 grossen Elektrodenfläche auch mehrere kranke
Stellen vorhanden gewesen sein, deren Stabilitätsgrenze bei einer etwas höheren
Spannung erreicht worden wäre (vergl. die strichlierten Kurven in Fig. 10). Wenn
man indessen bedenkt, wie schnell der Strom gerade in der Nähe der kritischen
Spannung anwächst, so darf man wohl annehmen, dass mindestens 50% des

gesamten beobachteten Stromes auf den einen Kanal entfielen. Mit Rücksicht darauf
schätzen wir:

Pz 0,014 ~ 0,028 Watt.

Für die Wärmeleitfähigkeit des Dielektrikums können wir denselben Wert wie für
Papier:

Watt
x 0,0013 T7H+cm^C

annehmen. Bezüglich der kritischen Uebertemperatur Mittl. (%,z), oberhalb derer
kein Wärmegleichgewicht mehr möglich ist, sind wir leider auf blosse Schätzung
angewiesen. Je besser und trockener das Papier, desto grösser diese Temperaturdifferenz.

Sie kann sich leicht zwischen 30° und 50°, vielleicht sogar innerhalb noch
weiterer Grenzen bewegen. Da es jedoch hier nur auf die mutmassliche Grössen-
ordnung des Kanales ankommt, können wir auch diese Unsicherheit in Kauf nehmen,
und die folgende Rechnung anstellen:
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Angenommen, es sei:

Mittl. (#m2)=-30~50°C X 0,0013
Watt

cm °C
pz 0,014 ~ 0,028 Watt,

1 - f(air) _ Mittl. (&mz) A X it
Kr)2 ~ Pz

A 0,007 cm

(48a)

So berechnet sich:

1 :/j«i r)
(«x r)2

" r (Fig. 11)
2 r (für c 6)

1. für A 0,014

0,061 ~ 0,102

3,4 ~ 2,4

0,0138 ~ 0,0097

2. für Pz

0,031

5,2
0,021

0,028

0,051

^ 3,8

^ 0,0154

0,9

0,6

0,4

0,5

0,2

0,4

S

*

5 cer

Zu diesem Ergebnis
ist zu bemerken, dass ein
Kanaldurchmesser von 0,1
bis 0,2 mm für ein
Zelluloseprodukt zwar gross,
aber doch nicht
unwahrscheinlich ist. Untersucht
man für diesen Durchmesser

den Einfluss der Schichtdicke

auf die Kanalerwärmung,

so wird man sich zu
erinnern haben, dass erst

A
für „ 30 von einem

2 r " '

allmählichen Verschwinden
dieses Einflusses gesprochen

werden konnte (Fig.9).
Diese Verhältnisse würden
in unserem Falle Schichtstärken

von 3^6 mm
entsprechen. Derartige
Wandstärken liegen aber bereits
ausserhalb des Rahmens der Kanaltheorie, da bei ihnen die mittleren Verlustziffern
elektrisch schwacher (pm0) und gesunder Stellen (pni) nicht mehr grosse
Unterschiede aufweisen.

Fassen wir die Untersuchungen über den wechselnden Einfluss der Schichtdicke
und die Ergebnisse des obigen Zahlenbeispieles zusammen, so können wir folgende
Behauptung aufstellen :

Wie gross (bei gleichen spezifischen Verlusten) der Einfluss der Schichtdicke
auf die Erwärmung und Durchschlagspannung schlechter Stellen ist, hängt von der
Struktur des Dielektrikums ab. Es gibt jedenfalls Materialien, wie Papier, für welche
dieser Einfluss beträchtlich ist.

Andererseits ist es sehr wahrscheinlich, dass die mittlere Verlustziffer des
Kanales, den man sich durch eine schlechte Stelle gelegt denken kann, mit
wachsender Schichtdicke kleiner wird. Wenn die kranke Stelle eine geringere Dicke
besitzt als die Plattenstärke, ist dies sogar wahrscheinlich. In solchen Fällen wird
natürlich die Erwärmung mit steigender Materialdicke geringer, als dies bei
konstanter Verlustziffer pm0 der Fall wäre. Diese Verminderung der Verluste kann

Fig-. 11.

Die Funktion
1 — f (ar)

(a r) 2
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möglicherweise so weit gehen, dass unabhängig von der Materialdicke die Gesamtverluste

eines durch die schlechte Stelle gelegten Kanales ungefähr gleich bleiben,
wenn das Material immer derselben Feldstärke ausgesetzt wird. Dann würde
beispielsweise für a1r 0,35 bis 1,7 bei konstantem Kanaldurchmesser auch die
Erwärmung gleich bleiben (Gl. 53) und daher der Durchschlag stets bei derselben
Feldstärke auftreten. Es ist also Proportionalität zwischen Durchschlagspannung
und Schichtdicke auch nach einer konsequent durchgeführten Kanaltheorie nicht
unmöglich. Indessen ist die Erklärung eines solchen Phänomens, wenn es wirklich
vorhanden sein sollte, eine ganz andere als nach Wagners Theorie.

Wir haben bisher die zusätzliche Erwärmung des kranken Kanales nur durch
den ersten Summanden Mittl. der Gleichungen (47) und (48) ausgedrückt.
Es muss noch gezeigt werden, dass die Berücksichtigung des zweiten Summanden
Mittl. (c?mz)2 an den gewonnenen Ergebnissen nichts wesentliches ändert, oder mit
anderen Worten, dass der Einfluss der Elektroden auf die Kanalerwärmung
unerheblich ist. Ich will dabei sogar einen besonders ungünstigen Fall annehmen,
nämlich sehr dünne Stanniolelektroden (À' 0,63) von nur P 0,01 cm Dicke
und einer sehr kleinen Wärmeabgabekonstante ^' 0,001. Setzen wir dann für
den Kanaldurchmesser die gefundenen Grenzwerte (0,1 bis 0,2 mm) ein, so wird:

a2 r 0,002 ~ 0,004

1

(«2 r)""~ °.183 + i 500 ~ 0,183 + In l/ 250 (49)

3,29 ~ 2,94

und: Mittl. (0mz)2 1>2 ^ 2,1 °C (48a)

Die Elektroden sind also nach der Kanaltheorie nur insofern von Einfluss, als die
Wärmeabgabekonstante /c' auf die Temperatur des gesunden Isoliermaterials
einwirkt. Bei unendlich grossen Elektroden ist diese Temperatur (tmJ) und die
Elektrodentemperatur (fco) durch Gleichung (33a) und (33b) gegeben. Bei endlichen
Elektroden von der Fläche A ist zu berücksichtigen, dass eventuell auch die zusätzlichen
Kanalverluste die Elektrodentemperatur erhöhen können. Diese Erhöhung:

à U
2 Au'

beträgt jedoch für unser Zahlenbeispiel (Pz 0,028, A 5, /F 0,001) nur 2,8 °C.
Nachdem nunmehr der mathematische Zusammenhang zwischen Verlustziffer,

Kanalbreite, Plattenstärke und Erwärmung aufgedeckt ist, ist es ein Leichtes, die
gefundenen Gesetze zur Berechnung der Durchschlagspannung nutzbar zu machen.
Wir müssen nur wissen, wie die Verluste mit der Temperatur und der Feldstärke

F zusammenhängen.

Nehmen wir an, die Verluste seien mit der Feldstärke durch ein Exponential-
gesetz verbunden :

- r E\" _ r( E\" - r (E
Pmo ^ol ^ I.» pm

\ A j ' Pmo E111 I A
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Ausserdem seien bei irgend einer Feldstärke F' die spezifischen Verluste p'm0 — p'm
als Funktion der Temperatur d bekannt (Fig. 12). Wollen wir dann den Punkt L
aufsuchen, in dem das Wärmegleichgewicht labil
wird, so müssen wir durch den Punkt A mit der
Abszisse tmM eine Gerade ziehen, welche die
Verlustkurve in L berührt. Nach Gleichung (47a) gilt
für den Neigungswinkel dieser Geraden:

tg r' — P m0 - P
Mittl. (c?mz) 1 - f(aid \F,

F'

Wir erhalten daher für die grösste zulässige
Feldstärke F* und Prüfspannung £max:

F„, F'(ctgr'i r_-^rj-)^ (57)

£n,ax F' A (Ctg T' ä

Umqcbungstemp.

Fig. 12.

Bestimmung der Durchschlagspannung.

1 - /"(«! r)
(58)

Ein einheitliches, einfaches Gesetz für die Durchschlagspannung Emax als Funktion
der Materialdicke A lässt sich wegen der Veränderlichkeit der Funktion 1 —f(*uxr)
nicht aufstellen. Eine grosse Zahl von Fällen deckt wahrscheinlich das Gebiet:

öj r — 0,35 bis 1,7

und da hierfür Gleichung (58) eine besonders einfache Form annimmt, will ich die
Formel für diesen Spezialfall noch mitteilen. Gemäss Gleichung (51) und (52)
finden wir:

£max F' A n (ctg T' À V 2 U
0,31 r/

konst. d
n — 1

(59)

Je grösser also der Koeffizient n, um so geringer ist die Abweichung der Kurve
£max /"(J) von dem Proportionalitätsgesetz Emax konst. A, welches Wagner als
allgemein gültiges Gesetz aufstellt. Für quasihomogenes Material erhielten wir
seinerzeit das Gesetz:

n-2
Emax konst. A n

also bei gleichem Koeffizienten eine grössere Abweichung von der Proportionalität
als nach der Kanaltheorie.
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