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fisante, 'effort maximum a admettre, en cas de surcharge momentanée, ne devrait
pas dépasser en exploitation la valeur garantie de 1250 kg.

Les isolateurs allemands (Hermsdorf-Freiberg) conservent en général leurs pro-
priétés électriques jusqu’au moment de la rupture, la sécurité a fixer serait donc
plutot d’ordre mécanique. Les efforts maximum a ne pas dépasser, en cas de surcharge
momentanée, seraient de l'ordre de 800 kg pour les types de suspension et de
1000 kg pour ceux d’amarrage, malgré les valeurs de 800 et 1500 kg garanties
par le fournisseur.

Les types Hewlett sont certainement ceux de moindre valeur mécanique. La
charge maximum a adopter, comme ne réduisant pas leur valeur électrique, est au
maximum de 1400 a 1500 kg pour les éléments de I'Electro-Céramique et de
Ste-Foy I'Argentiére (tableau II, No. 11, 13 et 14) et de 2000 kg environ pour le
type américain (tableau II, No. 12). Nous ne connaissons pas les efforts garantis par
les différents fournisseurs, mais les expériences générales, acquises avec les autres
éléments, permettent de fixer de 600 & 800 kg les efforts maximums a ne pas dé-
passer dans le cas de surcharge momentanée pour les modeéles européens, et a
1000 kg environ pour le modele américain.

Reste le type Motor, qui semble remplir les conditions de 'un et 'autre des
meilleurs types soumis aux essais. L’absence de résultats positifs sur les éléments
de ce type ne permet pas de fixer des chiffres précis sur sa valeur mécanique,
mais il est certain que cette derniére n’est pas inférieure a celle des meilleurs
autres types. S

Les considérations qui précedent inciteront peut-étre des constructeurs de lignes
et des exploitants a pousser leurs recherches dans le domaine que nous avons
abordé, et a perfectionner les procédés d’investigation. Souvent, les acheteurs d’iso-
lateurs a haute tension s’en remettent aux publications et aux arguments des fabri-
cants, en se laissant guider dans leur choix d’'un modéle d’isolateur par des ques-
tions plus commerciales que techniques, au lieu de suivre eux-mémes les progrés
constants réalisés dans la fabrication, en utilisant les laboratoires spéciaux qui sont
a leur disposition.

Einige einfache Fille von Bewegung
unter der Wirkung der Newton-Coulombschen Anziehung.
Von Ailb. Forster, Ziirich.

Der Autor wendet sich gegen die von J.J. Thom-
son wvorgeschlagene Annahme eines vom Cou-
lombschen abweichenden Kraftgesetzes und be-
fasst sich unter der Voraussetzung rein Newton-
Coulombscher Anziehung und Abstossung mit
einer Klasse von periodischen Umlauf- und Pen-
delbewegungen auf einer Ellipse, in deren Brenn-
punkten eine anziehende und abstossende Masse
sich befindet. Zum Schluss bezieht sich der Ver-
fasser auf ein Molekularmodell, welches von
Fajans vorgeschlagen wurde und fiir welches er
eine von ihm aufgesteilte Existenzbedingung nu-
merisch nachpriift.

L’anteur s'dléve contre la proposition de
J.J. Thomson de substitner a la loi de Coulomb
une relation différente. En partant de la simple
loi d’attraction et de répulsion énoncée par New-
fon et Coulomb, il examine une série de mouve-
ments circulaires et pendulaires le long d’une
ellipse, dont les foyers soni occupds par deux
masses, l'une attractive, I'autre répulsive. En
terminant, Uauteur parle du modéle imaginé par
Fajans pour représenter certains mouvements
moléculaires, et examine si ce modél est theo-
riquement réalisable, en y appliquant une con-
dition numérique deéduite par [ui.

In der ,General Electric Review“ wurde unlangst eine Folge von Vortragen

iber die elektrische Konstitution von Atomen und chemischen Verbindungen wieder-
gegeben, welche J. J. Thomson anfangs April 1923 im Franklin-Institut in Phila-
delphia gehalten hat?). Durch diese Publikation wurden die Vortrage auch in den

1) Siehe auch: Journal of the Franklin Institute, Vol. 195; No. 4469 der Bibliothek der Eidg.
Technischen Hochschule, Ziirich.
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Kreisen hiesiger praktischer Elektriker bekannt und haben ihr Interesse erregt. Es
hat hier wohl weniger die Kiihnheit Eindruck gemacht, mit der Thomson das Newton-
Coulombsche Anziehungsgesetz um eines theoretischen Vorteiles willen abandert?),
als vielmehr die Vielseitigkeit der von Thomson beherrschten physikalischen
und chemisch-physikalischen Beziehungen. Ganz abgesehen vom Umfange dieses
Wissens, bleibt die Thomsonsche Betrachtung immerhin ein Versuch der Einfiihrung
eines Attraktionsgesetzes, in welches die Kraft anders als nach dem umgekehrten
Verhaltnis des Abstandquadrates eingeht. Nun sind ja schon sehr viele Abweichungen
vom Newton-Coulombschen Gesetz vorgeschlagen worden, um irgend einer Schwie-
rigkeit seiner Anwendung zu begegnen; sie erstrecken sich von einem Anziehungs-
gesetz, das die Kraft proportional der ersten Potenz des Abstandes annimmt (quasi-
elastische Bindung der Elektronenlehre) bis zu demjenigen, das diese Kraft pro-
portional der 5% bis 9" Potenz des umgekehrten Abstandes bestimmt.

Wenn wir von Geschwindigkeiten absehen, die derjenigen des Lichtes nahe-
kommen, so ist es eine bekannte Tatsache, dass kein messbarer Fall einer Abwei-
chung vom Newtonschen Gesetz gefunden wurde, ausser wenn wir unaufgeklarte
Erscheinungen zum vorneherein mit einer solchen Abweichung ,erklaren“ wollen.
Wir miissten nun schon die Ueberlegungen der allgemeinen Relativitatstheorie in
Anwendung bringen, wenn wir fiir einen statischen Gleichgewichtszustand, wie er
von Thomson vorgeschlagen wird, eine Abweichung erwarten diirften; nach der
Einsteinschen speziellen Relativitatstheorie ware das auch noch nicht der Fall. Lasst
man dagegen die aus der allgemeinen Relativitatstheorie hervorgehenden Folge-
rungen gelten, so ware hier fiir jede Massengruppierung wieder eine andere Gesetz-
massigkeit fiir die statische , Kraft® zu erwarten.

Umgekehrt ist die Uebereinstimmung des Gesetzes der Anziehung korperlicher
Massen nach Newton mit dem Coulombschen Gesetze der elektrostatischen Anziehung
eine so auffallende, wenn auch unerklarliche Tatsache und von so grosser prak-
tischer Wichtigkeit, dass wir das einfache Newton-Coulombsche Gesetz als Rechnungs-
grundlage benétigen, wie immer auch die philosophische Deutung sei, die diesem
Erfahrungsgesetz beigelegt werde.

Befinden sich Korper unter der alleinigen Wirkung des Newtonschen oder des
Coulombschen Gesetzes, so kann freilich fiir keine Gruppierung derselben ein statisches
Gleichgewicht herrschen, ausgenommen den praktisch unhaltbaren Fall eines labilen
Gleichgewichtes. Wohl aber koénnen sich Gruppierungen in einem dynamischen
Beharrungszustand befinden, dergestalt, dass bestimmte Lagen und Bewegungen
periodisch wiederkehren, — ein Zustand, der unserem Gefiihlsbediirfnis nach Wohl-
ordnung in besonderem Masse zu entsprechen scheint —. Rechnerisch ausgedriickt
will das heissen, dass die, durch die Bewegungsgleichungen errechneten, vektoriell
genommenen Tragheitskrafte in endlichen Zeitperioden wiederkehren und sich im
Gleichgewicht befinden mit den Anziehungskraften, welche nach dem Newtonschen
Gesetz errechnet werden. Damit ist nicht behauptet, dass diese errechneten Kréfte
auch wirklich auftreten, sondern nur, dass diese Berechnungsmethode die tatsachlich
eintretenden periodischen Bewegungszustinde voraussehen lasst. Unser Planeten-
system bietet fiir sich allein eine unerschopiliche Fiille von periodischen Bahnbe-
wegungen und durch das Bohrsche Atommodell wird uns ein Analogon dazu im
elektrischen Gebiet verstandlich gemacht.

Im allgemeinen ist es nicht einfach, diese periodischen Bewegungen rechnerisch
voraus zu bestimmen, weil die strenge Integration der dabei auftretenden Hamilton-
Jacobischen partiellen Differentialgleichung schwierig ist oder sogar bis jetzt undurch-
fiihrbar geblieben ist. Es gibt jedoch solche Falle, bei denen die Rechnung sich
durchsichtiger gestaltet und wenn man sich nicht ohne weiteres mit der von Thomson

2) Dieser Vorteil besteht in der Moglichkeit einer stabilen statischen Gruppierung von Elektronen

und Kernen zu Atomen und Molekiilen, sofern man von der allgemeinen Gravitation absehen kann
wegen ihrer relativen Geringfiigigkeit gegeniiber der elektrostatischen Anziehung-
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vorgeschlagenen Umgehung des Newton-Coulombschen Anziehungsgesetzes befreun-
den will, so mag es niitzlich sein, dass wir uns an dieser Stelle mit einem speziellen
Falle dieser Art naher befassen. ‘

Wenn eine Masse durch zwei feste, in einem bestimmten Abstand gelagerte
Massen angezogen wird, so gibt es gewisse periodische Bewegungen, die schon
von Euler und Legendre ohne die, damals noch unbekannten, Hilfsmittel der Hamilton-
Jacobischen Methode untersucht wurden. Es soll nun gezeigt werden, dass es auch
dann recht einfach zu klassierende Ellipsenbewegungen gibt, wenn die anziehenden
Mengen von verschiedenem Vorzeichen sind, wenn also Anziehung und Abstossung
vorliegt und zwar ohne dass eine Abanderung vom Gesetze der nach dem umge-
kehrten Verhéaltnis des Abstandquadrates wirkenden ,Krafte“ erforderlich ist.

Die Menge oder ,Masse“ Q werde angezogen durch eine Masse K, und abge-
stossen durch eine ,Masse” K‘;, wobei K, im Abstand 2¢ von K’y auf einer im
Raume festen Geraden liege, welche ebenfalls durch K‘; geht. Unter allen mog-
lichen Bahnen sollen nur diejenigen betrachtet werden, welche in einer Ebene
liegen, in welcher sich zugleich auch K; und K’; befinden. Es ist diese Festsetzung
gleichbedeutend mit derjenigen, dass die Geschwindigkeit von Q stets in der Ebene
Q K, K, liege, dass also kein Drehimpuls um die Verbindungsgerade K, K‘, vor-
handen sei. Diese unveranderliche Ebene sei diejenige der Fig. 1.

Wenn keine anderen Wirkungen angenommen werden als die von den Massen
K, und K’; auf Q ausgeiibte Anziehung und Abstossung, so bleibt der gesamte
Energieinhalt J konstant und gleich der Summe der kinetischen Energie T und der
»potentiellen* Energie V, welch letztere wir durch die negativ genommene Krafte-
funktion U (= — V) messen, so dass:

J=T+V=T-U. (1)
— 2
Besitzt O die Geschwindigkeit v, so ist die kinetische Energie T = _sz_ und wenn

r, und r, die Entfernungen K; Q und K‘; Q bedeuten, so ist die Kraftefunktion:

ROK, _ kQK,

ry I's

U=

worin k* eine Konstante ist. Wir ziehen diese Konstante mit dem Faktor K, bezw.
K‘, zusammen, wie es bei solchen Rechnungen iiblich ist, indem wir setzen:

K=K ; kK, =K. )
J= Q"? (QK’ QK’)

Es wird dann (1) zu:

Dividieren wir durch Q und setzen: h = Q (3)
. v? K K’
so ist also: 5T _r?+ P 4

Diese Gleichung entsteht auch, wenn die Masse des sich bewegenden Massen-
punktes Q gleich 1 ist und k2 ebenfalls gleich 1 genommen wird und wir werden
also im folgenden mit diesen letzteren Verhaltnissen rechnen koénnen, wenn wir
uns fiir die numerische Durchfiihrung der Rechnung an die Bedeutung von K, K’
und h nach (2) und (3) erinnern.

Wir kénnen nun die Lage von Q nach Fig. 1 dadurch kennzeichnen, dass wir
sie als Schnittpunkt einer Ellipse ¢ mit einer Hyperbel = ansehen. Es ist eine Eigen-
schaft der Ellipse, dass die Summe der Brennstrahlen konstant ist und ebenso gilt
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fiir die Hyperbel, dass die Differenz ihrer Brennstrahlen konstant ist. In beiden Fillen
ist diese Konstante gleich der ganzen grossen Axe der Ellipse oder Hyperbel. Wir
kénnen nun durch jeden beliebigen Punkt der Bildebene je eine Ellipse und eine
Hyperbel legen mit K und K’
als Brennpunkt,deren jeweilige
grosse Axe als Koordinate die-
ses Punktes dienen kann.

Ist also:

rl—{"l‘2=2/{ (5)
r—ry,=2p (6)

so sind 4 und u neue Veran-
derliche, welche an Stelle von
r, und r, die Lage von Q defi-
nieren. Solche Veranderliche
werden als elliptische Koor-
dinaten bezeichnet. In gewdhn-
lichen cartesischen Koordinaten x und y (Fig. 1) hat man fiir das Quadrat der

Geschwindigkeit v des Massenpunktes Q:

_2_ﬂ2 ,dy,z.
= (qr) (i)

Diesen Ausdruck fir »2 wollen wir nun in elliptischen Koordinaten ausdriicken:

Die kleine Halbaxe b. der Ellipse 4 = n —;Q ist b, =y 4> — ¢, wenn c den

Abstand der Brennpunkte vom Mittelpunkt bedeutet, und mit derselben Bezeichnung

ist die kleine Halbaxe der Hyperbel b, = }/ ¢ — «2 und somit lautet die Gleichung
der:

Ellipse W—4—f%fﬁ =1,
Hyperbel = — & 1
YPErbe w? ct—ur
Daraus erhalt man: c3x3= A2 12
gt = (42— ¢ (¢ — )

und durch Differentiation:
cdx = udi—+ Adu

. A% i b
cdy=idi |/ ST —nan |/ 525
A% — 5

2 — u?
Es ist also: (dx)?+(dy)? = —‘u- (d A)? +Z%’Z§(dﬂ)2
und somit: v = ;- s (‘;f)+ : (2’;) (7)
Aus (5) und (6) erhalt man durch Addition und Subtraktion:
py o= A+ g

; (8)

r,=4—
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so dass:  RLS m U= (K‘K)f2_(’f+K)i
r1 s e I

wird.  (9)

Die Gleichung (4) lautet also in elliptischen Koordinaten wie folgt, unter Verwen-
dung von (9) und (7):
1 2=y rdAN L A=t rdu\t (K= K)A— (K+K)u
2 A2—-c2\dt 2 c‘Z—,u?(dt A2 — u? o

=h=-h.
(10)

Wir wollen nun alle diejenigen Bewegungen heraussuchen, bei denen Q eine
Ellipse beschreibt, deren Brennpunkte mit K und K' zusammenfallen. Dann muss

also « sicher eine Konstante seiniund zwar gleich der grossen Halbaxe a dieser
d

Ellipse; es muss also jedenfalls di = 0 sein und damit wird (10) zu:
L A pdp N (K-K)A-(K+K)e _
2 2 — ,(t2 dt A2 /“2 - Lo
oder:
2
- /)(Z—t) = 2(u2 = ) (K +K)pu — hy 1 = (K — K) i+ hy 72 . (10a)
Wegen der Konstanz von 4 ist: — {(K— K') A — hy 2% = — «,

worin «, eine Konstante ist und indem wir die Wurzel ziehen, kénnen wir auch
schreiben:

(2 =) G = — VI A R K)o = Iy ] (1)
Aus (10) erhalten wir ferner durch Elimination von %% mit (10a) und unter Ver-

wendung der Konstanten «,:

(#=) (%F 22— ) (K~ K) & = hy 72— )

oder: (42— MZ)—%l =y2( ) (K—=K)d—h 42— a} . (11)

Die beiden Gleichungen (11) und (11a) bilden nun ein simultanes System von
Zwischenlosungen der Gleichung (10), durch welches (10) identisch befriedigt wird.
Man bezeichnet dieses Simultansystem als ,intermediare Losungen* von (10). In (11a)
ist das negative Vorzeichen fiir die Wurzel gewahlt in Uebereinstimmung mit der
aus der Fig. 1 und (6) hervorgehenden Verianderlichkeit von w« bei einer Bewegung
von Q im Sinne des Uhrzeigers.

Um den Verlauf der Bewegung zu diskutieren, geniigen uns nun die beiden
intermediaren Gleichungen (11) und (l1a) vollkommen und ohne dass uns deren
Integrale bekannt zu sein brauchen. Wir setzen zur Abkiirzung:

@)~ VRO = V2FE-LOD (12)
(=) G = - VSt = - V2@ =M@, 13)

dt
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wo also nach (11) und (11a) gesetzt ist:

RA=2(2—-¢)L(A) (14)
L(A) = (K—K)Z— h 42— ¢ (15)
S(u) =2 (u?*~c) M(un) (16)
M(u)=(K+K)u—hp?—q. (17)

Wir bemerken noch, dass im Dreieck K, K’, Q der Fig. 1 die Summe der beiden
Seiten r; und r, stets grosser als die Seite K, K’, d. h. als 2c ist; es ist demnach:

und aus ebensolchen geometrischen Griinden ist der absolute Wert von u stets
kleiner oder hochstens gleich demjenigen von’ c:

< el . (19)
Diese Schranken werden uns im folgenden dienlich sein.

Soll nun fcii‘/tt = 0 sein, so kann dies nach (12) nur dann der Fall sein, wenn ent-

weder 42— u? unendlich gross ist (wenn die iibrigen Faktoren endlich sind), oder
es muss sein:
R(4) = 0.

Nun hat 4 und gz fiir jeden in endlicher Entfernung liegenden Punkt Q aus geo-
metrischen Griinden einen endlichen Wert, so dass die Annahme A% — u? =00 im
Endlichen nicht zutrifft. Der andere Fall: R (4) = 0 tritt ein, wenn entweder A2 — ¢?
oder L (4) gleich Null wird. Ist 42 — ¢? =0, also 4 = ¢, so reduziert sich die Ellipse
auf die gerade Linie, welche die Brennpunkte verbindet und der Koérper bewegt
sich auf dieser Linie bis er zusammenstdsst mit K oder K’, wir schliessen deshalb
den Fall 4= c aus. Es kann dann nur noch L (4) =0 werden. Bezeichnen wir
mit s; und s, die beiden Wurzeln der Gleichung L (4) == 0, so ist also:

L(/‘E—)'—_(K - KI)/{—hl /12—a1 == (/%—Sl) (S'Z_A)‘ (20)

. . 5| _ K—-K /ﬁ—K' ?a (21)
Diese Wurzeln sind: sl = 2n, :F] ( h 3 (22)
Setzt man fiir 4 die Werte s, oder s, in (11) ein, so wird also % = 0; aber
damit 4 eine Konstante sei, muss nicht nur as verschwinden, sondern auch die

dt
zeitlichen Differentialquotienten héherer Ordnung von 4.

Substituieren wir in (11) die Bezeichnungen:
2-ut=g); 2@ -c) =9 (A ; (K-K)A-h A2—aq =@, (4, (23)

so wird damit: %% = @ (A) 7" @, (A) @ (A)"= @y (A) @y (A)e

und daraus erhilt man durch Differentiation nach 4 und nachfolgender Substitution
d

von W :

d? 1) o0 14 _ 2e()
e~ 209(p () {¢2(4)+¢2 (2)[(2’1 @ ‘;p(’l) H 0
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Aus (23) hat man aber:

gA)=24; ¢ (N=44; ¢y(A)=K-K —-2h4i.
Ist nun s, = s, (=), liegt also eine Doppelwurzel vor, so verschwindet nicht nur ¢, (1),
sondern auch ¢, (4) wegen (25) und es wird nach (24) Cf“/, = 0; es verschwin-

den nun auch alle Differentialquotienten hoherer Ordnung, was nicht der Fall wire,
wenn s, keine Doppelwurzel von L (4) =0 ist.

Nach (21), (22) wird fiir s, = s,:

K- K
= on = (25)
und damit ist die grosse Halbaxe der elliptischen Bahn bestimmt.
Die Doppelwurzel s, = s, tritt auf, wenn nach (21) und (22):
K — K')?
oy = ‘( 4 hl ) y (253)

so dass «; stets dasselbe Vorzeichen wie h; besitzt. Da aber nach (18) 4 immer
positiv ist, so muss nach (25) #, immer positiv sein, wenn K > K’ ist und «, ist
also ebenfalls positiv. Den Fall K < K’ werden wir spater betrachten und fassen
als Ergebnis zusammen:

Wenn K > K’ ist, so muss, damit 4 eine Konstante sei, die Gleichung
K- K

(K- K)Ai~—hy 42— a, = 0 eine Doppelwurzel s = i = 5T besitzen.
1
Dies ist der Fall, wenn: iy, = _(L4h5) (26)
1
und es ist dann: T, ek . (27)
2 h
Die Koordinate 1 = r‘—;~r~"’~ verandert sich wahrend der Bewegung von @ auf

der Ellipse stetig und ihr Differentialquotient nach der Zeit ist reell fiir alle Lagen,
die Q einnimmt. Damit nun (cii/; reell bleibt, muss S (x) in (13) einen positiven
Wert haben oder gleich Null sein. Nach (19) muss der Fall # = ¢ ausgeschlossen
werden (und ebenso nach friilherem 42 — 42 = o0), so dass nur die Nullstellen von

M () fiir das Verschwinden von L(iiltl massgebend sind. Man findet diese Null-
stellen als Wurzeln w; und w, von M (¢) =0 zu:
wl}_ K+ K | 1 /(KEKy o (28)
w, 2 hy AR h,

und mit Verwendung des in (25a) gefundenen Wertes fiir «, :

w, K+K’+]/(K+K')2 (K—K)> K+K-+2VKK (29

w, 2h1 4h? 4h2 = — 2}:—..*-*,
1 [K+K"

hll 2

+ VKK } : (30)
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K+ K
2

als das geometrische Mittel / K K, so dass sowohl w, als w, immer positiv sind.
Wir kénnen auch zeigen, dass fiir die kleinere Wurzel w, eine obere Grenze und

fiir die grossere Wurzel w, eine untere Grenze existiert;
/

Aus (27) a= .l erhalt man fiir K den Wert:

Nun ist das arithmetische Mittel zweier Grossen K und K’ stets grosser

2 hy
K=K-2ah, (31)
und wenn man diesen in (29) einsetzt, so wird:
w|_K-—ah FYK(K-2ah) (32)
wy) h, (33)

Nun ist a sowohl als (nach fritherem) h, positiv und w, erreicht demnach seinen
grossten Wert, wenn:

K(K-2ah)=0 st (34)

K
oder: ‘ h} == 277(17 3 (35)
w, wird dann aus (32) zu: = K=2an, _ a, (36)

I,

in diesem Falle nimmt zugleich w, seinen kleinsten Wert an, namlich aus (33), (35):

W, = K-2ah _ 3 (37)
hy
Schreibt man M («) in der Form M («) = (¢t — w,) (w, — 1), so lautet (13):
9. QdJL,__._/ 2 _ .2 _ TN
(2 ) = ) (0 wy) () (37a)

Nach (19) ist aber u?<c? und wenn also « von —c¢ bis +c¢ schwankt, so ist
1?* — c? stets negativ. Tragen wir in der Fig. 2 auf einer y« Axe die Werte der Funktion
M (u) als Ordinaten auf, so konnen
also nach (19) und (37a) nur solche

Funktionswerte reelle % ergeben,

welche in das schraffierte Gebiet
— ¢ < u < —+c fallen. Fiir 4 =400 -
nimmt M («) einen negativ unend-
lichen Wert an und die quadratische
Funktion verlauft daher so, wie die
Fig. 2 in ihren ausgezogenen Kurven-
stiicken zeigt. Die gestrichelten Kurven
stellen unmdgliche Félle fiir den Typ
der Kurve g, dar, weil eine Nullstelle Fig. 2.
der Funktion M (u) Kkleiner als 0 ist,
was nach (30) ausgeschlossen ist; der Typ g, kann deshalb nicht vorkommen,
weil die grossere Wurzel w, unter allen Umstinden nach (37) grosser als a > ¢
sein muss.

Wir betrachten nun die Funktion M (x), wenn sie nach Typ Il verlauft. Hier
schwankt « zwischen —c und w, = ¢; rechts von ¢’ ist M () positiv, also S ()

ul

“0

P

N\

%
7
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wegen u? — ¢ < 0 negativ und daher ZL; aus (37a) imaginar. Sobald die Kurve

in ihrem weiteren Verlauf die positive u Axe wieder durchschritten hat, werden
wieder negative Funktionswerte M (x) auftreten, aber dieselben liegen nun ausser-
halb dem erlaubten Gebiet. Q vollzieht demnach eine stetige Bewegung auf der
Ellipse # =a von g = — ¢ bis zum Schnittpunkt P, der Hyperbel u = o' mit der
Ellipse. Dem Punkt @ = —c entspricht der K’ benachbarte Scheitelpunkt A der
Fig. 1. Der Schnittpunkt P, liegt, weil u positiv ist, auf dem K’ benachbarten
Ellipsenquadranten.

Je naher o' gegen 0 in der Fig. 2 gelegen ist, um so néaher riickt der Schnitt-
punkt P, gegen die kleine Axe der Ellipse hin, um schliesslich, wenn w, = 0 ist,
mit C in Fig. 1 zusammenzufallen. Dieser Fall kann nur eintreten, wenn a; = 0
wird wegen M (u) = u (w, — 1) = w, 1t — . Nach (25a) ist dann K =K’ und a
kann nun einen von Null verschiedenen Wert nur dann besitzen, wenn nach (27)
auch h;, = 0 ist.

In den beiden Fallen, die soeben besprochen wurden, handelt es sich also um
eine pendelartige Hin- und Herbewegung von Q auf der Ellipse und wenn wir o
gegen —c riicken lassen, so werden wir mit ¢’ = ¢ einen Grenzfall dieser Pen-
delbewegung erreichen, bei dem sich nun die Pendelung bis # = -+ ¢ erstreckt, d. h.
iiber die ganze Ellipse weg. In diesem Grenzfall muss dann in demjenigen Schei-

telpunkt der Ellipse, welcher K’ benachbart ist, die Geschwindigkeit v gleich Null sein.

Riickt dagegen o’ iiber + ¢ hinaus nach o, so ist fiir # eine Schwankung von
— ¢ bis <+ ¢ erlaubt und es wird also auch hier Q die ganze Ellipse durchlaufen,
nur ist jetzt die Geschwindigkeit v = V, im Scheitel, welcher K’ benachbart ist, nicht
mehr Null, wie dies der Fall war fiir diejenigen Werte von K‘, welche w;, = +¢
als Losung von M (1) = 0 herbeifiihrten. Es findet also hier ein voller Umlauf statt
um die beiden Massenpunkte K und K’ als Brennpunkte.

Erreicht schliesslich o’ den Wert a (Kurve V, Fig. 2), so ist damit nach (36),
(37) eine Doppelwurzel von M (u) = 0 bedingt, was nach (30) nur dann moglich
ist, wenn K’=0 ist. Dann haben wir den Fall eines Umlaufes von QO um eine
einzige anziehende feste Masse K, also die Keplersche planetarische Bewegung um
eine feststehende Sonne.

Die bis jetzt untersuchten Bewegungen lassen sich also klassifizieren an Hand
der Wurzelwerte ¢ und wir werden nun noch die Abhéangigkeit der Grdssen h,,
K’ und «, als Funktion von ¢ feststellen.

Aus (27) entnehmen wir: K=K -+42ah,, (39)
wahrend aus (30) w;, =0 = —hl—(&;i - ]/7(1(’) hervorgeht:
1
K=K -+2V2Koh +20h,. (40)
Durch Gleichsetzen von (39) und (40) wird erhalten:
. hl (a - Q
R == T
und mit K =K'+ 2ah, wird daraus:
k=Talato?
20

. K _(a-oY PO L A
also: s _(a+9), K —K((H_Q) @41), (42)
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Setzen wir in L (4) =0 fir £ die Doppelwurzel a ein, so ist nach (15):

) (K_Kl)a_hlaz_al=0 (43)
und wenn in M (v) =0 der Wurzelwert o eingesetzt wird, ist nach (17):
(K+K)e-h¢*—a;=0. (44)

Subtrahiert man (44) von (43), so erhalt man:
(K-K)a—(K+K)o—h(a®—¢°) =0
K K’

und hieraus: hy = ota T o-a’ (45)
oder wenn man K’ aus (42) einsetzt
29
=K Tor (46)

Wenu ¢ die numerische Exzentrizitat der Bahnellipse bedeutet, so dass die bekannten
geometrischen Beziehungen gelten:

as=c ; n=a(l-¢ ; n=a(l+e ; (h=KA ; n=KB),

so kann man die im Vorhergehenden berechneten Grdssen durch & ausdriicken.
In der Tabelle | ist fiir die verschiedenen Falle der Bewegung diese Substitution
durchgefiihrt und die Geschwindigkeit v beigefiigt, welche in den Scheiteln der Ellipse
auftritt. Diese letztere ist aus den iibrigen Grossen, die in der Tabelle aufgefiihrt
sind, mit Hilfe von (4) zu berechnen; dabei muss fiir die bis jetzt behandelten
Falle (K’ < K) statt h die Grosse — h, gesetzt werden, so dass:

v __ K K
2 a(l—¢ a(l+¢

—h, wird. (47)

Wir haben bis jetzt immer angenommen, dass K > K’ und sind unter (38) auch
auf den Grenzfall K = K’ gestossen. Ist nun A< K*, so ist die Wirkung der
repulsiven Kraft noch grdsser als fiir K = K, so dass eine Bewegung zu erwarten
ist von noch kleinerer Amplitude als im letzteren Fall, wo sie sich iiber den A
benachbarten Ellipsenquadranten erstreckt. An den Bedingungen, die wir fiir 4 fest-
gestellt haben, andert sich auch fiir K< K* gar nichts und erst von (25) an wird
K- K KK

" 2h, C2h,
und weil a positiv sein muss, so wird fiir K" > K nun h; negativ und damit wird
nach (25a) auch «, negativ. Man findet dann auf demselben Wege, den wir im
Vorangehenden beschritten haben fiir:

w=-0" ; —asl-0"<0 (48)
die folgenden Beziehungen:

g2 e pfatet o (KK
o~ Ko K =K(gt&h) i w=-m 5 waa

e(@+o") —ag’(14¢) . B
]/ a(l - 82) (a — 0")? ' Vi=0 (52), (53)

an der ganzen Betrachtung etwas geandert. Es ist jetzt a =




Bewegung von Q unter der anziehenden Wirkung von K und der abstossenden Wirkung

von K' mit der Bedingung K' — K .
Energiegleichung: T — U= + h; .
K+K-21KK
Wy KTK_2YRE
2 hy Tabelle 1.
Fall 1 | 11 {1 v \
VV1=; 0 ‘ oy o<ae a: o; ae< o< a a
20 2K £ 20 K
= 0 - - —_—
B “atop a (1| ep Mt o 2a
i _ —e\2 P
K — | K K(i ¢ K(l *) k(&-¢ 0
! a‘Jr“Q' 1';'}‘ a,r.‘(_,
(K — K')? 2 (K - K')? aK
- 0 PR Tk
ay = 4y A o 4y 2
| 4K 7 /" 4K B
/-" 4Ke a(l —e2) ) 2 /2 K (34 ¢) / Hﬂ:‘l /K {1 +¢)
¥y= / a(l-e) ¢ (atoe L1 l a (I—¢%) . - (a0 l il —
]” ao (14 ¢2) + ¢ (az+0'?) / ao (14 &) + ¢ (a2 + o?) |
[ 4K | ,
5 § 5 ]/ a(l —e2) | K (1 - ¢)
Fi== ., | l a (1-¢)
(a+0)? ) 1 :
Gol i @) —el@ta)
I
7
% ‘
Py ‘
y |
7 |
3 |
5 ‘
o0
- !
2
84
m
Vo
Pendelung
bis zur kleinen bis zur Hyperbel u == ¢ | Grenzfall (labiles Gleich- 1 Grenziall

Axe

' cewicht in B)

(Kepplersche Be-
wegung um K)

09¢

[T °ON NILATING
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11

und fiir den extremen Fall, dass ¢” = — ae ist, erhalt man daraus die speziellen

Werte:
__K_2& i g (LEEN — _ B
e At te RS =
V():O; Vl-—_O,

so dass es sich hier um denjenigen Grenzfall handelt, bei welchem Q sich im
statischen labilen Gleichgewicht im Punkte A der Fig. 1 befindet. Eine weitere Ver-

1+¢

2
grosserung von K’ iiber den Wert K(——) hinaus erzeugt eine Bewegung,

1 —¢

bei der sich Q immer mehr von A und K” entfernt und die also nicht mehr zu der
hier betrachteten Gruppe von elliptischen Bewegungen gehért. In der Tabelle Il

+ —
Bewegung von Q unter der anziehenden Wirkung von K und der abstossenden Wirkung von K'
mit der Bedingung |K'|= |K|.

Energiegleichung: T — U= — |hy|.
w.— R+K-2VKE . K- K
e 2 hy ’ T 2h Tabelle II.
Fall Ib | la l
W, = —ae -0 0< | <ae 0
o K 2¢ 2 0"
m= a o @y ’
'\ 2 2 -
K— | K(Lt:) K(ﬂigﬁ K
-« a-g
B e (K' — K)?
a = ’ 2 a Kﬁi— )2 — T 0
‘ o i
| - / 4K S
v \ 0 ] a(l — &2) 4Ke
0= = YT
] (e g8 —ag" {1 4 &)
V= ‘ 0 0 0
_4,K. TK: -+-K7
1
|
= < ‘
5 [l —— :
=] | !
2 |
s | |
> : K ‘
m % T 1
| T |
| Grenzfall | Fendelung
) (labiles 'Gleifhgewicht ! bis zur Hyperbel i = o" bis zur kleinen
in Q9 | Axe
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sind diejenigen Grdssen zusammengestellt, welche fiir die Bewegung massgebend
sind, wenn K’ > K ist, im Anschluss an die Tabelle I

Ein labiles Gleichgewicht tritt auch dann auf, wenn im Falle [l QO vom Punkte A
aus (siehe Tabelle 1) auf der Ellipse sich nach B bewegt hat. In B ist dann die
Geschwindigkeit Null vorhanden und es halten sich die Anziehungskraft von K und
die Abstossung durch A’ in diesem Punkte das Gleichgewicht wegen:

~\ 2 _
K’=K(.) und rp=a(l+¢ ; y =a(l —&).

Es besteht jedoch der Unterschied gegeniiber dem Falle des labilen Gleichgewichtes
nach Ib, dass eine kleine Storung in der Richtung der Tangente an die Ellipse
sofort wieder einen ganzen Umlauf von Q um die Ellipse zur Folge hat, nach dessen
Beendigung in B wiederum Gleichgewicht herrscht. .

Mit den hier behandelten Fallen sind jedoch nicht alle Moglichkeiten einer ellip-
tischen Bahnbewegung erschopit, indem sie nur solche Bewegungen vollstandig
umfassen, bei denen A und K” die Brennpunkte der Bahnellipse bilden. Wie wir
gesehen haben, ist dafiir die Bedingung massgebend, dass die Gleichung L (4) =0
eine Doppelwurzel besitzt. Wenn dies nun nicht mehr zutrifft und sich also fiir
L(2) =0 zwei verschiedene Wurzeln s, und s, ergeben, so wird nach (11), (12)

dt SO lange reell bleiben, als 4 zwischen s; und s, schwankt, wobei sowohl s
als s, positiv und grosser als ¢ sein muss. Es ist dann eine stetige Bewegung von
O moglich innerhalb der beiden Ellipsen £ =5, und 4 = s, und es werden sich je

nach dem Verlauf von Z? sehr verschiedene Bahnformen ergeben, unter denen

sich auch elliptische befinden konnen. In der Fig. 3 sind einige Beispiele e, i, f,
g, p solcher Bahnen eingetragen; sie entsprechen ganz speziellen Bedingungen
zwischen K, K, ¢, hy, a;, deren Auf-
suchung iiber den Rahmen dieser Aus-
fithrung hinausgeht.

Vollzieht sich die Bewegung eines
Elektrons auf einer elliptischen Bahn,
ohne dass Energie fortgestrahlt wird,
! nach Art der im Bohr-Sommerfeldschen
4 J\ Atommodell umlaufenden Elektronen, so
\1\ " )/ finden sich unter den hier berechneten

= Ellipsenbahnen ebenfalls solche Bahnen,

die ein Elektron unter der anziehenden
und abstossenden Wirkung einer Gruppe
A von K positiven und K’ negativen La-
=52 dungen beschreibt, welche sich im gegen-
_ seitigen Abstand von 2c¢ befinden. Ein
Fig. 3. solches System von Ladungen erscheint

dann nach aussen hin und in grosser Ent-

fernung als positiv oder negativ, je nachdem A grosser oder kleiner als K“—+ 1 ist.

Zieht sich die durchlaufene Bahn auf einen kleinen Abschnitt der Ellipse (Fall la)
zusammen, so entsteht in der Nahe des Scheitelpunktes A eine hin- und hergehende
Bewegung, die angenahert durch eine geradlinige Bewegung ersetzt werden kann
und dann der sog. quasielastischen Bewegung der Elektronentheorie gleicht; noch
nidher kommen einer solchen Bewegung diejenigen auf den Bahnen p und ¢ der Fig. 3.

Die Bestimmung der Zeitdauer ¢ eines vollen Umlaufes von Q ist nicht mehr
auf so elementare Weise durchfiihrbar wie diejenige der iibrigen Bahnelemente und
fahrt nur im Falle V auf eine algebraische Funktion, namlich die Kepplersche Umlauf-
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2x a’

zeit um eine feste Sonne: f =

tische Funktion fithrt. Solange es sich aber bloss um die Bewegung auf derjenigen
Ellipse handelt, deren Grundbedingung die ist, dass 4 eine Konstante sei, so kann
man nach (11a) oder (13) die Zeitdauer aus der Periodizitat von g allein ableiten
und es ist dann die Zeitdauer #; eines halben Umlaufs gleich derjenigen, innerhalb
welcher sich « von —c¢ bis +c¢ éandert; es ist also aus (13):

; wahrend sie im allgemeinen auf eine ellip-

- ;"_"2-- A2y oter =X gy — di
VS(u) dt V'S (u)
+c £
und damit: S Faf A2 S ——i—u—ﬁ
JVS@ ) VS
+c
Man kann aber nicht ebenso einfach ableiten, dass S i/—%—%t)f =0 ist, wie dies
tatsachlich der Fall ist und wodurch der vorstehendiec Aﬁsdruck sich reduziert auf:
; U e (54)
b _SC V-S—(TC)—

Hierin ist S (u) eine algebraische Funktion 4*" Grades; es handelt sich also um

ein elliptisches Integral.

K=41; Q=—-1; a=2; c=1. (e =1/3).
Ir-U=-h. Tabelle lIl.

Fall Ib la I 11 11 v \

wy es — 05 ; 0 +0,5 a1 + 1,5 i

hy -2 — 0,4444 0 + 0,16 +0,2222 | 4+0,24490 | 40,25

K +9 -+ 2,7777 +1 -+ 0,36 +0,1111 | 4 0,02040 0

oy -8 - 1,7777 0 -+ 0,64 4-0,8888 | -}- 0,9796 41

Vo 0 1,01835 1,1547 1,2 1,2171 1,2234 1,2248

v 0 0 0 0 0 0,36886 0,40825

¢ 0 - 9,09 - 35,6 - 17,77

Fiir ein bestimmtes numerisches Beispiel sind in der Tabelle Il die nach den
Werten der Tabellen [ und Il berechneten Bahnelemente eingetragen und einige
Umlaufzeiten zur Orientierung beigefiigt. Fiir den Fall Il ergibt sich dabei eine
Umlaufzeit gleich der doppelten Kepplerzeit und im Falle | betragt die Zeit, inner-
halb welcher das Bogenstiick D-A-C (siehe die Figur fiir Fall I in der Tabelle I)
einmal durchlaufen wird, zu ®/, derjenigen Zeit f,, die fiir das Durchlaufen des-
selben Bogenstiickes bei einer reinen Kepplerbewegung erforderlich wére, wobei

= 27ar (1 ey gy
0= - ]/K (2 JI) 181.

Bahnen, wie die hier beschriebenen, kénnen nun auch bestehen, wenn man
zu der elektrischen Anziehung oder Abstossung noch die reine Gravitationsanziehung
der geladenen Korpermassen hinzurechnet. Bedeutet:
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M, die mechanische Masse in A und + E; deren Ladung,
M2 » » » » KI » - E2 ” » (55)
mO » » » » Q ” - e bil »”

wobei die Ladungen in elektrostatischen Einheiten verstanden sind, so haben wir
statt den in (2) festgesetzten Reduktionen fiir A und K’ zu setzen:

K="°E1 oy (56)
my

k=2E _py (57)
my
J

hy = Ty (58)

und es gelten dann alle weiteren Berechnungen streng, was bei den Kraftgesetzen,
die Thomson postuliert, nicht zutriift. Eine messbare Beeinflussung, welche dem
Bestande des -Thomsonschen Modelles gefihrlich werden konnte, wird sich zwar
erst zeigen, wenn Massen von der Grossenordnung 10~2 bis 10—° Gramm vor-
liegen; solche Massen sind aber nur bei ionisierten Partikeln zu erreichen und weit
grosser als die Massen von Molekiilen oder gar Atomen, so dass das geausserte
Bedenken mehr nur theoretischer Natur ist. Als stérende Ursache wird sich der
Defekt jedoch dadurch bemerkbar machen, dass die von Thomson beschriebenen
Gruppen von Kernen oder Atomen und Elektronen sich in Kkleinen inneren
Schwingungszustanden befinden, ahnlich dem fortwahrenden an- und abschwellenden
Erzittern eines Dampferdecks unter der Wirkung der Maschinen und Propeller.

Schreiben wir nach (27) h, = % und setzen darin ae=c¢ ; a =—g
g K— K’
so wird: hy =& T (59)

und wenn sich der Energieinhalt des Systems in ganzen Vielfachen n einer Energie-
einheitsmenge j (= h») ausdriiken liesse, so konnte man schreiben:

Es wiirde sich also auch die Exzentrizitat als ganzzahliges Vielfaches einer primi-
tiven Exzentrizitat & = jﬁ darstellen lassen und damit die sog. Quanten-

bahnen leicht bestimmen lassen. Ganz so leicht ist diese Bestimmung jedoch nicht,
denn es liegt hier fiir Q eine Translationsbewegung vor, fiir welche aus den Grund-
siatzen der Quantenlehre hervorgeht, dass allein der Impuls, nicht aber die Energie
massgebend fiir die quantenhafte Verteilung von Impuls und Energie ist. Wollen
wir aber den Impuls (oder das Impulsmoment) nach diesen Grundsatzen berechnen,
so stossen wir auf gréssere mathematische Schwierigkeiten und wir miissen uns
hier mit dieser Andeutung begniigen.

Zum Schlusse stellt sich uns noch die Frage, ob und unter welchen Umstanden
die Gruppierung von Kernen oder Atomen mit Elektronen nach Fig. 1 die tatsach-
lichen mechanischen Verhaltnisse im Mikrokosmos eines Molekiils einfachster Art
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richtig abbilden und insbesondere auch, in wie weit dadurch die chemischen Eigen-
schaften des Molekiils, wie: Bindung, Affinitat, Polaritat usw. mechanisch deutbar
werden. Der Schreibende masst sich keinerlei Verdienst an fiir die Aufstellung eines
derartigen Molekularmodelles, sondern verweist auf den Vortrag, welchen Prof. Fajans
am 1. Juni 1923 im chemischen Institut der Universitdt Zirich abhielt, in dessen
Verlauf Fajans die Ansicht vertrat, dass zwei Atome auf solche Weise zu einem
Molekiil zusammentreten, dass ein (oder mehrere) Elektron des einen Atoms A eine
derartige Deformation seiner atomaren Bahn erleidet, dass diese schliesslich vom
Atom K bis ins Innere des Atoms K hineinreicht; ja, dass die deformierte Elek-
tronenbahn am Schlusse ganzlich symmetrisch zu A und A verlauft. Dieses ware
dann aber der Zustand, den wir hier rechnerisch behandelt haben, was in dem
erwahnten Vortrag unterlassen wurde. Der Auifassung, dass die inneren Kréfte,
welche die Atome zu Molekiilen zusammenballen, nicht etwa einer besonderen chemi-
schen Kraftart zugehéren, sondern von derselben Beschaffenheit seien, wie die uns
sonst in der Natur begegnenden elektrischen Anziehungskrafte, steht die Schwierig-
keit gegeniiber, dass es besonders in der organischen Welt eine grosse Anzahl von
Stoffen gibt, bei denen gleichpolige Atome zu Molekiilen zusammentreten. Dadurch
wiirde sich, statt einer gegenseitigen Anziehung dieser Atome zu einem Molekiil,
eine abstossende Wirkung ergeben und man kann dann ohne Zuhilfenahme weiterer
mehr oder weniger wahrscheinlicher Hilfsannahmen die Molekiilbildung auf Grund
rein elektrischer Kraftwirkungen wiederum nicht verstehen. In der polaren Verbin-
dung NaCl, dem Steinsalz, verbindet sich beispielsweise ein elektropositives Na-Atom
mit einem elektronegativen Cl-Atom, welche sich gegenseitig anziehen; in dem
homoopolaren (nach der chemischen Terminologie) Lithiumhydrid LiH dagegen ist
vor der Bindung sowohl das Wasserstoff- als auch das Lithiumatom elektropositiv,
so dass sich die beiden Atome abstossen; nach der Fajansschen Auffassung 16st
sich nun ein Elektron, welches wir Bindungselektron nennen, aus dem Lithiumatom
ab, wodurch ein negativ ionisiertes Lithiumatom entsteht, welches vom positiven
H-Atom angezogen wird und das abgeloste Elektron umlauft in einer elliptischen

Bahn die beiden Atome H und L1 nach Art der Fig. 1. Man sieht, dass dadurch
die oben erwahnte Schwierigkeit, welche Verbindungen gleichpoliger Komponenten
mit sich bringen, auf eine plausible Weise umgangen ist. Wie sich an Hand eines
solchen Modelles Fragen nach der chemischen Bindung, lonisierungsenergie, Mole-
kularrefraktion, Bindungswiarme, Farbe usw. beantworten lassen, kann, wenigstens
was die Bindung und Bindungswarme sowie die lonisierungsenergie betrifft, aus
der hier durchgefiihrten Berechnung elliptischer Bahnen abgeleitet werden, wahrend
wir fiir die iibrigen auf die Darstellungen von Fajans verweisen.

Handelt es sich um ein Molekiil, welches Teile einer Fliissigkeit oder eines
Gases bildet und das im iibrigen wiederum nach Fig. 1 aus zwei entgegengesetzt

+ fey
geladenen Atomen KX und K* bestehe, welche ein Elektron auf elliptischer Bahn
umléauft, so kann der feste Abstand 2c, den K von K” hat, nicht davon herriihren,
dass die beiden Atome K und K” etwa wie in einem Braggschen Kristallgitter auf
konstantem Abstand gehalten sind. Lasst man aber das ganze System der Fig. 1
eine langsame fortwahrende Rotation machen um eine zur Bildebene senkrechte
Drehaxe R und mit emer solchen kaelgeschwmdxgkelt w, dass die gegenseitige

Anziehung der Atome K und K gerade durch die Zentrifugalkraft der Rotation

ausbalanziert wird, wenn K und K sich im gegenseitigen Abstand 2c¢ befinden,
so wird 2c¢ eine Konstante bleiben. Ist dann die Umlaufgeschwindigkeit £ des
Elektrons um A — K’ gross gegeniiber w, d. h.:

25>1, (60)
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so wird die Bahn des Elektrons in der Bildebene nicht wesentlich gedndert durch
die Rotation der Bildebene, sondern nur kleine periodische Schwankungen erleiden,
weil die Zentrifugalkraft, welche der Rotation w entspricht, klein ist gegeniiber den
Kraften, die auch im ruhenden Zustand der Bildebene auf das Elektron einwirken.
Die erkung eines solchen Krafteausgleiches, zwischen der gegenseitigen Anziehung

von K und A” und ihrer Zentrifugalkraft, welche sie auseinandertreibt, ware dann
so, dass das Elektron eine elliptische Bahn beschreibt, die aber mcht mehr ruht,
sondern sich mit der Bildebene um die Axe R dreht: die Bahnellipse besitzt eine
Prazessionsbewegung «, die sich nach Vorstehendem berechnen lasst. Es ist dabei
vorauszusetzen, dass die schon erwahnte Bohr-Sommerfeldsche Bedingung einer
nichtstrahlenden Bewegung der Ladungen auf Quantenbahnen sich auch auf die gegen-

+ - .
seitige Umlaufbewegung der geladenen Atome K und K erstrecke und nicht nur
auf diejenige des Elektrons. Eine prazessierende Bewegung der beschriebenen Art
ware ausserdem, nach einer Auffassung von Larmor, dquivalent mit dem Auftreten
eines Magnetfeldes in der Richtung der Rotationsaxe R von einer der Winkel-
geschwindigkeit « proportionalen Starke. Nun kann ein solches Feld, wegen der
ungeregelten Orientierung der einzelnen Molekiile eines Gases nach aussen, ganz-
lich verschwinden und seine magnetisch-mechanische Messung unmoglich werden,
wahrend seine Existenz vielleicht optisch bemerkbar ware. Die Rotation der Atome
oder des ganzen Molekiils macht sich optisch in wohlbekannten Rotationsspektren
bemerkbar, welche insbesondere fiir Verbindungen wie HCI, HF, HBr u. a. genau
gemessen worden sind, Verbindungen, deren Typ tlibereinstimmt mit dem hier behan-
delten Bewegungsfall einer Molekel:

+ —
H “\ " Cl
élektron

Bei dem Gasmolekiil sehen wir also, dass die Bindung, (als Mass der Trag-
heit, mit welcher das Molekiil einer Trennung seiner Komponenten entgegenwirkt),
angesehen werden kann als diejenige Kraft, welche die beiden Ladungen von
+

b ey T
K und K” zusammenhalt; sie ist fiir doppelt geladene A und K’ doppelt so gross
wie fir einfach geladene, entsprechend einer ,doppelten Bindung® der chemischen
Terminologie. Die lonisierungsenergie lasst sich aus den in der Tabelle I ange-
gebenen Bahnelementen bestimmen, wenn wir die Energiekonstante i; der Bahn-
bewegung kennen. Die Bindungswarme ergibt sich aus dem Unterschied der Energie h,
gegeniiber der Energie h,, welche das Elektron im urspriinglichen Verband mit
einem der beiden Atome besass, wenn fiir A K’ keine Energieanderung eintritt.
Wir wollen noch durch eine iiberschlagliche Rechnung nachpriifen, ob unter einfachen
atomaren Massenverhéltnissen die Bedingungen erfiillt sein kénnen, die wir unter
(60) aufgestellt haben. Es sollen dabei die Bezeichnungen unter (55) gelten; die
mechanische Masse der beiden Atome sei der Einfachheit halber als gleich gross
angenommen (nicht so die nach (56) und (57) ,reduzierte“ Masse) und es findet
dann die Rotation « statt um den Punkt O der Fig. 1. Mit ¢ = a¢ ist dann die

Zentrifugalkraft M ae w? gleich der gegenseitigen Anziehungskraft 1 B o) zu setzen,

EE, (2ae
(2as)? :

E, E,
?=4—Mla3~83 ' el

so dass wir erhalten Mas w? =

w

Fiir das Elektron Q, in der nichtrotierenden Bildebene, gilt fiir die Umlaufzeit ¢,
wenn ¢ die Kepplersche Umlaufzeit bedeutet:
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my
und also die Winkelgeschwindigkeit Q:% % und .Q<A2;T oder deren
Quadrat QQ>(%>2:—4—Z—Z—%£—;0—, so dass:
e51 >02>% (62)

Betragt die absolute Grosse von e und E, je diejenige einer elektrostatischen Ele-
mentarladung 'e|, so hat man mit (61):

s eE;

[ 4TVI a3 83 (63)

und mit (62): A:nM 8 > (1)2 >—~€’ (64)
0

N - (65)

Man sieht aus (65), dass die Bedingung (60) fiir die Moglichkeit einer rotierenden
Gasmolekel erfiillt ist, wenigstens fiir grosse Exzentrizititen ¢, denn es iibertrifft
die Atommasse M diejenige m, des Elektrons um mindestens das 1846 fache.

Wir haben im Friitheren angedeutet, dass das Impulsmoment des umlaufenden
Partikels nach den Grundsatzen der Quantenlehre in Beziehung gebracht werden
kann zu der Exzentrizitat seiner elliptischen Bahn, was, auf das Fajanssche Mole-
kularmodell iibertragen, heisst, dass das Bindungselektron in einer Quantenbahn
umlaufen kann. Es ist nun ein Vorzug des bekannten Bohrschen Atommodells,
dass durch die quantenhafte Anlage der Elektronenbahnen im Atom eine gewisse
Stabilitat desselben zum Ausdruck kommt, welche wir aus verschiedenen ander-
weitigen Griinden demselben zuschreiben miissen, aber besonders sinnfallig wird
dieser Vorzug erst bei dem Fajansschen Molekularmodell mif Bindungselektron auf
einer Quantenbahn. Im Kristall haben wir namlich ein einziges grosses Molekiil
vor Augen und der sichtbare Tatbestand lasst kaum einen Zweifel mehr iibrig, dass
es sich dabei nicht um einen Miickenschwarm umherschwirrender Elektronen und
Atome handelt, sondern um ein Geriist, welches durch quantenmassige Beziehungen
ihrer gegenseitigen Lagen und Bahnen versteift wird. Allerdings bezieht sich dabei
die Ueberzeugungskraft des Fajansschen Molekularmodelles auch nur auf die Elek-
tronenbahnen, wihrend der gegenseitige Abstand aller Atome zwar von verschie-
denen Forschern berechnet wurde, aber nicht auf quantentheoretischer Grundlage.

Wir sind, wie der Leser bemerkt, von unserem Standpunkt der préazisen Bestim-
mung einer einfachen elliptischen Bahn einzig nach Newton-Coulombschen Prinzipien
in unseren letzten Ausfilhrungen etwas abgewichen, aber immerhin nicht so weit,
dass wir das Erfahrungsgesetz der Kraftwirkung nach diesen Prinzipien einer Abéan-
derung unterzogen, wie dies bei der Thomsonschen Hypothese der Fall ist.
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