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L'auteur calcule les valeurs que prend, en
fonction du temps, la température à l'intérieur
d'une plaque homogène susceptible d'accumuler
de la chaleur, en supposant une variation périodique

de l'énergie calorifique transmise à la paroi
intérieure, et de la température extérieure. La
chaleur rayonnée par la surface extérieure et la
température de la paroi intérieure sont calculées
pour différents régimes dans l'énergie électrique
consommée. Enfin l'auteur applique les relations
déduites au calcul d'accumulateurs de chaleur
formés de plaques homogènes.

Bulletin No. 10 Oktober
Octobre

Die Berechnung fester Wärmespeicher1).
Von Dipl.-Ing. K. Grütter, Winterthur.

Die Berechnung elektrisch beheizter Speicheröfen soll Aufschluss geben über
die Wärmeabgabe des Ofens in Funktion der Zeit, wenn die Stromzufuhr ebenfalls
in Funktion der Zeit gegeben ist und über die zu erwartenden Temperaturen an
der Oberfläche, sowie an der Stelle, an welcher die Heizkörper liegen.

Die Berechnung der Temperaturverteilung und des Wärmeflusses innerhalb fester
Körper stützt sich auf die von dem französischen Mathematiker Fourier stammenden
Untersuchungen und wurde in dieser Zeitschrift von Herrn ten Bosch und Herrn
Zangger2) behandelt. Diese Arbeiten untersuchten den Temperaturverlauf im
Wärmespeicher, wenn er vom stationären Zustand aus, in dem die Temperatur im ganzen
Speicher konstant ist, während einer bestimmten Zeit geheizt wird und sich hierauf
abkühlt. Dieser Vorgang entspricht dem erstmaligen Anheizen und der nachfolgenden
Abkühlung.

Im praktischen Betrieb wird jedoch ein Ofen täglich geheizt, d. h. Anheizen und
Abkühlen folgen sich periodisch. Dabei tritt der von ten Bosch und Zangger ange-

x) Das Manuskript ist am 4. Februar 1924 bei der Redaktion eingegangen.
2) Siehe Bulletin S.E.V. 1923, No. 4, Seite 193 und Seite 202.
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nommene Anfangszustand gleichmässiger Temperaturverteilung niemals ein. Die
vorliegende Untersuchung will daher die eingangs erwähnten Fragen beantworten
unter der Annahme, dass der zeitliche Wärmeverlauf im Speicher ein periodischer
sei, d. h. dass sich die an der Innenwand zugeführte Wärmemenge und die
Umgebungstemperatur des Speichers periodisch ändern.

Berechnung der Temperaturverteilung.
Die von Fourier aufgestellte Differentialgleichung des Wärmeflusses in einem

festen Körper lässt sich auf Grund einer einfachen vektoranalytischen Ueberlegung
leicht ableiten. Der Wärmefluss in einem beliebigen Punkt innerhalb eines festen
Körpers ist ein räumlicher Vektor [q]3), der in die Richtung des Temperaturgefälles
an» dieser Stelle fällt und diesem proportional ist, wobei der Proportionalitätsfaktor
gleich der Wärmeleitfähigkeit À des Stoffes ist. Die als Funktion des Ortes gegeben
gedachte Temperatur d stellt also das Potential dar, dessen Gradient, das
Temperaturgefälle, mit der Wärmeleitzahl /- multipliziert den Wärmeflussvektor [<7] gibt,
in vektoranalytischer Schreibweise:

[q] 2 grad Ö (1)

Der Wärmefluss erfährt nun in jedem Punkt während dem Zeitelement 8 t eine
Aenderung, die gleich ist der Energieänderung pro Volumeneinheit des betreffenden
Raumpunktes. Diese Energieänderung ist die Veränderung des Wärmeinhaltes der
Volumeneinheit, somit proportional der Temperaturänderung multipliziert mit dem
spezifischen Gewicht y und der spezifischen Wärme c des Stoffes und ergibt sich
aus der skalar ausgeführten Differentiation des Vektors [9]; vektoranalytisch als
Divergenz bezeichnet und geschrieben:

8 t div [<7] c y 8 & (2)

Schreibt man zur Abkürzung: (3)

so erhält man durch Einsetzen von Gleichung (1) in Gleichung (3):
8 d

-yy- a div grad 0

Wird die doppelte Differentiation div grad in Raumkoordinaten x, y, z ausgeführt
(siehe z. B. „Hütte", 23. Aufl., pag. 123), so lautet diese Gleichung:

dl)' /8*d 8*0 8*0\
a H v-T a ,.2 ' (4)

81 y 8 x2 8 y2 8 z2

Das ist die allgemeine Differentialgleichung für den Wärmefluss in einem festen,
homogenen Körper unter der Voraussetzung, dass das spez. Gewicht, die spez. Wärme
und die Wärmeleitzahl von der Temperatur unabhängig sind. Die Materialkonstanten
erscheinen hier zu einer einzigen Grösse a zusammengefasst, für die sich die Bezeichnung

„Temperaturleitfähigkeit" eingebürgert hat. Wie Gleichung (3) zeigt, hat sie
die Dimension Länge2/Zeit.

Elektrische Speicheröfen sind in der Regel aus Platten zusammengesetzt, d. h.
aus Körpern, die von parallelen Ebenen begrenzt sind. In solchen Platten verläuft,
wenigstens in genügender Entfernung von den Rändern, die Wärme senkrecht zu
den Begrenzungsebenen und die Flächen gleicher Temperatur sind parallele Ebenen.
Legt man die x-Axe senkrecht zu diesen Ebenen, so ändert sich die Temperatur

3) Im folgenden sollen räumliche Vektoren durch eine [] Klammer bezeichnet werden.
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nur in der Richtung der x-Axe, während die Derivierten der Temperatur nach y
und z Null sind. Gleichung (4) vereinfacht sich daher zu:

'à t ~ ü S *2 (5)

In der Nähe der Ränder weicht allerdings der Temperaturverlauf von dem hier
vorausgesetzten ab. Diese Partien bilden jedoch einen verhältnismässig geringen
Teil des Ofens. Wir beschränken daher unsere Untersuchung auf die eindimensionale
Form der Wärmeströmung, d. h. auf Lösungen der Gleichung (5).

Diese Differentialgleichung ist linear und homogen. Ihre allgemeine Lösung
besteht aus einer Summe partikulärer Lösungen und zwar müssen deren soviele
gesucht werden, dass die vorgeschriebenen Randbedingungen erfüllt werden können.
Ein erstes partikuläres Integral erhält man, wenn man in Gleichung (5) beide Seiten
für sich Null setzt:

d 9 d2 d
0 und 0

deren Integration liefert:

dt

9 i% und i\ Cx x 4- C2

d. h. die Temperatur bleibt in jedem Punkt zeitlich konstant und ändert sich örtlich
innerhalb der Platte linear. Diese Lösung entspricht dem stationären Zustand, der
sich einstellt, wenn eine konstante Wärmemenge qk die Platte von der Dicke s
durchmesst. Dann nimmt die Aussenwand die konstante Temperatur 9ak :

K qk -h »uk (6)
« v '

und die Innenwand die konstante Temperatur -i9ik :

9ik 9k ^ — -P + '>uk

an. Hierin bedeutet a die Wärmeübergangszahl der Aussenwand an die Luft und
9Uk die konstante Umgebungstemperatur.

Ueber diesen Zustand lagert sich die zeitlich veränderliche Temperaturverteilung,
die von den veränderlichen Anteilen der an der Innenwand zugeführten Wärmemenge

q und der Umgebungstemperatur du herrührt.
Da wir diese Anteile als periodisch veränderlich voraussetzen, können wir sie

als Fouriersche Reihen, d. h. als Summen von Sinusgliedern darstellen in der Form:

„ (2 Jint \
q I Q„ sin I —y 1- <pqn J

du 2 0un sin 4- <p{] u?j

(8)

Hierin bedeutet T die Dauer einer Periode, d. h. im allgemeinen 24 Std. n sind
ganze positive Zahlen. <pq und q>$ sind Phasenverschiebungswinkel, über die noch
verfügt werden kann.

Die Lösung der Differentialgleichung (5) wird gliedweise den Randbedingungen
angepasst, d. h. für jedes Glied der Randbedingungen wird ein partikuläres Integral
berechnet. Die Form der Lösungen ist natürlich für alle Glieder identisch. Wir haben
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deshalb allgemein die Lösung zu suchen, die an der Innenwand der Bedingung:

2 7t n t
q Q sin

T (9a)

und für die Umgebungstemperatur der Bedingung:

2 jrntâ„ &n sin (9b)

genügt. Wir werden sehen, dass der Anfangspunkt t 0 bei der Ausrechnung für
jedes Glied besonders festgesetzt werden kann, so dass die Phasenverschiebungswinkel

(p für die allgemeine Lösung nicht in Betracht fallen.

Die allgemeine Lösung muss sich sowohl innen (jc 0) wie aussen (x s)
nach Grösse und Phase den Randbedingungen anpassen. Wir müssen deshalb über
vier Integrationskonstanten verfügen können, d. h. die allgemeine Lösung muss sich
aus vier partikulären Integralen zusammensetzen.

Diese Bedingungen werden erfüllt durch die Gleichung4):

0 ~s X „Ae $ sin—i
s

D s xBe s sin—S
s

Be s scos—S -+- Ce
s

Ae «s cos—S — De

s x „sin — S -

s

s x „sin—S
s

De « cos—S sin
2 n t

Ce

T

2 n t
cos—ö leos- „s T

-s__.

wobei e die Basis der natürlichen Logarithmen ist.

Durch Differentiation und Einsetzen in die vorgelegte Differentialgleichung (5)
findet man, dass diese erfüllt ist, wenn:

-1Rr (H)

Zur Berechnung der Integrationskonstanten A, B, C, D ist zu berücksichtigen, dass:

1. die der Innenwand (x — 0) zugeführte Wärmemenge q dem dort herrschenden

Temperaturgefälle proportional sein muss:

r\Q sin —~— - x
dd
Sx (12)

2. die durch die Aussenwand (x s) tretende Wärme proportional ist einerseits

dem dort herrschenden Temperaturgefälle, andererseits der Temperaturdifferenz
zwischen Aussenwand und Umgebung:

dd
'Sx a {dx s - ïïu)

woraus: K — 6>u sin
2 TT t

T
0 -T

'À Sd
(13)

Schreiben wir zur Abkürzung -y — h und:

4) Eine Ableitung dieser Lösung in etwas anderer Form findet man in dem Buche von Dr. Heinrich

Gröber: „Die Grundgesetze der Wärmeleitung und des Wärmeüberganges", Seite 78 u. ff.
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Fa es sin S

Fb es cos S

s h
(sin S + cos S)J es~ "j/s2 + (S+ sh)2

sin 1 S + arctg -y sh

s h
(cos S — sin S) es

s h
S2 + (S + s/z)2

cos S-t- arctg Ssh
Fe e~s sin S

s h
(cos S - sin S) — e s~j^ 1/N2 + (S - sh)

sin S - arctg S — sh

FcL — n -S cos N - ^ (cos N -+- sin S)^j - e~s^~|/s2 + _ s^)2

cos N — arctg S — sh

(14)

B 0
und setzen 0 und -jy aus Gleichung (10) in (12) und (13) ein, so erhalten wir:

~y({A-FB + C -D) (- A-FB - C - D) cos 2y Q sin
2 n t

T

(AFa-F BFb-F C Fe-F DFd) sin -2^- + (- AFb + BFa + CFd - DFe) cos

(yu sin
2jrt

Diese Gleichungen sind nur dann für alle Werte von t erfüllt, wenn:

QsA-F B-FC - D
ÄS

-A+B-C-D=0
A Fa + B Fb+ C Fe + DFd 6>„

-AFb-FBFa-\-CFd-DFe 0.

(15)

Aus diesen vier Gleichungen können die vier Integrationskonstanten berechnet werden,
am besten durch Auflösen der aus den Koeffizienten von A, B, C und D in
Verbindung mit den konstanten Gliedern gebildeten Determinanten. Wir erhalten damit
die Konstanten in der Form:

Az
B

Bz
C

Cz
D

Dz
NN ' N ' ~ N '

Für den gemeinsamen Nenner N erhalten wir:

N {S2 + (S + sh)2) ß25+ {S2 + (S - sh)2} e~2S - 2 (2S2 - (s/z)2) cos 2 S

— 4S sh sin 2 S. '(16)
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Zur Berechnung der Zähler werden die betreffenden Determinanten in je zwei
Unterdeterminanten zerlegt, von denen die eine den Faktor Q, die andere den Faktor 6>u

enthält. Es ist also:

Az — Aq + ; Bz — Bq -+- B$ ; Cz Cq + C# ; Dz — Dq + Da

und die Auflösung der Determinanten unter Berücksichtigung der Gleichungen (14)
ergibt:

Aq ^-{- e-2S(S2+ (s_sft)2) + (2S2_ 2Ssh-sh2) cos 2 X

+ (2S2 4- 2S sh - {shy) sin 2 S)

Bq e~*s (S2 (S - sh)2) + (2S2 + 2S sh - sh2) cos 2 S
— (2X2 -2S sh — (sh)2) sin 2 S}

Cq {- e2S (S2 + (S + sh)2) + (2S2 + 2S sh - sh2) cos 2 X

- (2S2 - 2Ssh-(sh)2) sin 2 S]

Dq {e*s (s2 + (S-h sh)2) - (2S2 -2Ssh-sh2) cos 2 X

- (2S2 + 2Ssh-(sh)2) sin 2 S)

An — Ca 6>u ä/z jß5S2 -+- (S + sh)2 sin + arctg ^

+ e~s~|/S2 + (S — sh)2 sin^S - arctg ^

Bi) — D-a — sh {ßS~j/ S2 -f- (S + sh)2 cos + arctg $ sh)

- e~sy S2 + (S — sh)2 cos(s — arctg
^

(17)

S — sh

Man kann nun auch die Gleichung (10) in zwei Teile zerlegen:

d -f- {)$

wobei ^q nur von der an der Innenwand zugeführten Wärmemenge und -0$ nur
von der Umgebungstemperatur #u abhängig ist. Der Einfluss dieser beiden Grössen auf
die Temperaturverteilung kann also ganz unabhängig von einander untersucht
werden.

Es interessieren uns im weiteren nur noch die an der Aussenwand und an der
Innenwand auftretenden Temperaturen. Man findet sie, indem man in Gleichung (10)
x s resp. jc 0, sowie die Konstanten gemäss Gleichung (16) und (17) einsetzt
und erhält nach einigen Umformungen den von der Innenwandheizung abhängigen
Teil der Aussenwandtemperatur:

0
AN "j/s« + (S + sft)» sin (^-(s+ arctg

]/ S> + (S - s„)> sin (^+ (S - arctgL^))- e ~s

(18)
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den von der Umgebungstemperatur abhängigen Teil der Aussenwandtemperatur

{j/S- + (S + sh)2 e2S sin+ arctg S_f_sh)

(25 + arCtgTT^))]-]/s* + (S-shy [sin(
2 Jt t

sin t y
2n t

2S — arctg——4- e~'2S sin — arctg -

(19)

S — sh

den von der Innenwandheizung abhängigen Teil der Innenwandtemperatur $qi

^yäsn {[e'2S(S2+(s+sft)2)-e_2S(52+(s-s/i)2)]sin(^r ~T)

-2 "j/ 4S4 + (sfc)4 sin ((2 S - arctg f fr/ip-) sin (^T^~ + t) }

(20)

und endlich den von der Umgebungstemperatur abhängigen Teil der Innenwandtemperatur

i :

2Ö„s/i [ s / • (2 irt /„ S^|<?sj/ S2 + (S + s/z)2 sin yT - y + arctg 5 + sh

S

;y S2 + (S - s/z)2 sin + (s - arctg S-sh
(21)

Diese Ausdrücke haben wie die Randbedingung Gleichung (9) die allgemeine Form:

0 0 sin yy - 9

sie können also ähnlich wie Wechselstromgrössen als zeitliche Vektoren5) dargestellt
werden, von_ der absoluten Grösse @ und einer Phasenverschiebung (p gegenüber
dem Vektor q für #qa und t?qi resp. gegenüber dem Vektor hu für i9^a und^^i. Der
resultierende Vektor #a resp. •&, ist aus den Vektoren $qa und resp. #q^und hl3i

geometrisch zusammenzusetzen. Die Vektoren der Randbedingungen q und $u können
daher einen beliebigen Winkel miteinander einschliessen.

Temperatur und Wärmeabgabe an der Aussenwand.

Fig. 1 zeigt das Vektordiagramm der Temperaturen an der Aussenwand für eine
Platte, deren Material und Abmessungen unten (1. Zahlenbeispiel) angegeben sind.
Der nur von der zugeführten Wärmemenge abhängige Vektor $qa setzt sich gemäss
Gleichung (18) aus zwei Vektoren Kj und Vc zusammen. Der Vektor Vx hat die

absolute Grösse e& S2 + (S + s/z)2 und läuft dem Vektor q um den

S -Winkel <p\ nach. (p1 — S + arctg ^ • Der Vektor Vc hat die absolute Grösse

5) Zeitliche Vektoren werden im folgenden im Gegensatz zu den auf Seite 494 eingeführten
räumlichen Vektoren mit einem horizontalen Strich — bezeichnet, z. B. &
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Vc
^Rf e^s~\ X2 + (X - sh)2 und läuft dem Vektor q um den Winkel
À N \

(pc 7l - (S ~ arctg S - sh
nach.

Gleichung (19) zeigt, dass der nur von der Umgebungstemperatur abhängige
Vektor sich aus vier Teilvektoren /, II, III, IV zusammensetzt6), deren absolute

Beträge, sowie die Winkel, um die sie gegen
den Vektor verschoben sind, aus
Gleichung (19) abgelesen werden können. Die
Vektoren dqa und j?,sa sind in Fig. 1 zum
resultierenden Vektor $a zusammengesetzt, der den
variablen Teil der Aussenwandtemperatur
darstellt. Die abgegebene Wärmemenge

qa a (Ja - i9„)

ist ebenfalls periodisch veränderlich und

gegeben durch den Vektor der dritten Seite

in dem von #a und 0$ „ gebildeten Dreieck.

Obschon Fig. 1 masstäblich für extreme
Verhältnisse, nämlich 0 10 Watt/dm2 und
(ju 5 0 C gezeichnet ist, zeigt sich, dass der
Einfluss der Umgebungstemperatur auf die
Aussenwandtemperatur klein ist gegenüber
demjenigen der Heizung. Die folgenden
Untersuchungen beschränken sich daher auf den
Fall >)n 0, d. h. konstante Umgebungstemperatur.

Dann ist die an der Aussenwand
Fig. i. abgegebene Wärmemenge proportional der

Aussenwandtemperatur dqa.

Der Vektor V1 ist stets grösser als der Vektor Vc. Er ist daher der Hauptvektor

und Vc der Korrektionsvektor. Dieser kann bei grossem X vernachlässigt
werden und man erhält dann die Aussenwandtemperatur angenähert:

0. 20s
À es]/S* + (S + sh)'

sin
2 xt (s+arctgsT+)

Um den Einfluss der Materialkonstanten, der Wandstärke und der Periodendauer
auf Grösse und Phase der Aussenwandtemperatur zu untersuchen, dividieren wir
Zähler und Nenner von Gleichung (18) durch X2 und schreiben zur Abkürzung:

dann wird:

0 2k

sh
X 71 y 6 JZ

k,

ö.
a AL 1+0

-.-•y1+(1- h)- sin

ft)2 sin

2 71 t

2n t /
—j (X+arctg

(x - arctg

1

1 +ft
—£qal y

(22)

(23)

6) Da #qa und zufälligerweise fast genau in dieselbe Richtung fallen, tritt der Vektor j?a in
Fig. 1 nicht deutlich hervor.
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worin :

N, ~ (1 + (1 +ä)2) C2S _f_ (i (i _ kY) e-2S - 2 (2 - k2) cos 2S - 4k sin 2S
(24)

hat die Dimension einer Temperatur. #qai ist ein dimensionsloser Vektor, der

nur von den zwei Grössen k und X abhängig ist.

Bei der Zusammensetzung der beiden Vektoren V1 und Vc zu öqal ist das
Vorzeichen von Vc zu berücksichtigen. Die Wurzel im zweiten Glied von Gleichung (23)
kann nämlich positiv oder negativ sein, je nachdem Bezüglich der um den

Winkel S dem Heizvektor q vorlaufenden Axe liegt der Vektor Vc im zweiten

Quadranten, wenn k <C 1, d.h.
^ ^ positiv ist. Ist k=\, so ist

^ oo und

1 7t —
arctg — T~ -,y der Korrektionsvektor steht senkrecht auf der dem Heizvektor q

1 ff z

um den Winkel S vorlaufenden Axe. Wird schliesslich k > 1, d. h.
^

negativ,

so liegt der Korrektionsvektor gegenüber der um 5 gegen den Heizvektor q
gedrehten Axe im ersten Quadranten. Die Richtigkeit dieser Ueberlegung ergibt sich,

wenn man Vc in die Vektoren Kcs sin +S^j und Vcc cos + S^j zerlegt.

Von den zwei Grössen, die in Gleichung (23) auftreten, ist k nur von den
Materialkonstanten und der Periodendauer abhängig. S ist der Wandstärke s
proportional. Für ein bestimmtes Material und
gegebene Periodendauer ist k konstant und
Gleichung (23) ergibt #qaI in Abhängigkeit von
der Wandstärke.

Fig. 2 zeigt den Vektor (?qa] als Funktion
von S für verschiedene k als Parameter und
zwar über der Abszissenaxe den absoluten
Wert 0, unter der Abszissenaxe die
Phasenverschiebung (p gegenüber dem Heizvektor q.
6 nimmt mit steigendem S ab. Bei einer
bestimmten Heizleistung ist daher die Differenz

zwischen höchster und tiefster Temperatur
um so geringer, je dicker die Platte ist. Da 5
ferner der Wurzel aus der Periodendauer T
umgekehrt proportional ist, so wird 6 um so
kleiner, je kürzer die Periodendauer. Ist die
periodisch veränderliche Heizleistung durch eine
Fouriersdie Reihe gegeben, so wird das

Verhältnis
-q für die Glieder höherer Ordnung

stets kleiner, d. h. die Fouriersche Reihe, welche
die Aussenwandtemperatur darstellt, konvergiert

besser als diejenige der Heizleistung.
Endlich wächst auch die Phasenverschiebung
zwischen Aussenwandtemperaturvektor und Heizvektor, d. h. mit zunehmendem S
verschiebt sich die Wärmeabgabe gegenüber der Stromzufuhr um so mehr, je
grösser 5 ist.

Fig. 2.
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Da S ausser von der Wandstärke auch von den Materialkonstanten abhängt
und die Wirkungsweise des Speichers im wesentlichen bestimmt, kann S als die
charakteristische Grösse der plattenförmigen Wärmespeicher angesprochen werden.
Auswahl des Materials und Konstruktion des Speichers müssen ein möglichst
grosses S anstreben.

Die Aussenwandtemperatur für eine gegebene Strombezugszeit.

Wird der Speicher täglich (T 24 Std.) während Ts Stunden mit der konstanten
Leistung Qs Watt/dm2 geheizt, so ist zur Berechnung der Aussenwandtemperatur

vorerst das Strombezugsdiagramm Fig. 3
9r

f

GL

Fig. 3.

T

harmonisch zu analysieren, d. h. in Form
einer Fourierschen Reihe darzustellen.
Dabei ergibt sich zunächst ein konstantes
Glied:

_ Qs Ts
Qk

rp

t Den Koeffizienten a„ des nten Sinus¬
gliedes erhält man in bekannter Weise
(siehe z. B. „Hütte", 23. Aufl., pag. 125):

2 Ç „ 2tt nt j 2 Qs
a„ y \ Q» sin f— dt= 2 Tintsin—=—dt 0 JàYi

irn \ cos
2ji nTa

und analog den Koeffizienten b„ des nten Cosinusgliedes:
T T,

2 f _ 2 7Ttit 2QS Ç 2jtnt Qs 2nnTs
b„ -=r \ Qs cos—=—dt —~ \ cos—Tf^dt^r 0=— -sin •

/ J T T j T jrn T
o o

Sinus- und Cosinusglied können zu einem resultierenden Sinusglied mit dem
Koeffizienten c„ und der Phasenverschiebung <pqn zusammengesetzt werden und es ist:

c„
0
jrn

1 -

und: tg %n

cos 2 TT nTs

T

2XriTs
T

sin
2TtnTs

T
2Q, Ti nTs-- sin—>=—
Tin 7

sin-
1

1 - cos
2 tttiTs

T tg
Ttn Ts

cot m Ts

somit: •Pqn
TT

~2
xn Ts

T

Das Strombezugsdiagramm Fig. 3 für eine konstante Heizleistung Qs während
Ts Stunden innerhalb der Periodendauer von T Stunden kann also analytisdi
dargestellt werden durch die Fouriersche Reihe :

9
Qs Ts 2 Qs " ~ 1 n tt Ts

T Tt n 1 ti
sin T sin

2 nnt TT Tin Ts

~Y~ (25)

Um nun den aus diesen Strombezugsbedingungen resultierenden zeitlichen Verlauf
der Oberflächentemperatur zu berechnen, bestimmt man zu jedem Glied der Glei-
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chung (25) den zugehörigen Vektor dqa.u Hierfür benutzt man die Kurvenschar der
Fig. 2. Zunächst berechnet man k nach Gleichung (22) und X nach Gleichung (11).
Für das nte Glied ist dann:

ty

k„ — und S„ S f/ n
y n

Nun kann man in Fig. 2 auf den zu den Abszissen gehörenden Ordinaten den
absoluten Betrag &„ und die Phasenverschiebung cp„ auf den zu den Parametern kn
(eventuell interpoliert) gehörenden Kurven abgreifen. Damit sind die Glieder der
Fourierschen Reihe, die den variablen Teil der Aussenwandtemperatur darstellt,
bestimmt. Die einzelnen Glieder sind jedoch noch auf den gleichen Anfangspunkt
zu beziehen. Zu diesem Zweck ist das Argument um den Phasenverschiebungswinkel

<yq„ des betreffenden Gliedes der Reihe für q zu vermehren. Man erhält
somit unter Berücksichtigung von Gleichung (25):

2 Qsn=r 1 xtiTs n (2 Tint ,71 rut Ts \tit ,r., hs,n f~ e• T y - —r~ (26)

Theoretisch sind zur Berechnung der Aussenwandtemperatur unendlich viele Glieder
nötig. Da jedoch, wie erwähnt, die Konvergenz von Gleichung (26) besser ist als
von Gleichung (25), so genügen bei den üblichen Strombezugszeiten schon einige
wenige Glieder. In dem nachfolgenden Zahlenbeispiel mussten allerdings für
einstündige Strombezugszeit (Ts 1 Std.) 15 Glieder berücksichtigt werden, um eine
genügend genaue #qa-Kurve zu erhalten.

Dem variablen Teil $qa überlagert sich nun noch die konstante Mitteltemperatur
i'Km, die wir nach Gleichung (6) finden zu:

0sm + ?k 9uk 4- Mi. (27)
a a T

1. Zahlenbeispiel. Zur Erläuterung dieser Untersuchung haben wir für die gleiche
Platte, deren Anheizvorgang Herr Zangger im eingangs erwähnten Aufsatz untersucht

hat, den periodischen Verlauf der Aussenwandtemperatur für verschiedene
Strombezugszeiten berechnet. Um die Leistung in Watt einführen zu können, sind
auch die Materialkonstanten so festgesetzt, dass die Wärmemengen in Wattstunden
(Wh) erscheinen. Die Platte ist s 1 dm dick und besteht aus Speckstein mit einem
spez. Gewicht y 2,9 kg/dm2, einer spez. Wärme c 0,29 Wh/kg 0 C und einer
Wärmeleitfähigkeit x 0,29 W/dm 0 C. Damit ergibt sich eine Temperaturleitfähigkeit:

«=0^T °.345 dm=/h.

Der Wärmeübergangskoeffizient der Oberfläche beträgt a 0,134 W/dm2 0 C. Die
Innenwand der Platte wird mit einer spezifischen Leistung Qs 17,4 W/dm2 geheizt.
Für eine Periodendauer von einem Tag, d. h. 7=24 Std. ist:

s =1 Vw^r °'618 "nd ft=0'134j/y;9Tö|yw=».re.
Der in der angegebenen Weise mit diesen Zahlen berechnete Temperaturverlauf
ist in den Fig. 4 : 6 für verschiedene Strombezugszeiten aufgetragen. Diese Kurven
geben die Differenz zwischen Wand- und Umgebungstemperatur in 0 C (Masstab
links) und gleichzeitig, da die Umgebungstemperatur als konstant vorausgesetzt ist,
die pro dm2 Oberfläche abgegebene Wärmemenge in W/dm'2 (Masstab rechts).
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enthält die Fouriersche Reihe nur Sinusglieder ungerader Ordnung. Daher erhält
man auch für die Reihe der Aussenwandtemperatur nur Sinusglieder ungerader

°C
H 1

20

Ordnung, d. h. auch diese Kurve besteht aus zwei spiegelbildlich symmetrischen
Hälften. Fig. 5 gibt den Temperaturverlauf für 8 stündige Strombezugszeit Ts 8 Std.

Fig. 4.

Fig. 4 gilt für 12 stündige Strombezugszeit Ts 12 Std. pro Tag. Da hierfür
das Strombezugsdiagramm aus zwei spiegelbildlich symmetrischen Hälften besteht,

Fig. 6.
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(ausgezogene Kurve) und Fig. 6 für 1 stündige Strombezugszeit Ts 1 Std. Endlich
sind in Fig. 5 (strichpunktierte Kurve) die Kurven für Ta 8 Std. und Ts 1 Std.
zusammengelegt, jedoch so, dass der Beginn der beiden Strombezugszeiten 210
Winkelgrad 14 Std. auseinanderliegt. Dieser Fall entspricht also dem praktisch
wichtigen, dass der Strom für die Heizung während 8 Nachtstunden, z. B. von 22 bis
6 Uhr und einer Mittagsstunde, z. B. von 12 bis 13 Uhr zur Verfügung steht. Diese
Kurve zeigt, wie wertvoll gerade dieser Mittagsstrom für den Betrieb von Speicheröfen

ist, weil die von ihm erzeugte Wärme die Heizung am Nachmittag sehr wesentlich
verbessert. Spezialtarife für Heizzwecke sollten, wenn immer möglich, den Bezug
von Mittagsstrom erlauben.

Endlich zeigen die berechneten Kurven deutlich, dass die Aussenwandtemperatur
und damit die Wärmeabgabe noch eine Zeitlang zunimmt, wenn der Strom bereits
ausgeschaltet ist, eine Erscheinung, die bei jedem guten Speicherofen beobachtet
werden kann.

Die Innenwandtemperatur.
Der von der Heizleistung herrührende variable Teil der Innenwandtemperatur

gemäss Gleichung (20) kann durch einen Vektor ^dargestellt werden, der sich aus
zwei Vektoren zusammensetzt, von denen der eine 0qi, dem Vektor der Heizleistung

jjr 3 Jl —
um der andere i?qi2 um —nachläuft. Setzen wir den Vektor $qii mit dem

absoluten Wert &1:

0j ß2S(S2 + (s + sft)2) _ e-*s(S2-\-(S-sh)*)

und den Vektor #qi2 mit dem absoluten Wert ©2:

©2 ]/ 4S4 -r (sh)i sin ^2S - arctg 2S^-S{sh)2)

graphisch durch das rechtwinklige Dreieck Fig. 7 oder analytisch zusammen, so
erhalten wir den Vektor öqi, dessen absoluter Wert 0, beträgt:

6; Qs

i 2 ASN
y &Ï+&1

und dessen Phase gegenüber dem Vektor q der Heizleistung
um den Winkel q>, verschoben ist:

X i
©9

<Pi -J+ arctgt-^- •

Setzt man S nach Gleichung (10) ein, so geht Gleichung (20)
über in: Fig. 7.

0„, 51l2^T7ir{si" ~~T~-(T+ arctglr))' (28)

Für grosse Werte von S kann sowohl e~2S wie ©2 gegenüber e2S vernachlässigt

werden und man erhält angenähert:

ßqi ~ Q -]| / T 2jit 7i\
x 2 TZÂyc \sm~f T/ (28a)



506 BULLETIN No. 10 XV. Jahrgang 1924

Der Wert hat also den Charakter eines Korrektionsfaktors und der Winkel
6>, N

arctg-7j^-, der sidi mit zunehmendem S Null nähert, eines Korrektionswinkels der
1

Näherungsgleichung (28a).

Der Einfluss der Umgebungstemperatur auf die Innenwandtemperatur nach
Gleichung (21) ist so gering, dass er nicht weiter untersucht werden soll.

Der zeitliche Verlauf der Innenwandtemperatur für ein bestimmtes periodisches
Strombezugsdiagramm kann nun wieder ähnlich wie für die Aussenwandtemperatur
gefunden werden, indem man das Strombezugsdiagramm als Fouriersche Reihe
darstellt und zu jedem Glied mit Gleichung (28) Koeffizient und Phase des zuge¬

hörigen Gliedes der Innenwandtemperatur

bestimmt und schliesslich die
Glieder zusammensetzt.

Zu dem variablen kommt noch
der konstante Teil der Innenwandtemperatur,

für den wir mit
Gleichung (7) erhalten:

K-Q.-Tf- (t+V)- <29>

Fig. 8 zeigt den Verlauf der
Innenwandtemperatur in der in obigem
Zahlenbeispiel beschriebenen Platte
für eine Strombezugszeit Ts 12 Std.

Würde die Platte dauernd mit
der Leistung Qs geheizt, so würde
sich an der Innenwand die Temperatur

nach langer Zeit der Endtemperatur

i9ik nähern.

öik a(4+~)- (30)

9ik ist in Fig. 8 ebenfalls eingetragen. Beim periodischen Betrieb erreicht die
Höchsttemperatur etwa 85 % davon.

Entwurf von Wärmespeichern.
Die bisherigen Berechnungen zeigen, wie man den zeitlichen Verlauf der

Wärmeabgabe und der Innenwandtemperatur angeben kann, wenn die Abmessungen
der Speicherplatte gegeben sind. Soll jedoch ein Wärmespeicher für bestimmte
Verhältnisse entworfen werden, so ist durch Rechnung festzustellen, wie dick die
Platte gewählt werden soll und wie stark sie pro Flächeneinheit geheizt werden darf.

Da die Fouriersche Reihe für die üblichen Strombezugszeiten von 8—12 Stunden
pro Tag konvergent ist, und das Verhältnis zwischen den Amplituden der
Heizleistung und der Aussenwandtemperatur für höhere Glieder stets kleiner wird,
überwiegt in der Fourierschen Reihe für die Aussenwandtemperatur die erste
Harmonische die übrigen bedeutend. So beträgt z. B. der Unterschied zwischen
höchster und tiefster Aussentemperatur für die im 1. Zahlenbeispiel berechnete
Platte bei 12-stündiger Strombezugszeit nur 9% und bei 8-stündiger Strombezugszeit

19% mehr als die doppelte Amplitude der ersten Harmonischen.
Es genügt daher für den ersten Entwurf nur die erste Harmonische zu

berücksichtigen. Man kann mit den gefundenen Plattendimensionen eine genaue Berechnung

t

Fig". 8.
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des Temperaturverlaufes durchführen, um dann auf Grund des Ergebnisses die
gefundenen Daten, soweit nötig, zu ändern.

Als Voraussetzung der Berechnung wird festgesetzt, dass:
1. die höchste Aussenwandtemperatur #amax den durch hygienische Anforderungen

gegebenen Höchstwert von ca. 100 — 120° C nicht überschreite;
2. die Innenwandtemperatur $imax selbst bei dauernder Belastung nicht höher

werde, als für die Haltbarkeit der Heizwiderstände zulässig ist.

Die zulässige Höchsttemperatur #imax hängt wesentlich vom Material und der
Konstruktion der Heizwiderstände ab, die hier nicht erörtert werden sollen. Das
Generalsekretariat des S. E.V. hat hiefür in dieser Zeitschrift (Bulletin 1918, Seite 125)
400-600° C angegeben.

Die höchste Aussenwandtemperatur ist die Summe aus der Mitteltemperatur
#am und der halben Differenz 4 d aus der höchsten und tiefsten Temperatur. Nach
obigem darf die Amplitude der ersten Harmonischen betragen:

2 ^ 1

T
worin t] — 0,8 — 0,9 beträgt, je nach der Strombezugszeit. Ist Ts < so stellt

allerdings die Mitteltemperatur $am, wie die Fig. 5 und 6 zeigen, nicht das
arithmetische Mittel zwischen höchster und tiefster Temperatur dar. Bei der
Entwurfsberechnung, die nur die erste Harmonische berücksichtigt, braucht jedoch hierauf
nicht Rücksicht genommen zu werden.

Ist Qs die gesuchte Belastung pro Flächeneinheit für die gegebene Strombezugszeit
Ts innerhalb der Periode T, so erhält man mit den Gleichungen (26) und (27)

die höchste Aussenwandtemperatur #amax:

9 9 I 9 0s / 7"s 2 a Jrjs\ xtfamax öam ^ 2~ + a (-f- + 6 sin -f-j • (31

In dieser Gleichung ist & eine durch die Gleichung (23) resp. die Kurvenschar Fig. 2

gegebene Funktion von k und S. k ist eine durch die Konstanten des Materials
gemäss Gleichung (22) gegebene Grösse. S ist ausserdem von der gesuchten
Plattenstärke abhängig.

Die maximale Innenwandtemperatur #imax bei Dauerbelastung erhält man, indem
man in Gleichung (30) s aus Gleichung (11) substituiert unter Berücksichtigung von
Gleichung (22) ebenfalls als Funktion von k und S.

$uk + (kS + l). (32)

Aus den Gleichungen (31) und (32) kann man durch Division — eliminieren und
erhält: a

<33)

" Olli
rjy

Aus dieser Gleichung sind die unbekannten Grössen 6 und S mit Hilfe von Fig. 2
zu bestimmen. Die linke Seite wird als Funktion von S durch die zu dem bekannten k
gehörende Kurve ausgedrückt. Die rechte Seite dagegen kann durch eine Gerade

maX $uk + Qs

L'ffr
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als Funktion von S dargestellt werden. Der Schnittpunkt dieser Geraden mit der
zu k gehörenden Kurve hat die Ordinate X aus der sich die Plattenstärke s:

s
a 7

TT

(34)

und die Ordinate Q, aus der sich die Amplitude öqa der ersten Harmonischenybe-
redinen lassen.

o 2 Qs n n Ts
vqa —— (> sin „ • (35)

7Ï u T

Mit S erhalten wir ferner die Heizflächenbelastung Qs durch Gleichung (32):

^ _
U (p\ max — $uk)

(ftS+1)
• <36)

Auf der gleichen Ordinate unterhalb der Abszissenaxe finden wir in Fig. 2 auf der
zum Parameter k gehörenden <p-Kurve den Winkel <p, um den der Vektor der
Aussenwandtemperatur dem Heizvektor nacheilt. Die Funktion des festen Wärme-
speidiers besteht im Gegensatz zu andern Wärmespeichersystemen (Dampf- oder
Flüssigkeitsspeicher) nicht darin, eine bestimmte Wärmemenge aufzunehmen und
zu beliebiger Zeit wieder abzugeben. Vielmehr erfolgt die Wärmeabgabe um eine
bestimmte, durch die Konstruktion des Speichers gegebene Zeit Ta später als der
Strombezug. Die Verzögerungszeit Ta ist im Wesentlichen gegeben durch den
Winkel (p um den die erste Harmonische der Aussenwandtemperatur dem
Heizvektor nacheilt.

rw • <37>

Der Winkel <p ist daher diejenige Grösse, welche die Wirkungsweise des Speicherofens

im Wesentlichen charakterisiert. Er ist von der Belastung der Heizfläche
unabhängig und durch die Wandstärke sowie die Materialkonstanten bestimmt und
beträgt nach Gleichung (23) im Winkelmass angenähert:

9 360 0 + arctg
{ fe

• (38)

2. Zahlenbeispiel. Zur Erläuterung soll für eine Strombezugszeit von Ts 9 Std.
täglich ein Wärmespeicher berechnet werden, dessen Material (z. B. Basalt) folgende
Materialkonstanten habe:

spez. Gewicht y 3 kg/dm3 ; Wärmeleitfähigkeit / 0,25 W/dm 0 C ;

spez. Wärme c 0,23 Wh/kg 0 C

womit sich eine Temperaturleitfähigkeit a ergibt.

a=°'362 dm2/h •

Die Wärmeübergangszahl der Oberfläche a sei:

a 0,134 W/dm20 C.

Damit erhalten wir:
/ ?4

" °'134 M 3^23^0,25 0'81) '
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Bei einer konstanten Raumtemperatur von 15° C soll die höchste Aussenwand-
temperatur 105° C nicht überschreiten. Für die Innenwandtemperatur werde bei
Dauerbelastung 415° C zugelassen. Mit:

sin s*n ~ 670 30 '^ 0,924

wird Gleichung (33):

9 ^w(S»s+"-¥)
Die Gerade 0 — 0,306 S — 0,229 ist in Fig. 2 eingetragen. Ihr Schnittpunkt mit
der 0-Kurve für ft 0,89, zwischen den Kurven für ft 0,75 und ft 1,0
interpoliert, hat die Abszisse S 1,41 und die Ordinate 0 0,20.

Damit erhält man die Wandstärke s :

1 A i ~~i / 0,362 • 24 n 01,41 y —— 2,34 dm

und die Heizflächenbelastung Qs :

„ 0,134 • 400 _ .../, 0Qs ~ 0,89- 1,41 + 1
-23>8W/dm-'-

Die Differenz zwischen höchster und tiefster Aussenwandtemperatur ergibt sich
angenähert zu:

_ 4 - 23,8 • 0,924 - 0,2
n • 0,134 • 0,9 '

während die mittlere Temperaturdifferenz zwischen Aussenwand- und Raumtemperatur
#am beträgt:

I) —
23'8

57 o qam 0,134 0,134

Die Aussenwandtemperatur variiert also zwischen:

46
15 + 67±-^-= 105° und 59° C.

Die Phasenverschiebung kann der Fig. 2 entnommen werden zu cp 116°. Die
Wärmeabgabe ist somit gegenüber dem Strombezug um 7a Std. verzögert:

T 24 —77 Std
360

Mit Qs und s sind die Abmessungen des Ofens bestimmt. Soll er einen Raum heizen,
dessen Wärmeverluste W (Watt) betragen, so ist die erforderliche Heizfläche Hn:

WT
Hn -%-±T dm2 (39)

VS ^ s

und das Speichervolumen Vol:

u i u Ws T
Vol s Hn r • (40)

\J s ' s
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Ein Teil des Speichervolumens wird allerdings als „Plattenrand" anzusprechen
sein, d. h. der Wärmefluss wird daselbst nicht senkrecht zu der Oberfläche verlaufen
und daher die gegebene Berechnung dafür nur teilweise zutreffen. Es ist jedoch
Aufgabe des Konstrukteurs, tote Winkel nach Möglichkeit zu vermeiden. Zu diesem
Zwecke ist der Ofen so auszubilden, dass der Wärmestrom überall möglichst
senkrecht zur Heizfläche austritt; dann wird das nach Gleichung (40) berechnete
Speichervolumen genügen.

Schliesslich soll noch einmal darauf hingewiesen werden, dass alle Berechnungen
auf der Annahme beruhen, die Materialkonstanten seien von der Temperatur
unabhängig. Das trifft jedoch nicht zu; namentlich die Leitfähigkeit ist für viele
Speichermaterialien von der Temperatur ziemlich stark abhängig. Man muss daher
mit Mittelwerten rechnen. Die Abhängigkeit der Materialkonstanten von der
Temperatur in der Rechnung zu berücksichtigen, würde wohl sehr weit führen und
kaum befriedigend gelingen, weil nur einfache Ansätze in Betracht kommen können,
die der Wirklichkeit doch nur teilweise entsprechen. Wenn das Bedürfnis nach
weiterer Erkenntnis besteht, so wird wohl nur der Laboratoriumsversuch genügend
Aufschluss geben, wobei festzustellen wäre, wie weit die tatsächlich erreichten
Temperaturen von den mit Mittelwerten für die Materialkonstanten berechneten
abweichen. Bei diesen Versuchen müssten die unserer Berechnung zugrunde liegende
Annahme periodischen Wärmeflusses verwirklicht werden, d. h. der Ofen mehrere
Tage nacheinander geheizt und der Wärmeabgabe überlassen werden, um jede
Unsicherheit über den Anfangszustand der Temperaturverteilung auszuschliessen.

Eigenschaften und Anwendung des Quarzilit-
Widerstandsmaterials.

Von der A.-G. Kummler <£ Matter, Aarau.

In diesem Aufsatz werden die physikalischen Dans cet article on indique les propriétés
Eigenschaften der aus Quarz und Kohle herge- physiques des résistances en quariz-silit, fabri-
stellten Quarzilitwiderstände besprochen und \ quées au moyen de quartz et de charbon, puis
daraus Sdiliisse auf die Anwendungsmöglichkeit \ on en tire des conclusions relatives aux appli-
desselben gezogen. j cations possibles de ces résistances.

Im folgenden werden die physikalischen Eigenschaften desjenigen Quarzilit-
materials einer kurzen Betrachtung unterzogen, welches im Bulletin des S.E.V.,
Jahrgang 1922, Heft 7, als zur zweiten Gruppe gehörend bezeichnet wurde, nämlich
zur Gruppe der Widerstandsmaterialien aus Metalloiden, Metallkarbiden und Kohlenstoff

für niedrige Temperaturen.
Der Apparatebau stellt das hauptsächlichste Anwendungsgebiet desselben dar.

Es hat sich namentlich dadurch Eingang in denselben verschafft, weil es einen Widerstand

von fast beliebigem Ohmwert auf einen möglichst kleinen Raum zu konzentrieren

vermag. Quarzilitwiderstände können bei denselben Abmessungen nur Bruchteile

eines Ohm bis zu mehreren Millionen Ohm aufweisen. Der Widerstand ist
bei den gebräuchlichen Stromfrequenzen induktionslos. Diesen Umständen ist es
zuzuschreiben, dass Quarzilit-Widerstände immer weitere Verbreitung finden, namentlich

auf dem Gebiete des Ueberspannungsschutzes : als Dämpfungswiderstände, als
Schutzwiderstände für Stromwandler und Relais gegen Sprungwellen mit steiler
Front, als Antennenwiderstände bei Radioempfangsanlagen, in der (gewöhnlichen)
Télégraphié usw.

Es erscheint uns deshalb angebracht, die wichtigsten Eigenschaften des Materials
kurz zu beschreiben. Es soll dies in folgender Reihenfolge geschehen:

1. das spezifische Gewicht des Materials;
2. die spezifische Wärme;
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