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Mathematische Theorien für den Durchschlag
fester Isoliermaterialien.

Von Dr. ing\ L. Dreyfus, Vâsterâs.

Die beschriebenen
Versuche werden nach
Vornahme einiger weniger
umfangreicher Ergänzungsversuche

gute Anhaltspunkte für
die Aufstellung der neuen
Vorschriften und für die
Bemessung der am häufigsten
zur Verwendung gelangenden

Fundamente von
Freileitungstragwerken bieten.
Umsomehr gebührt Allen,
die deren Durchführung und
die Vornahme eingehender
Messungen ermöglicht
haben, der Dank des Vereins.
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Der Verfasser verweist anfangs auf die
verschiedenen Erklärungen des Durchschlages fester
Isolierstoffe und behandelt hieraufanalytisch und
graphisch eindimensionale, ebene und zylindrische
Wärmeleitungsprobleme fester Isolierstoffe mit
Bezug aufdie Durchschlagsfestigkeit des letzteren.

Schliesslich wird die praktische Anwendung
der hier abgeleiteten Wärmeleitungstheorie zur
Konstruktion von Durchführungen behandelt.

L'auteur rappelle les différentes explications
qu'on donne du phénomène de percement des
isolants et montre comment on peut résoudre
analytiquement et graphiquement des problèmes
de transmission de la chaleur dans des corps
plans ou cylindriques.

Il montre l'application de sa méthode de
calcul à la construction d'isolateurs de traversée. '

Einleitung.
Zur Erklärung des elektrischen Durchschlages fester Isolierstoffe kann man drei

Wege einschlagen.
1. Man kann versuchen, denselben als ein rein elektrostatisches Problem

aufzufassen, wonach durch die elektrische Feldstärke der Zusammenhang der Moleküle
gelockert wird, was einen momentanen Durchschlag zur Folge hat. Die elektrische
Festigkeit muss sich dann in einer bestimmten Feldstärke F (kV/cm), oder in einem
bestimmten Werte des Linienintegrals der Feldstärke längs eines gewissen Weges

Xo

jc0 (also ^Fdx) angeben lassen. Dass diese Auffassung sich nicht mit der Wirk-
o

lichkeit deckt, ist frühzeitig erkannt worden. Man weiss, dass alle festen Materialien
momentan sehr viel höhere Feldstärken ertragen als bei Prüfdauern von einer Minute
oder mehr. Man pflegt daher für die Isolationsprüfung von Maschinen und Apparaten

eine Prüfung mit Ueberspannung von der Dauer einer Minute vorzuschreiben.
2. Ein zweiter Weg zur Erklärung des elektrischen Durchschlages ist der, dass

man denselben ausschliesslich als ein Erwärmungsproblem auffasst. Im elektrischen
Felde erleidet das Isolationsmaterial Verluste (Leitungsverluste im Gleichfeld, Leitungsund

Hystereseverluste im Wechselfeld). Diese Verluste erwärmen das Material. Bei
den meisten Isolationsmaterialien steigen aber die Verluste mit der Temperatur.
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Erhöhte Temperatur bedeutet also erhöhte Verluste, erhöhte Verluste ein weiteres
Ansteigen der Temperatur. Je höher die Temperatur des Isoliermaterials über die
der Umgebung steigt, um so mehr Wärme kann abgeleitet werden. Es ist also
möglich, dass schliesslich ein Wärmegleichgewicht eintritt, wobei die erzeugte Wärmemenge

gleich der abgeleiteten ist. In diesem Falle schlägt das Material nicht durch.
Es ist aber auch möglich, dass dieses Gleichgewicht infolge des Anwachsens der
Verluste mit der Temperatur nicht eintritt. Dann steigt die Temperatur bis zur
Zerstörungstemperatur des Materials, also bis zum Durchschlag.

Diese Auffassung ist der schwedischen elektrischen Industrie seit langem vertraut
und kommt in ihren Prüfmethoden zum Ausdrude. Im Laboratorium der A.S. E. A.
werden -beispielsweise seit seinem Bestehen die Durchschlagsspannungen aller wichtigen

Isolierstoffe als Funktion der Prüfdauer bestimmt und diese ganze Zeitkurve
wird womöglich bei verschiedener Temperatur (15° C bis 90° C) aufgenommen.

3. Eine weitere Auffassung weicht von der vorigen insofern ab, als sie auch
die Möglichkeit eines elektrischen Durchschlages ohne vorherige abnorme Erwärmung
zulässt; also der Lockerung des molekularen Zusammenhanges durch besonders hohe
Feldstärken nicht alle Bedeutung absprechen will. Vielleicht sind „momentane
Durchschläge" durch den elektrischen Funken in dieser Weise zu erklären.

Mag man nun der zweiten oder dritten Auffassung zustimmen, so wird man
doch, wenn man an eine rechnerische Untersuchung des Durchschlagsproblems geht,
die zweite Auffassung zugrunde legen müssen. Denn während uns die Gesetze der
Wärmeleitung seit langem bekannt sind, und für die Veränderlichkeit der Verluste
mit der Feldstärke und Temperatur unzählige experimentelle Kurven vorliegen, wissen
wir so gut wie nichts über die sogenannte Lockerung des molekularen Aufbaues.
Auch ist ziemlich sicher, dass diese wenigstens bei Prüfdauern von mehr als einigen
Sekunden gegen die Zerstörung des Aufbaues durch zu grosse Erwärmung ganz
in den Hintergrund tritt.

Innerhalb der zweiten Auffassung sehe ich, je nach der Stärke der Schicht, in
welcher man das Isolationsmaterial auf Durchschlag untersucht, zwei Wege für eine
mathematische Behandlung des Problems.

In vielen wichtigen Fällen der Hochspannungstechnik verwendet man
Isoliermaterial mit solcher Wandstärke, dass lokale Inhomogenitäten die Verlustziffer eines
kleinen Zylinders, den man sich in Richtung der elektrischen Kraftlinien herausgeschnitten

denken kann, nicht wesentlich beeinflussen. Eine Theorie, welche sich auf
diese Voraussetzung stützt, kann man als eine Theorie des Durchschlages für quasi
homogenes Material bezeichnen. Ein klassisches Beispiel hierfür ist der Durchschlag
von Kondensatordurchführungen. In der Tat ist die Ursache dieser Durchschläge
bereits 1916 von Dir. Liljeblad erkannt (Teknisk Tidskrift 1916, Heft 8 und 9) und
1920 von Ing. Broon und dem Verfasser als reines Erwärmungsproblem
mathematisch behandelt worden (Interner Technischer Bericht der A.S.E.A.).

Eine zweite Gruppe von Erscheinungen umfasst den Durchschlag von
Isoliermaterialien in sehr dünnen Schichten. Hierbei muss man die Möglichkeit zulassen,
dass ein kleiner, in Richtung des Feldes herausgeschnittener Zylinder aus Material
von wesentlich höherer als der durchschnittlichen Verlustziffer bestehe. Bei der Prüfung
erhitzen sich diese Stellen mehr als ihre Umgebung, es tritt ein Wärmeausgleich
zwischen den heissen Kanälen und den angrenzenden Schichten auf, der bei nicht
zu hohen Verlusten zu einem Wärmegleichgewicht, bei l'eberschreitung einer bestimmten
Beanspruchung dagegen zum Durchschlag führt. Eine auf dieser Vorstellung fussende
Theorie für inhomogenes Material ist kürzlich von Prof. Wagnerveröffentlicht worden1).
Wir wollen derartige Theorien kurzweg als „Kanaltheorien" bezeichnen.

Der Unterschied zwischen der älteren und neueren Theorie ist also folgender:
Die ältere Theorie für quasihomogenes Material sucht den Durchschlag aus der

c) The physical nature of the electrical breakdown of solid dielectrics, Journal of the A.I.E.E.,
December 1922, pag. 1034.
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mittleren Verlustziffer des Materials abzuleiten, die neuere Kanaltheorie hingegen
aus der grössten lokalen Verlustziffer. Es ist daher ohne weiteres klar, dass die
Kanaltheorie — sofern sie mathematisch richtig durchgeführt wird — für gleiche
Verhältnisse niedrigere Durchschlagspannungen liefern muss als die ältere Theorie.
Da die Wagnersche Theorie diese Forderung nicht unter allen Umständen erfüllt,
wird es nötig sein, sie einer Kritik zu unterziehen.

Die Theorie des Durchschlages von quasihomogenen, festen Isolierstoffen
bei Dauerprüfung, mit besonderer Berücksichtigung der massiven Papierdurchführungen.

Es ist schwierig, eine physikalisch einwandfreie Theorie für inhomogene Isolierstoffe

aufzustellen, wenn man nicht zuvor die Theorie des Durchschlages von quasi
homogenen Isolierstoffen beherrscht. Wagners Kanaltheorie krankt daran, dass ihr
Verfasser diese Vorstufe übersprungen hat.

Der Durchschlag bei grosser Prüfdauer ist eine Folge des Versagens der
Wärmeableitung. Hieraus folgt, dass ein und dasselbe Material bei gleicher Dicke eine
verschiedene Durchschlagfestigkeit besitzen kann, je nach den äusseren Bedingungen
für die Ableitung der Verlustwärme. Jede Theorie des Durchschlages muss daher
nicht allein die Vorgänge im Isoliermaterial, sondern auch die Verlustableitung ausserhalb

des Isoliermaterials in Betracht ziehen.

Bei vielen technisch wichtigen Beispielen ist das Temperaturgefälle in einer
Richtung so viel grösser als in den dazu senkrechten Richtungen, dass man das
Temperaturgefälle nur in dieser einen Koordinatenrichtung zu berücksichtigen braucht.
Solche Probleme nennen wir „eindimensionale'
Probestückes und der Elektroden unterscheiden

wir ausserdem „eindimensionale ebene"
und „eindimensionale zylindrische"
Wärmeleitungsprobleme.

1. Analytische Theorie für eindimensionale,
ebene Wärmeleitungsprobleme.

Das einfachste Beispiel dieser Klasse stellt
Fig. 1 dar. Sie zeigt den Querschnitt durch
eine Isolierplatte, welche zwischen zwei Staniol-
elektroden von einem homogenen elektrischen
Felde senkrecht durchsetzt wird. Die von den
Elektroden bedeckte Fläche sei so gross und
die Wärmeableitung von solcher Art, dass wir
in dem gezeichneten Bereiche die Temperatur
als eine Funktion der Abszisse x allein betrachten

dürfen. Die Wärmeleitung innerhalb der
Platte erfolgt darum ausschliesslich in dieser (x-)
Richtung, und zwar symmetrisch zur
Mittelebene, wenn beide Elektroden dieselben
Ableitungsmöglichkeiten besitzen.

Je nach der Form des untersuchten

Fig. 1.

Isolierplatte zwischen Metallelektroden.

Es sei:

Watt
°C
cm

die Wärmeleitzahl des Isoliermaterials;
cmz

Watt
3- seine Verlustziffer bei einer bestimmten Feldstärke F, Perioden-

cm zahl v und Temperatur $ ;
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- Watt
p 5- die entsprechende Verlustziffer bei der Oberflächentemperatur d

cm3 der Platte;

cp (ß) die Funktion, welche das Anwachsen der Verluste mit der Tem-
P peratur ausdrückt.

Dann lautet die Gleichung der Wärmeleitung innerhalb der Platte nach Erreichung

des Wärmegleichgewichtes:

Diese Gleichung besitzt für die angenommenen Symmetriebedingungen die Lösung:

(2>

j n / ^ f00 dü
und x= /— - \ — r- (3)

'l9o

y dft

Dabei haben wir die Maximaltemperatur $0 in der Mittelebene als Integrationskonstante

gewählt.
Aus Gleichung (3) können wir eine ausserordentlich wichtige Folgerung ziehen:

Denken wir uns die Integration zwischen Rand und Mitte ausgeführt und verdoppelt,
so ergibt sich:

-l/s r^= (4>

<p dfiP yj
oder mit Einführung der Substitution:

P-$0 (1

v(^o,ö) V2 1
" - (5)

q> dd
V

Al P
f=v>Wo,n- (6)

In dieser Gleichung ist die rechte Seite bei gegebener Verlustfunktion <p und
Randtemperatur 1? ausschliesslich eine Funktion der Höchsttemperatur #0. Die linke
Seite dagegen enthält die Plattenstärke, die Verlustziffer bei der Oberflächentemperatur
und die Wärmeleitfähigkeit des Materials. Gleichung (6) behauptet also, dass bei
gegebener Randtemperatur Platten von ganz beliebiger Stärke A dieselbe
Höchsttemperatur aufweisen, soweit sie nur in der „charakteristischen Temperatur":

4 ^ (7)

übereinstimmen.
Eine beinahe noch^ wichtigere Folgerung lässt sich aus dem Verlauf der

Temperaturfunktion ableiten: Wenn nämlich die Verlustfunktion cp dauernd mit
der Temperatur zunimmt, so besitzt die Funktion y>(0o> für ® konst. ein Maximum

y>m„ bei einer gewissen Temperatur #0m. Das bedeutet:
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Soll die Temperaturverteilung innerhalb der Platte stabil sein, so darf die
Innentemperatur niemals die Höchsttemperatur b0 m überschreiten. Andernfalls ist kein
Wärmegleichgewicht möglich, sondern die Temperatur wächst J)is zum Durchschlag
der Platte. Dabei ist eine Funktion der Randtemperatur ä und damit von der
Wärmeableitung der Elektroden abhängig.

Mit Rücksicht auf diese neue Erkenntnis setzen wir:

(8)

Dies ist diejjrösste Plattenstärke, mit welcher bei gegebener Randtemperatur ä und
Verlustziffer p stabile Verhältnisse erreicht werden können.

Gleichung (8) lässt noch eine v/eitere Schlussfolgerung zu: Bei gegebener
Temperatur und Periodenzahl ist die Verlustziffer ausschliesslich eine Funktion der elek-

£kV
trischen Feldstärke F — und daher auch umgekehrt:

Diejenige Spannung, welche bei Dauerprüfung schliesslich zum Durchschlag führen
muss, beträgt also:

E=AfÇp) Af (9)

Wir sehen hieraus, dass die Durchschlagsspannung bei gegebener Oberflächentemperatur
keinesfalls proportional der Plattenstärke sein kann. Setzen wir beispielsweise:

p c(4)"bezw.4 (i)i (10)

so wird E (11)

Bei grossen Feldstärken, wie sie dünne Platten ertragen, ist n> 2. Hier steigt
also die Durchschlagsspannung für konstante Oberflächentemperatur mit der Plattenstärke.

Bei dicken Platten dagegen, die nur geringe Feldstärken aushalten, kann
n 2 gesetzt werden. Von einer gewissen Plattenstärke an steigt daher die
Durchschlagsspannung bei Dauerprüfung nicht mehr mit Vergrösserung der Plattenstärke.
Dieses Resultat steht mit der Wirklichkeit in weit besserer Uebereinstimmung als
das Ergebnis der Wagnerschen Kanaltheorie, wonach die Durchschlagsspannung
proportional der Plattenstärke sein soll.

Wir haben bisher alle Grössen auf die Oberflächentemperatur & der Platte
bezogen. Es gibt eine grosse Zahl praktischer Beispiele, in welchen wir & schätzen
können. Wo dies nicht zutrifft, müssen wir versuchen, ö auf Grund einer Annahme
über die Wärmeabgabe der Elektroden aus der Temperatur $r des umgebenden
Mediums zu berechnen. Gewöhnlich setzt man die von 1 cm2 der Elektroden
abgeleitete Wärme proportional dem Temperaturgefälle ö-d,. Bezeichnet daher pm die
mittlere Verlustziffer der Platte und verläuft die Wärmeströmung symmetrisch zur

A
Platten-Mittelebene, so gilt für x

=*<*-*><I2>
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Nun ist nadi Gleichung (2)

Xd
Ä~d

und nadi Gleichung (6)

2 -IÄIjl
w x 'A ip

Durch Multiplikation folgt daraus für die mittlere Verlustziffer

_,.rJ
ISo

cpd.fi

Pn. 2P- " (13)

und für die Umgebungstemperatur

dT d-4~^fi — (13a)
2 ju [i yj

Da die Höchsttemperatur fi0 aus der Randtemperatur berechnet werden kann, so
ist die rechte Seite ausschliesslich eine Funktion von fi und umgekehrt fi ausschliesslich

eine Funktion von fir. Diese Funktion ist jedoch in der vorliegenden Form so
verwickelt, dass ich sie nicht anwenden will, um den Einfluss der Wärmeabgabekonstante

ß auf die Stabilität des Wärmegleichgewichtes zu untersuchen. Es genüge
der Hinweis, dass bei dünnen Platten die Herabsetzung der Stabilitätsgrenze durch
das Temperaturgefälle fi — fir sehr erheblich sein kann, und dass wir später eine
einfache graphische Methode kennen lernen werden, um sie genügend genau zu
bestimmen. Hier will ich nur noch die Grössenordnung der Wärmeabgabekonstanten ß
angeben. Bei Elektroden mit natürlicher Luftkühlung kann

Watt
n ^ 0,001 cm20C

gesetzt werden. Bei Prüfung in Oel ist dagegen

Watt
u - 0,01 ~ 0,012 g"cm20C

In beiden Fällen sind dünne, flache Elektroden vorausgesetzt, die mit ihrer ganzen
Fläche auf der Platte aufliegen und die ihre Wärme nur an das umgebende Medium
und nicht etwa an anderweitig gekühlte oder erhitzte Metallmassen abgeben.

Wir wollen nun die Theorie auf ein Material anwenden, das wegen seiner
grossen Bedeutung für die Hochspannungstechnik besonderes Interesse beansprucht,
nämlich auf das Bakelitpapier. Produkte, die aus Bakelitpapier hergestellt sind,
kommen unter den verschiedensten Bezeichnungen in den Handel, so als Pertinax-
papier, -platten, -durchführungen, oder als Haefelytplatten, -zylinder usw. Die
Verlustkurven eines nicht erstklassigen schwedischen Bakelitpapieres zeigt Fig. 2. Die
Aufnahmepunkte Hessen sich gut durch Parabeln interpolieren, ein Beweis dafür,
dass bis zu 20 kV/cm die Verluste proportional dem Quadrate der Feldstärke (.F)
gesetzt werden dürfen. Fig. 3 zeigt die Zuhahme der Verluste mit der Temperatur.
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Verlustkurven von Bakelitpapier bei konstanter
Temperatur.

Fig. 3.

Verlustkurven von Bakelitpapier bei konstanter
Feldstärke.

Die strichlierte Kurve, welche sich mit
der experimentellen Kurve bei Temperaturen

über 50 Grad beinahe deckt,
gehorcht der Formel: / F \2 u

P =(~2Ö~j (0 - 0)«

p
275

(117-0)8
p 0,0016 • e 0.087 (0—65)

(14)

mit k 275 (14a) und 0=117°C. (14b)

Bei dieser Temperatur wird nach Gleichung (14) die Verlustziffer unendlich gross.
In der Tat tritt bei derart hohen Temperaturen ein langsames Verkohlen des

Papiers ein, welches allmählich zum Durchschlag führen muss. Indessen liegt die
Höchsttemperatur &0m, bei welcher eben noch ein Wärmegleichgewicht möglich ist,
erheblich tiefer als <9, so dass man die Verlustkurve zwischen & upd t)0m auch durch
andere Gesetze interpolieren darf, die erst für unendliche Temperatur eine unendliche

Verlustziffer ergeben. Ein solches, besonders von Physikern gerne angewandtes
Gesetz ist die Exponentialfunktion.

(15)p pe a (0-0)

Die punktierte Kurve in Fig. 3 ist mit:

*,-(£)•0,0016

und a 0,087

(15a)

(15b)

gezeichnet und kann für Temperaturen über 65° ebenfalls als eine brauchbare
Interpolation bezeichnet werden. Da sich dieses zweite Gesetz bei zylindrischen
Problemen als besonders leicht anwendbar erweist, wollen wir die im vorigen
abgeleitete allgemeine Theorie nach beiden Formeln (14) und (15) durchführen.

Erstes Gesetz.

<P(P)
tf\3

9-d (14c)
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Gleichung (5):
y fJ

1 —1 / I M _ » \°
!0

rf

1 1

(0 - i?o)2 (0 - !))'<

r^o d "d

2 p>_

y;

=2^jli/(#4T-'- es»
t/(6> - d)3 \ \Q-%'

Wir berechnen:
yra« ]/ 0 - 0 (17)

Mr: =2 (l8>

Die höchste Innentemperatur, bei welcher noch ein Wärmegleichgewicht möglich ist,
beträgt somit für gegebene Randtemperatur &

<W 0,293 0 + 0,700 0 34,3° + 0,707 0. (18a)

Die zugehörige grösste Plattenstärke ist nach Gleichung (8):

P

und die höchste erreichbare Durchschlagspannung:

4« ]/-i(ö-0) (19)

£ra,x - "j/x^(0 - 0). (20)

Setzen wir hierin: Â — 0,00165

P

Watt
cm °C

und für 20 kV/cm: -£• 1,455 (0 - 0)3
P

so wird : o,049 (0 -0)*= 0,049 (117 - 0)2. (20a)

Also: 0= 50° 60° 70° 80° 90°

£ÏL= 220 160 108 67 36.

Man kann also eine Platte aus diesem Material so stark machen wie man vill.
Wenn man sie in heissem Oel prüft, und die ganze Verlustwärme in der Richtung
der elektrischen Kraftlinien abgeleitet werden muss, kommt man über eine bestimmte,
recht niedrige Durchschlagsspannung nicht hinaus.

Geht man nicht bis zur Stabilitätsgrenze, so kann man die höchste
Innentemperatur aus Gleichung (6) und (16)

l/ï= w 2
(e~*o>8\ À V(0-&)3 r

1
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berechnen. Hieraus folgt nämlich gemäss Gleichung (19):

A_±_ _ o (®~W 1 l(*sdLY^ -'{e-ß) \\e-dj
und:

e-ß (21)

Fig. 4 illustriert diese Gleichung. Stabiljst im allgemeinen die Temperaturverteilung
ß — $ 1

nur in dem abgebildeten Bereich —1-—— < 1 —— 0.293.
0-Q—-/2

e-d

Wenn auch das Gesetz der Temperaturverteilung interessiert, so muss
Gleichung (3) und (16) zu Rate gezogen werden. Durch einfache Umformung folgt
aus denselben:

v 2(6» - tf)2

(0-tfo)2 ^TTZZÄV-i (22)

Das ist die Gleichung einer Hyperbel mit der Temperaturachse 6 — #0 und der
Breitenachse :

b=Am'x\0- 0
(22a)

welche in Fig. 1 eingezeichnet ist.



330 BULLETIN No. 7 XV. Jahrgang 1924

An der Grenze der Stabilität wird:

i,= 4max

K Mittel (tf) •& + 0,644 (tf0 - d) (22b)

Ob grössere Unterschiede zwischen Umgebungs- und Elektrodentemperatur zu
erwarten sind, lehrt Gleichung (13a). Hiernach gilt:

ê-dT ^-P- 1 =4— (23)

j r / 2 p

und maximal für ^

£ _ 0 ^n,«P V /tp(@ /23a\
p p 2p

Aus der letzten Gleichung kann man schliessen, dass an der Stabilitätsgrenze
die mittlere Verlustziffer der ganzen Platte doppelt so gross ist als die Verlustziffer

p der Randschichten. Es ist daher sehr empfehlenswert, Prüfungen der
Durchschlagfestigkeit mit Verlustmessungen zu kombinieren. Kommt man dabei zu dem
Resultat, dass bei ungefähr gleicher Elektrodentemperatur die Verluste nach einiger
Zeit auf mehr als das Doppelte gestiegen sind, so kann man ziemlich sicher sein,
dass die Platte durchschlagen wird.

Zweites Gesetz.

Als zweites Gesetz haben wir angenommen, dass die Verluste mit der
Temperatur nach einem Exponentialgesetz zunehmen, dass also für gleiche Feldstärke:

p p ea (15)

gesetzt werden kann. Wir können mit diesem Gesetz ein anderes kombinieren,
wonach auch die Dielektrizitätskonstante £ mit der Temperatur nach einem ähnlichen
Gesetz zunimmt:

£ ee/3(tf-tf). (24)

Für unser Bakelitpapier z. B. steigt die Dielektrizitätskonstante mit ungefähr 0,6 %

pro Grad. Dies hat zur Folge, dass sich die Prüfspannung E nicht gleichmässig
dE

auf die Plattenstärke zl verteilt, sondern dass die Feldstärke F— —-z— der in-' dx
neren Schichten im Verhältnis der Dielektrizitätskonstanten geringer ausfällt als die
Feldstärke F der Randschicht. Nehmen wir ausserdem an, dass die Verluste mit
der nten Potenz der Feldstärke wachsen, so lautet nunmehr unser Verlustgesetz:

<P (t) ey[d~d] (25)

mit : y a - n ß (25a)

oder für: a 0,087, ß — 0,006 n — 2,
y 0,075 (25b)
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Den weiteren Rechnungsgang brauche ich nur anzudeuten :

Gleichung 5:
y> =-JT —'

9J
c y (i? — id)d$

d &-i/ 2/_ r*>

y ey^o-d)#) y j _ ,7 Wo-i9)

^
'arctgh VI — g-y Wo-i». (26)

Wir beredinen: 1,875
V-« -7=- (27)

1! y
fUr: ^-»-^=-^=15,9°. (27a)

Wir sehen daraus, wie gering zuweilen die Temperaturunterschiede zwischen
Plattenmitte und Oberfläche sein müssen, wenn die Stabilitätsgrenze nicht
überschritten werden soll. Hierbei ist die Feldstärke in der Plattenmitte (F0) etwas
kleiner als an der Oberfläche (F), da die Dielektrizitätskonstante s mit der
Temperatur zunimmt:

Jpl eß(#o-ö) ß-1.1881 0,91 (27b)

Daher beträgt die mittlere Feldstärke angenähert:

7~l+ff°±+2V''<~°-94- <27<>

Nach Gleichung (8) erreichen wir die Stabilitätsgrenze bei gegebener Oberflächentemperatur

d mit einer Plattenstärke:

^max l,875l/J- (28)
V p yp y

und berechnen daraus die grösste erreichbare Durchschlagspannung :

Emax 1+2c~1,188y 1,875~jX £ — ^0,94 • 1,875l/i £ — •

3 v p y V
p y

Setzen wir hierin wieder:

A 0,00165, y — 0,075

F2 400
g-oW-65») (15a)

p 0,0016
c

so wird: £max 130 e - y w"-65°>
0 0,os7 (29a)

also: 0 65° 70° 80° 90°
Emax 130 105 68 43,5.
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Das sind im grossen und ganzen dieselben Werte, wie die nach dem ersten Gesetz
(Gleichung 20a) gefundenen.

Die mittlere Verlustziffer beträgt dabei nach Gleichung (13):

(pm)ntax 2 P
VsT' y

V-
2,88 p (30)

wobei noch zu beachten ist, dass p zu F= 1,06 Fm zu beredinen ist. Nach dem
zweiten Verlustgesetz ist daher eine etwas höhere Verlustziffer zulässig als nach
dem ersten Gesetz.

2. Graphische Behandlung eindimensionaler, ebener Wärmeleitungsprobleme.
Die im vorigen Abschnitt entwickelte Theorie lässt sich erheblich vereinfachen,

wenn man eine unwesentliche Vernachlässigung und eine kleine Unsicherheit in
Kauf nimmt. Da die hierauf gegründete graphische
Behandlung einfach und für die praktische Anwendung

wertvoll ist, glaube ich, dieselbe an dieser
Stelle nicht übergehen zu dürfen.

Die erwähnte Vernachlässigung besteht darin,
dass wir die mittlere Verlustziffer pra des Mate-
riales der Verlustkurve p d> (d) zu d dm

entnehmen (Fig. 5), wobei dm den Mittelwert der
Temperatur über die Plattendicke 4 bedeutet. Die ebenfalls

erwähnte Unsicherheit besteht darin, dass
wir für die an eine Elektrode bei symmetrischer
Wärmeströmung abgegebenen Verluste den Ansatz

rM)ra

Fig. 5.

Graphische Behandlung für i9 konst.

Pm C ^ - d
(31)

anwenden, wobei der Proportionalitätsfaktor c wie wir später zeigen werden,
zwischen c 5 und c 6 variieren kann.

Es ist klar, dass wir mit diesen beiden Annahmen eine ausserordentliche
Vereinfachung erzielen. Denn nun ist einerseits:

mit:

pm (dm - d) tg r
2cX

^X ^T

(Fig. 5)

(32)

und andererseits auch gemäss der Verlustkurve:

pm — <P (dm)

Ist also die Oberflächentemperatur d vorgeschrieben, so brauchen wir nur die für
die richtige Feldstärke gezeichnete Verlustkurve mit der unter dem Neigungswinkel

t durch d d gezeichneten Geraden zum Schnitt zu bringen, um das zustande
kommende Wärmegleichgewicht pm, dm zu erhalten Fig. 5.

Ebenso einfach bestimmt man die grösste mittlere Verlustziffer bzw. die grösste
Prüfspannung, mit welcher bei konstanter Oberflächentemperatur noch eben ein

(labiles) Wärmegleichgewicht möglich ist. Offenbar muss für diesen Fall die Gerade
durch d d die Verlustkurve berühren. Ist diese für irgend eine Feldstärke
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gezeichnet, und legtman an diese Kurve die Tangente, so wird ihre Neigung im
Verhältnis tg rmln/tg r kleiner als die Neigung der durch Gleichung (32) vorgeschriebenen

Geraden. Die grösste zulässige Verlustziffer (pra)ra„ darf also im gleichen
Verhältnis grösser sein als die Verlustziffer pmx im Berührungspunkt der Tangente
an die für Fx gezeichnete Verlustkurve. Wachsen nun die Verluste mit der nten
Potenz der Feldstärke, so folgt ohne weiteres für die maximale Feldstärke:

fn,ax _"]/ tg V \fft r tg rrain
V

2cX
Z/2 ctg rm

und für die Durchschlagspannung bei Dauerprüfung:

<4 " F. i 2c X ctg rm

(33a)

(33)

Mit der graphischen Methode arbeitet man also schnell und einfach und ist frei
von einschränkenden Annahmen über das Gesetz der Verlustkurve. Aus diesem
Grunde ist sie trotz der erwähnten Vernachlässigungen oft genauer als die früher
mitgeteilte mathematisch exaktere Theorie.

Was ausserdem der Näherungstheorie noch besonderen Wert verleiht ist der
Umstand, dass die Lösung ebenso einfach bleibt, wenn nicht die Oberflächentemperatur

$, sondern die Umgebungstemperatur #r gegeben ist, und wenn für den
Zusammenhang zwischen beiden Temperaturen der Ansatz der Gleichung (12)
gemacht werden kann. Derartige Aufgaben, die nach der analytischen Theorie recht
umständlich zu lösen sind, wird man daher immer graphisch behandeln. Zunächst
berechnet man aus Gleichung (12) und (31):

0 F
c À

~Ä~

c X
F

C A (34)

Dies in Gleichung (31) eingesetzt, liefert:

pm (#m - i%) tg r
1

mit : tgr z/2 A
2 ci 2 p

(35)

Wir brauchen also nur r in Fig. 5 und Gleichung (32) durch r und durch #r zu
ersetzen, um alle früheren Ableitungen auch auf
diesen allgemeinen Fall anwenden zu können. In
Fig. 6 ist diese Behandlung durchgeführt. Ausserdem

ist durchdie strichlierte Gerade mit dem

Neigungswinkel r auch die Oberflächentemperatur #
bestimmt. Die Konstruktion der Tangente mit dem
Neigungswinkel rmin liefert die Mitteltemperatur #ra max

an der Stabilitätsgrenze und es ist sehr bemerkenswert,

dass dieser Scheitelwert nur von der
Umgebungstemperatur #r und nicht auch von dem
Temperaturfall -d — dr bezw. von p abhängt. Die
zugeordnete Feldstärke, die das Material eben noch Pig 6

dauernd erträgt ist: Graphische Behandlung für i9r konst.
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f-=f,y (36)

2 c A 2 ß

und die Durchschlagspannung :

à^ FxY t
Ctg

Tm^1- à V- Z7/],/- (37)

2 c/l + 2/c^ TcX^T/T
Verglichen mit dem zuerst behandelten Grenzfall {p — &,, ju oo), liegt diese
Durchschlagspannung im Verhältnis:

hr <37a>

' fX

tiefer. Ausserdem wächst jetzt die Durdischlagspannung audi für das quadratische
Verlustgesetz (n 2) dauernd mit der Plattenstärke und erreicht erst für à oo
den früher bezeichneten Grenzwert. Die Zunahme erfolgt für n 2 mit der Wurzel

d LI
aus der Plattenstärke, solange —klein gegen 1, was für die Prüfung von Ba-

C

kelitpapier in Luft bis zu Plattenstärken von 1 cm und darüber der Fall sein kann.
Ich habe nun noch zu zeigen, von welcher Grössenordnung die mit dieser

Näherungsmethode begangenen Fehler sind. Zu diesem Zwecke muss ich einen
Vergleich mit der analytischen Methode durchführen, wobei ich das für Bakelitpapier
aufgestellte erste Gesetz:

.'-•«-(jrJVbjr 04)

zugrunde lege.

Der eine Fehler bestand darin, dass wir die mittlere Verlustziffer pm der
mittleren Temperatur nach derselben Kurve zu ordneten, wie die lokale Verlustziffer

p der lokalen Temperatur $. Solange das Temperaturintervall (#0 — #) 1,5 —

so klein ist, dass zwischen diesen Grenzen die Verlustkurve praktisch genau durch
eine Gerade ersetzt werden kann, ist auch der begangene Fehler praktisch gleich
Null. Erst wenn zwischen diesen Grenzen die Verlustkurve merkbar gekrümmt ist,
wird auch der Fehler messbar. Den denkbar grössten Fehler begehen wirsomit
bei einer Prüfung mit dem denkbar grössten Temperaturintervall, das ist für d dr
(p. oo) und Anstrengung des Materials bis zur Stabilitätsgrenze.

Hierfür leiten wir ab:

=.U1+(W " =i y 2 + iarc sin 1 1>148

und: 0-d
0-do

1/2

(F \" k
prj (0 _ ^ (0 _ £o)2

* (38>

(F \n k
~p~J (0 — d )3"

' (38a)
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Vergleicht man dieses Resultat mit dem oben angenommenen lokalen Verlustgesetz
14, so erkennt man, dass der Fehler der graphischen Behandlung höchstens 7 %
beträgt. Man kann ihn auf i 31j2 % herunterdrücken, wenn man die Kurve der
mittleren Verlustziffer mit pm — 1,035 p zeichnet.

Wir erwähnten ferner die Unsicherheit, die in der Annahme des Koeffizienten
c liegt. Dieser Koeffizient schwankt für ^ o bis d zwischen 6 und einem
unteren Grenzwert von 5 ~ 5,3. Er kann unter Annahme des Verlustgesetzes 14
als Funktion des Verhältnisses:

ô

berechnet werden und liefert die Gleichung:

(39a)

c 2
1 - j 1 - à

1 -
1 +V 1 - à 1

yi - /2~ arc sin h v\ — y l - d

+i/i

(39)

nach welcher Fig. 7 aufgezeichnet ist. Die Unsicherheit in der Wahl von c wird
daher beseitigt, wenn man den Parameter ô aus der graphischen Konstruktion
ableiten kann. Dies ist aber in der Tat der Fall, denn nach Gleichung (32) ist:

0= -- tg "T^mln

tgr
(vgl. Fig. 8) (40)

Funktion C

0,2 0,4 O.B 0,6 /.0 6

Fig. 7.

2(l-l/l-ô)
1 + I/I- ô

1 — arc sin
l/2(l-]/l -ô)

-1 /l - 1/1 - ô
m h / v-

V 1 + 1/1-0
1 a J yra= \^L.J

'/•m-tPß»)

Fig. 8.

Bestimmung von

ba /! \ 2

Man wird also zunächst die in Fig. 8 abgebildete Konstruktion mit einem geschätzten

Werte von c durchführen und erhält damit einen guten Näherungswert für
a ^

* Mit diesem tritt man in Fig. 7 ein und erhält einen genaueren Wertô
a c

für c, mit welchem die Konstruktion nötigenfalls korrigiert werden kann.
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3. Analytische Theorie für eindimensionale, zylindrische Wärmeleitungsprobleme.
Das wichtigste Beispiel für zylindrische Isolierkörper, bei denen die Verlustwärme

hauptsächlich in radialer Richtung fortgeleitet wird, sind massive
Papierdurchführungen. Werden dieselben als Kondensatordurchführungen gebaut (Fig. 10),
so lässt sich durch geeignete Abstufung der Stannioleinlagen erreichen, dass die
Feldstärke zwischen Bolzen und Flansch nahezu konstant bleibt. Die Verlustziffer
kann dann in erster Annäherung als eine Funktion der Temperatur allein betrachtet
werden. Behilft man sich ohne Stannioleinlagen, so ist die Feldstärke im mittleren
Teile zwischen Flansch und Bolzen nahezu umgekehrt proportional dem Radius
und daher die Verlustziffer eine Funktion der Temperatur und des Radius. Mit
diesem allgemeineren Falle wollen wir beginnen.

r\

r'pf

3a). Massive Papierdurchführungen ohne Stanioleinlagen
(Fig. 9).

Für den Beharrungszustand lautet die Wärmeleitungsgleichung:

(41)

Bei konstanter Temperatur sei die Verlustziffer der nten Potenz
der Feldstärke proportional. Für die Abhängigkeit de£ Verlustziffer
von der Temperatur gelte das Exponentialgesetz c0^-19', desgleichen
für die Zunahme der Dielektrizitätskonstante mit der Temperatur ein
Exponentialgesetz Dann gilt für die Feldstärke zwischen
Bolzen und Flansch:

-ft' ß (£-•>?)

und für die Verlustziffer:

-/— ' F\"=?{j)' (iî-i9) y W — &) '

Fig. 9.

Massive
Papierdurchführung. •

wobei: y — a — n ß.

(41a)

(41b)

(41c)

Mit Rücksicht hierauf lässt sich Gleichung (41) auch wie folgt
darstellen :

d2b
d (In r)2 -pr (ÎÏ

n — 2

21 — 0 (42)

Obschon diese Gleichung elementar lösbar ist, wollen wir uns hier auf die
Untersuchung desjenigen Gebietes beschränken, in welchem die Verluste mit dem
Quadrate der Feldstärke (n 2) zunehmen. Setzen wir ausserdem:

In— x
ro

so erhalten wir die uns bereits geläufige Differentialgleichung :

d x2 p r2 cp(d) =0

(43a)

(43) (vgl. 1)

wobei anstelle von: <p (ß) e? W ~~l9) (43a)
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auch ein beliebiges anderes Temperaturgesetz stehen könnte. Die geringfügige
Wärmeableitung durch den Bolzen kann man bei langen Durchführungen
vernachlässigen. Wir führen daher als Grenzbedingungen ein :

Für: r 0 1 I d r
x 0 j | cLfi

dS
0

d x
0. (43b)

Da auch die Theorie der eindimensionalen ebenen Wärmeleitung mit derselben
Annahme arbeitete, können wir alle Resultate dieser Theorie sinngemäss anwenden,
wenn wir nur:

f A f —
x durch In— > durch In— > p durch p r2

r0 2 r0

ersetzen.

Was uns an erster Stelle interessiert, ist wiederum die Lage der Stabilitätsgrenze.

Aus Gleichung (8) und (27) erhalten wir:

(in-f) —'U l/Tvw 0,938i ]/-2-\ r0 /mM 2 r r p r V p yp r V py
und berechnen hieraus die grösste erreichbare Durchschlagspannung:

^ 0,94 Fr In— 0,88 y À JL — •

ro ' p y

(44)

(45)

Die Durchschlagspannung massiver Papierdurchführungen ohne Stannioleinlagen
liegt also gerade halb so hoch wie die Durchschlagspannung von Platten, bezogen
auf gleiche Randtemperatur Dabei beträgt die mittlere Verlustziffer genau wie
bei Platten Gleichung (30):

(Pm)max 2,28 pm (46)

wenn:
^ _2ln —
p p—(46a)1

r2

die mittlere Verlustziffer bei einer über den ganzen Isolatorquerschnitt konstanten
Temperatur d bedeutet.

3 b). Massive Kondensatordurchführungen (Fig. 10).

Bei der Behandlung der massiven Kondensatorklemme wollen wir annehmen,
dass bei konstanter Temperatur die Feldstärke zwischen Bolzen und Flansch
konstant sei. Nach erreichtem Wärmegleichgewicht ist dann die Feldstärke der inneren
Schichten etwas kleiner als die der äusseren, da ihre Temperatur höher und ihre
Dielektrizitätskonstante grösser ist. Machen wir für die Abhängigkeit der
Dielektrizitätskonstante und Verlustziffer von der Temperatur dieselben Annahmen wie im
vorigen Abschnitte, so erhalten wir nunmehr als Verlustgesetz unabhängig vom
Radius:

p pgy mit y a — n ß. (47)
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Nadi erreichtem Wärmegleichgewicht gilt daher die Differential
gleichung:

d*d
f-p o.^

d (In r)2

Durch die Substitutionen:

ln~ — v
r *' •

2 JC + y (& — &) u

wird diese Gleichung übergeführt in:

(48)

d x5 -+ P r2~-e"=0.

(49)

(49a)

Wenn der Bolzen keine erhebliche Wärmemenge aus dem Mittelstück

ableitet, können wir als Grenzbedingungen einführen:

Fig. 10.

Kondensatordurchführung.

Für:
r r0

x In "=r

d &

HT
d u
dx

0

- 2
(50)

Wir können nun zur schrittweisen Integration der Differentialgleichung schreiten:

« -[dx V
4 c2 — 2 p r''

22

y

oder wenn wir zur Abkürzung: ——= R2
py

einführen :

Für die Integrationskonstante c folgt aus Gleichung (50):

C2=

Für kleine Bolzendurchmesser ist daher ungefähr: c 1

Durch weitere Integration (Integrationskonstante b) finden wir:

(51)

(51a)

(51b)

(52)

(52a)

2 c x — —
d u

1 +
: In-

(i9 —19)

1 -
oder:

cR

r

Inb2

e y (i9 - iJ)

2 C
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(54)

Wendet man diese Gleichung auf die Randschichten (r r, $ #) an, so ergibt sich:

7 2 c

«=77X'
b

Dagegen erhält man für die Bolzenoberfläche (r r0, b i?0), (vgl. 52) :

2cIo_ A<i?o-i9) _R e yc2 -1 (55a)

(55)oder nach einigen Umformungen: b ("7") '

Treten wir damit in Gleichung (54) ein, so ergibt sich endgültig für die Dicke
4 r — r0 der Kondensatordurchführungen :

d R_
2cM Rf{c'T) (56)

Nach unseren früheren Erfahrungen dürfen wir als sicher annehmen, dass die

rechte Seite dieser Gleichung bei jedem gegebenen Verhältnis -y- für einen

bestimmten Wert der Integrationskonstante c ein Maximum besitzt. Die grösste Wandfläche,

bei welcher eben noch ein Gleichgewicht möglich ist, beträgt dann:

(57)

Für die Berechnung dieses Maximalwertes erhalten wir aus (46) die Bedingungsgleichung:

1 + ü2,,, c 1 c —f-1 /.oXIn b —s .—\~~tt In — (48)
1 _

>

c2 — i 2 c — 1

Das Resultat der Rechnung enthält Fig. 11 und Tabelle I.
Tabelle I.

r0

r
0 0,071 0,217 0,331 0,436 0,507 0,560 1,000

c 1 1,01 1,10 1,25 1,5 1,75 2,0

b 1 0,981 0,863 0,752 0,644 0,582 0,543

/max 1 0,938 0,855 0,802 0,772 0,752 0,737 0,662

y (fi0-0) m., 1,386 1,366 1,314 1,272 1,258 1,239 1,235 1,188

Fm
1 - -=?-

F
0,074 0,073 0,070 0,068 0,067 0,066 0,066 0,063

V2Fmax-^~ 1,310
"

1,232 1,125 1,055 1,020 0,995 0,972 0,878

(A=)
\ 2 p / max

1 1 1,02 1,05 1,065 1,08 1,09 1,14
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1.4

(2

10.

Ofi

0,6

0,4

fin

0,t 0,2 0,3 0,7 0,8 0,9 1.004 0,5 Ofi

Fig. II.

Durchführungen ohne Stanioleinlagen. Wir erhalten nämlich:

Je kleiner also der
Bolzendurchmesser im Verhältnis
zum Flanschdurchmesser,
umgrösser darf man die Wandstärke

machen und desto mehr
Spannung hält die
Durchführung aus. Der Grenzwert

für — 1, welchen die Ta-
r

belle enthält, ist nach
Gleichung (28) für einseitig
gekühlte Platten berechnet.

Bezüglich der Durchschlagspannung

liegt die
Kondensatorklemme ungefähr in der
Mitte zwischen beidseitig
gekühlten Platten und massiven

Fm« Fm 4

Fr

Vjl
wobei gemäss (27b):

Also für -=- 0 bis 0,25 :

r

J — ^ \ — Q — ß — t9)max^

F 3

Fm« (1,31 - 1,10)]/

Dagegen war für beidseitig gekühlte Platten (29):

und für gewöhnliche Papierdurchführungen (45):

X F2

y p

(59)

(59b)

(59a)

1,76]/-

0,88]/

X F2

y p

À F2

y p
Im Prüffeld zu entscheiden, ob eine Durchführung bei einer bestimmten Spannung

oberhalb oder unterhalb der Stabilitätsgrenze arbeitet, erfordert eine viel-
stündige Dauerprobe. Es ist daher erwünscht, von vorneherein die mittlere Verlustziffer

angeben zu können, welche ein Isolator in der Nähe der Stabilitätsgrenze
besitzt. Die allgemeine Formel hierfür lautet:

*=--57 - r02) JT V d r r r
(60)

Hieraus berechnen wir:

(Pra)max
2X
y

1 — c 1 14-c

1

2 p

Ja_

r
1 4 c

b c

1 - ö2

r
~~R

r2-r02

1 -f-bz

1 + 4
r

n•2

max
(61)
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Wie die letzte Reihe der Tabelle I zeigt, ist angenähert: pm 2p (61a)

wobei jedoch p zu einer Feldstärke zu berechnen ist, die ungefähr 7 % .höher liegt
als die mittlere (dies wegen der Zunahme der Dielektrizitätskonstante mit der
Temperatur). Die höchste Verlustziffer an der Bolzenoberfläche ist:

- - - R2
Pomax p e?(l3°m" - W — p (c2 - 1) —Y (62)

Po

Da nun gemäss Tabelle I der Exponent y (i?0n.K — &) ungefähr gleich 1,3 gesetzt
werden kann, so ist ungefähr:

p0niaI o* 3,7 p (62a)

Dies Resultat ist widitig für'praktische Anwendungen der Theorie. Denn wie
Fig. 3 zeigt, ist es nicht immer möglich, die ganze experimentell bestimmte Verlustkurve

p 0 {&) durch eine Exponentialfunktion zu interpolieren. Nach Gleichung
(62 a) ist dies aber auch nicht nötig, sondern es genügt, wenn in dem Gebiet p
bis 3,7 p eine gute Annäherung erzielt wird.

Zum Schluss seien noch einige praktische Ziffern gegeben, die zeigen sollen,
mit welchen Grenzen man bei der Konstruktion grosser Kondensatordurchführungen
zu rechnen hat. Wertet man Gleichung (59a) für eine Verlustkurve nach Fig. 3 aiis,
so erkennt man sofort, dass Transformatordurchführungen mit dieser Papierqualität
für Betriebsspannungen über 66 kV zwischen Bolzen und Flansch nicht mehr
herstellbar sind. Man muss also entweder die Konstruktion oder das Material
verbessern.

Nehmen wir zunächst den letzten Fall an : Es möge durch fortgesetzte Ueber-
wachung der Verlustziffer die Qualität auf folgende Höhe gebracht haben (die
Werte sind vom Verfasser experimentell festgestellt):

1 Watt
« 0,0212 Â 0,00165 c^oC

ß — 0,0016y 0,018 ~
Watt

und für 20 kV/cm und für 70° C: p7o» 0,002
cm3

Dann ergeben sich bei einem Verhältnis 0,2 folgende Grenzen für die erreich-
r

bare Betriebsspannung zwischen Bolzen und Fassung:

tf°C 40 50 60 70 80 90

p für 20 kV/cm 0,0011 0,0013 0,0016 0,0020 0,0025 0,0031

Emax 208 192 172 154 138 124

Vergleicht man diese Grenzwerte mit Tabelle I, Seite 339, so sieht man, wie
ausserordentlich viel durch Verbesserung der Papierqualität gewonnen worden ist.
Immerhin ist es nicht ausgeschlossen, dass man in Zukunft mit der Betriebsspannung
zwischen Bolzen und Flansch noch höher gehen will, und dann dürfte es nötig
werden, die Wärmeableitung zu verbessern. Hierzu gibt es verschiedene Wege:

Vielversprechend erscheint die Anordnung einer inneren und äusseren Kühlung
nach Art von Fig. 12. Aeusserlich gleicht die Type den ölgefüllten Porzellandurch-
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führungen der General-Electric Co. Doch wird in
unserem Falle das Oel nicht so sehr als
Isoliermaterial, sondern vielmehr als Kühlmittel benützt.
Infolge der natürlichen äusseren Kühlung, die in
Fig. 12 durch Kühlschlangen unter dem Flansch
unterstützt wird, wird das mittlere spezifische
Gewicht und daher der Drude des Oeles im äusseren
Mantel etwas grösser als im Durchführungsrohr.
Es kommt daher die durch Pfeile angedeutete Oel-
zirkulation zu stände, die infolge des hohen Wertes
der Wärmeabgabe-Konstante (ju 0,012) nur eine
ganz geringe Erwärmung des Rohres über die Oel-
temperatur zulässt. Es liegt nahe zu denken, dass
trotzdem die innere Kühlung nicht wirksam sein
könne, da die innere Kühlfläche so viel kleiner ist
als die äussere. Die im folgenden durchgeführte
mathematische Analyse beweist jedoch die Unrichtigkeit

dieser Anschauung.
Der Einfachheit halber vernachlässige ich diesmal

die Veränderlichkeit der Dielektrizitätskonstante
mit der Temperatur, setze also ß o und a y.
Ausserdem will ich von den Unterschieden der Oel-
temperatur im äusseren Mantel {r—r) und im
Durchführungsrohr (r r0) absehen und an beiden Stellen
mit $ rechnen. Als Grenzbedingung für den
äusseren Umfang erhalten wir dann wie früher:

r
Ii

2 c

b + T
(54)

Fig. 12.

Durchführung mit äusserer u. innerer Kühlung
G Oelstandsglas.
C Oelzirkulation.
D Durchführung.
P — Porzellanmantel.
F Flansch.
P Kühlrohre.

Dagegen gilt für den inneren Umfang gemäss
Gleichung (55a):

r0
R

2c
ro

(63)

Die Papierdicke beträgt wie früher (gemäss Gleichung 54):

r0\ 2 c

t)A «( 1 Rf. (64)

Untersucht man, für welche Werte von c und b diese Dicke ein Maximum wird,

so erhält man als Bedingungsgleichung mit — Q '•

i - 2^e + e5
r

i - e2
l

l - ro r0

r -6
In q

Die Lösung enthält Fig. 13 und Tabelle II.
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•Tabelle II.

ro

r
sehr klein 0,167 0,20 0,25 0,333 0,500 1

py 1 r0
2 r 0,044 0,05 0,0575 0,0675 0,089 -

c 1+
ln2

In —
r0

1,743 1,865 2,060 2,455 3,49 -

b -fe)' 0,597 0,575 0,544 0,498 0,455 -

U 0efit1 1,280 1,288 1,298 1,305 1,320 1,324

1/27 (l-y) 1/2 C 1,81 1,82 1,835 1,845 1,865 1,875

fmax
/,«

1.2

1,0

0,8

0,6

OA

0,2

0
0 0./ 0,2 03 Q4 os 06 07 0.8 0,9 /,0 -£-

r
Fig.13.

Man sieht aus Tabelle II, dass selbst bei so kleinen Ver-

hältnissen wie —y — 0,2 die innere Kühlung die

zulässige Betriebsspannung der Durchführung um 50 %
erhöht, so dass wir nunmehr mit a 0,0212 und

P7oe 0,002 (F 20 kV/cm) folgende Grenzen für die
Dauerspannung zwischen Bolzen und Flansch erhalten

ro _(für 0,2).
Tabelle III

i)»C 40 50 60 70 80 90

p (F 20 kV/cm (10011 0,0013 0,0016 0,002 0,0025 0,0031

£= ]/2Fm„ 306 282 254 227 203 182

\ a p
Bei Serienschaltung' von

2 Durchführungen (Fig.14) 514 474 426 381 341 306

Durchführung

P
K
F
D -C

Fig. 14.

mit äusserer und innerer
Kühlung.

Porzellanmantel.
Kompound.
Flansch.
Durchführung.
Oelz.rkulation.
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Man kann noch weitergehen und, wie Fig. 14 zeigt, eine erste Durchführung,
die nur äussere Kühlung besitzt mit einer zweiten, doppelt gekühlten Durchführung
in Serie schalten. Damit ergeben sich die Ziffern der letzten Reihe in Tabelle III.
Bei Serienschaltung von 2 doppelt gekühlten Durchführungen erhöhen sich die
Ziffern noch mehr, und nichts hindert, nötigenfalls zur Serieschaltung von mehr
als 2 Durchführungen überzugehen, die nicht einmal notwendigerweise konzentrisch
angeordnet zu sein brauchen. Man sieht: Auch ohne weitere Verbesserung der
Papierqualität lassen sich die Grenzen für eine betriebssichere Konstruktion von
Kondensatordurchführungen beliebig erweitern. Voraussetzung bleibt aber immer, dass
man die Materialeigenschaften genau kennt und die Wärmeleitungstheorie beherrscht.

Das Unterwerk Ölten der S.B.B.
Von E. Heusser, Ingenieur, Aarau.

Der Verfasser gibt eine kurze Beschreibung
der Freiluftschaltanlage Ölten der S. B. B., worin
besonders die für diese Anlage ungünstigen
örtlichen Verhältnisse und Witterungseinflüsse
Erwähnungfinden. Ferner werden Angaben gemacht
über den Versuch, Isolieröl direkt aus den
Transportfässern der Lieferanten in die Apparate der
Freiluftschaltanlage einzufüllen.

L'auteur fait une courte description de la sous-
station extérieure des chemins de fer fédéraux
établie à Olten dans des conditions locales
particulièrement difficiles.

Il donne des renseignements sur l'essai de
transvaser l'huile directement des fûts servant
au transport dans les appareils du poste.

Am 16. Mai 1924 wurden die ersten Züge mittels elektrischer Traktion über
die';Strecke Olten-Basel geführt und die Tageszeitungen meldeten als besonderes
Ereignis die Vollendung der Elektrifikation der ganzen Gotthardroute von Basel bis

Fig-. 1. 4x3000 kVA 60/15 kV. Ansicht: Apparatelund Sammelschiene 60 kV.

Chiasso. Mit diesem Zeitpunkt kam auch das Unterwerk Olten, eines der grössten
seiner Art, in regelmässigen Dienst und da dieses, wie eine Anzahl anderer S.B.B.¬
Unterwerke, als Freiluftanlage gebaut ist, verlohnt es sich, dessen Entwicklung
technisch etwas zu verfolgen.
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