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Die beschriebenen Ver-
suche werden nach Vor-
nahme einiger weniger um-
fangreicher Erganzungsver-
suche gute Anhaltspunkte fiir
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Mathematische Theorien fiir den Durchschlag
fester Isoliermaterialien.
Von Dr. ing. L. Dreyfus, Vasterés.

Der Verfasser verweist anfangs auf die ver-
schiedenen Erkldrungen des Durchschlages fester
Isolierstoffe und behandelf hierauf analytisch und
graphisch eindimensionale, ebene und zylindrische
Wadrmeleitungsprobleme fester Isolierstoffe mit
Bezag auf die Durchschlagsfestigkeit des letzteren.

Schliesslich wird die praktische Amwendung
der hier abgeleiteten Wdrmeleitungstheorie zur

L’auteur rappelle les differentes explications
qu'on donne du phénoméne de percement des
isolants et montre comunent on peut résoudre
analytiquement et graphiquement des problémes
de transmission de la chaleur dans des corps
plans ou cylindriques.

Al montre application de sa méthode de
calcul a la construction d’isolateurs de traversée.

Konstraktion von Durchfiihrungen behandelt.

Einleitung.

Zur Erklarung des elektrischen Durchschlages fester Isolierstoffe kann man drei
Wege einschlagen.

1. Man kann versuchen, denselben als ein rein elektrostatisches Problem auf-
zufassen, wonach durch die elektrische Feldstarke der Zusammenhang der Molekiile
gelockert wird, was einen momentanen Durchschlag zur Folge hat. Die elektrische
Festigkeit muss sich dann in einer bestimmten Feldstarke F (kV/cm), oder in einem
bestimmten Werte des Linienintegrals der Feldstirke lings eines gewissen Weges

Xg

x, (also SFdx) angeben lassen. Dass diese Auffassung sich nicht mit der Wirk-

(]
lichkeit deckt, ist friihzeitig erkannt worden. Man weiss, dass alle festen Materialien
momentan sehr viel hdhere Feldstarken ertragen als bei Priifdauern von einer Minute
oder mehr. Man pflegt daher fiir die Isolationspriifung von Maschinen und Appa-
raten eine Priifung mit Ueberspannung von der Dauer einer Minute vorzuschreiben.

2. Ein zweiter Weg zur Erklarung des elektrischen Durchschlages ist der, dass
man denselben ausschliesslich als ein Erwarmungsproblem auffasst. Im elektrischen
Felde erleidet das Isolationsmaterial Verluste (Leitungsverluste im Gleichfeld, Leitungs-
und Hystereseverluste im Wedhselfeld). Diese Verluste erwarmen das Material. Bei
den meisten Isolationsmaterialien steigen aber die Verluste mit der Temperatur.
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Erhohte Temperatur bedeutet also erhdhte Verluste, erhéhte Verluste ein weiteres
Ansteigen der Temperatur. Je héher die Temperatur des Isoliermaterials iiber die
der Umgebung steigt, um so mehr Warme kann abgeleitet werden. Es ist also
moglich, dass schliesslich ein Warmegleichgewicht eintritt, wobei die erzeugte Warme-
menge gleich der abgeleiteten ist. In diesem Falle sclagt das Material nicht durch.
Es ist aber auch moglich, dass dieses Gleichgewicht infolge des Anwachsens der
Verluste mit der Temperatur nicht eintritt. Dann steigt die Temperatur bis zur Zer-
storungstemperatur des Materials, also bis zum Durdschlag.

Diese Auffassung ist der schwedischen elektrischen Industrie seit langem vertraut
und kommt in ihren Priifmethoden zum Ausdruck. Im Laboratorium der A.S.E.A.
werden -beispielsweise seit seinem Bestehen die Durcischlagsspannungen aller wich-
tigen Isolierstoffe als Funktion der Priifdauer bestimmt und diese ganze Zeitkurve
wird womdglich bei verschiedener Temperatur (15° C bis 90° C) aufgenommen.

3. Eine weitere Auffassung weicht von der vorigen insofern ab, als sie auch
die Moglichkeit eines elektrischen Durchschlages ohne vorherige abnorme Erwarmung
zulasst; also der Lockerung des molekularen Zusammenhanges durch besonders hohe
Feldstarken nicht alle Bedeutung absprechen will. Vielleicht sind ,,momentane Durch-
schlage“ durch den elektrischen Funken in dieser Weise zu erklaren.

Mag man nun der zweiten oder dritten Auffassung zustimmen, so wird man
doch, wenn man an eine rechnerische Untersuchung des Durchschlagsproblems geht,
die zweite Auffassung zugrunde legen miissen. Denn wahrend uns die Gesetze der
Warmeleitung seit langem bekannt sind, und fiir die Veranderlichkeit der Verluste
mit der Feldstarke und Temperatur unziahlige experimentelle Kurven vorliegen, wissen
wir so gut wie nichts iiber die sogenannte Lockerung des molekularen Aufbaues.
Audch ist ziemlich sicher, dass diese wenigstens bei Priifdauern von mehr als einigen
Sekunden gegen die Zerstorung des Aufbaues durd zu grosse Erwarmung ganz
in den Hintergrund tritt.

Innerhalb der zweiten Auffassung sehe ich, je nach der Starke der Schicht, in

welcher man das Isolationsmaterial auf Durchschlag untersucht, zwei Wege fiir eine
mathematische Behandlung des Problems.

In vielen wichtigen Fallen der Hochspannungstechnik verwendet man Isolier-
material mit solcher Wandstarke, dass lokale Inhomogenitaten die Verlustziffer eines
kleinen Zylinders, den man sich in Richtung der elektrischen Kraftlinien herausge-
schnitten denken kann, nicht wesentlich beeinflussen. Eine Theorie, welche sich auf
diese Voraussetzung stiitzt, kann man als eine Theorie des Durchschlages fiir quasi
homogenes Material bezeichnen. Ein klassisches Beispiel hierfiir ist der Durchschlag
von Kondensatordurchfiihrungen. In der Tat ist die Ursache dieser Durchschlage
bereits 1916 von Dir. Liljeblad erkannt (Teknisk Tidskrift 1916, Heft 8 und 9) und
1920 von Ing. Broon und dem Verfasser als reines Erwarmungsproblem mathe-
matisch behandelt worden (Interner Technischer Bericht der A.S.E.A.).

Eine zweite Gruppe von Erscheinungen umfasst den Durchschlag von Isolier-
materialien in sehr diinnen Schichten. Hierbei muss man die Mdglichkeit zulassen,
dass ein kleiner, in Richtung des Feldes herausgescnittener Zylinder aus Material
von wesentlich hoherer als der durchschnittlichen Verlustziffer bestehe. Bei der Priifung
erhitzen sich diese Stellen mehr als ihre Umgebung, es tritt ein Warmeausgleich
zwischen den heissen Kanalen und den angrenzenden Schichten auf, der bei nicht
zu hohen Verlusten zu einem Warmegleichgewicht, bei Ueberschreitung einer bestimmten
Beanspruchung dagegen zum Durchschlag fiihrt. Eine auf dieser Vorstellung fussende
Theorie fiir inhomogenes Material ist kiirzlich von Prof. Wagner veroffentlicht worden’).
Wir wollen derartige Theorien kurzweg als , Kanaltheorien“ bezeichnen.

Der Unterschied zwischen der alteren und neueren Theorie ist also folgender:
Die altere Theorie fiir quasihomogenes Material sucht den Durchschlag aus der

1) The physical nature of the electrical breakdown of solid dielectrics, Journal of the A.I.E.E.,
December 1922, pag. 1034, ;
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mittleren Verlustziffer des Materials abzuleiten, die neuere Kanaltheorie hingegen
aus der grossten lokalen Verlustziifer. Es ist daher ohne weiteres klar, dass die
Kanaltheorie — sofern sie mathematisch richtig durchgefiihrt wird — fiir gleiche
Verhaltnisse niedrigere Durchschlagspannungen liefern muss als die altere Theorie.
Da die Wagnersche Theorie diese Forderung nicht unter allen Umstanden erfiillt,
wird es notig sein, sie einer Kritik zu unterziehen.

Die Theorie des Durchschlages von quasihomogenen, festen Isolierstofien
bei Dauerpriifung, mit besonderer Beriicksichtigung der massiven Papierdurchfiihrungen.

Es ist schwierig, eine physikalisch einwandfreie Theorie fiir inhomogene Isolier-
stoffe aufzustellen, wenn man nicht zuvor die Theorie des Durchschlages von quasi
homogenen Isolierstoffen beherrscht. Wagners Kanaltheorie krankt daran, dass ihr
Verfasser diese Vorstufe iibersprungen hat.

Der Durchschlag bei grosser Priifdauer ist eine Folge des Versagens der Warme-
ableitung. Hieraus folgt, dass ein und dasselbe Material bei gleicher Dicke eine ver-
schiedene Durchschlagfestigkeit besitzen kann, je nach den ausseren Bedingungen
fiir die Ableitung der Verlustwarme. Jede Theorie des Durchschlages muss daher
nicht allein die Vorgange im Isoliermaterial, sondern auch die Verlustableitung ausser-
halb des Isoliermaterials in Betracht ziehen.

Bei vielen technisch wichtigen Beispielen ist das Temperaturgefalle in einer
Richtung so viel grésser als in den dazu senkrechten Richtungen, dass man das
Temperaturgefalle nur in dieser einen Koordinatenrichtung zu beriicksichtigen braucht.
Solche Probleme nennen wir ,,eindimensionale”. Je nach der Form des untersuchten
Probestiickes und der Elektroden unterschei-
den wir ausserdem ,eindimensionale ebene“
und ,eindimensionale zylindrische“ Wirme-

leitungsprobleme. T_

1. Analytische Theorie fiir eindimensionale,
ebene Wiirmeleitungsprobleme. ®

Das einfachste Beispiel dieser Klasse stellt
Fig. 1 dar. Sie zeigt den Querschnitt durch
eine Isolierplatte, welche zwischen zwei Staniol-
elektroden von einem homogenen elektrischen
Felde senkrecht durchsetzt wird. Die von den
Elektroden bedeckte Flache sei so gross und ‘3’
die Warmeableitung von solcher Art, dass wir
in dem gezeichneten Bereiche die Temperatur JI
als eine Funktion der Abszisse x allein betrach-
ten diirfen. Die Warmeleitung innerhalb der
Platte erfolgt darum ausschliesslich in dieser (x-)
Richtung, und zwar symmetrisch zur Mittel-
ebene, wenn beide Elektroden dieselben Ab-
leitungsmoglichkeiten besitzen.

Es sei:

/1—W~—a(t)tc die Warmeleitzahl des Isoliermaterials;
e —
cm

~
I NN
5. %

Fig. 1.
Isolierplatte zwischen Metallelektroden.

p\_’Vgtgt_ seine Verlustziffer bei einer bestimmten Feldstarke F, Perioden-
€M™ zahl » und Temperatur ¥ ;
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p vait die entsprechende Verlustziffer bei der Oberflachentemperatur 9
€M™ der Platte;

L _y (Y) die Funktion, welche das Anwachsen der Verluste mit der Tem-
p peratur ausdriickt.

Dann lautet die Gleichung der Warmeleitung innerhalb der PIatte nach Errei-
cdhung des Warmegleichgewichtes:

2 Be)=o0. (1)

Diese Gleichung besitzt fiir die angenommenen Symmetriebedingungen die Losung:

VYT
Vi

Dabei haben wir die Maximaltemperatur ¥, in der Mittelebene als Integrations-
konstante gewahlt.

Aus Gleidiung (3) koénnen wir eine ausserordentlich wichtige Folgerung ziehen:
Denken wir uns die Integration zwischen Rand und Mitte ausgefiihrt und verdoppelt,
so ergibt sich:

und

24 d?

Yo
= _—
p S Vg pdd
C 9

o/

A =

(4)

oder mit Einfithrung der Substitution:

(3, 9) = V2 g‘9°—ii"—— ®)

VT
) B =y 0,9, ©)

In dieser Gleichung ist die rechte Seite bei gegebener Verlustfunktion ¢ und

Randtemperatur ¢ ausschliesslich eine Funktion der Hochsttemperatur 9, . Die linke
Seite dagegen enthalt die Plattenstarke, die Verlustziffer bei der Oberflachentemperatur
und die Warmeleitfahigkeit des Materials. Gleichung (6) behauptet also, dass bei
gegebener Randtemperatur Platten von ganz beliebiger Starke 4 dieselbe Hodhst-
temperatur aufweisen, soweit sie nur in der ,charakteristischen Temperatur®:

Y = 42% | (7)

iibereinstimmen.
Eine beinahe noch wichtigere Folgerung lasst sich aus dem Verlauf der Tem-
peraturfunktion vy (9, ¥) ableiten: Wenn namlich die Verlustfunktion ¢ dauernd mit

der Temperatur zunimmt, so besitzt die Funktion v (9, 9) fiir 9 = konst. ein Maxi-
mum Ymax bei einer gewissen Temperatur ¥,.. Das bedeutet:
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Soll die Temperaturverteilung innerhalb der Platte stabil seiﬁ, so darf die Innen-
temperatur niemals die Hochsttemperatur v, iberschreiten. Andernfalls ist kein
Wdrmegleichgewicht moglich, sondern die Temperatur wdchst bis zum Durchschlag

der Platte. Dabei ist O, eine Funktion der Randtemperatur 9 und damit von der
Wirmeableitung der Elektroden abhdngig.

Mit Riicksicht auf diese neue Erkenntnis setzen wir:

s =/ . ®)

Dies ist die grosste Plattenstirke, mit welcher bei gegebener Randtemperatur 9 und
Verlustziffer p stabile Verhiltnisse erreicht werden konnen.

Gleichung (8) lasst noch eine weitere Schlussfolgerung zu: Bei gegebener Tem-
peratur und Periodenzahl fas/t die Verlustziffer ausschliesslich eine Funktion der elek-

trischen Feldstirke F =

und daher auch umgekehrt:

()

ACI’I"\

Diejenige Spannung, welche bei Dauerpriifung schliesslich zum Durchschlag fiihren
muss, betragt also:

E=af(p)=ar (2 555). ©

Wir sehen hieraus, dass die Durchschlagsspannung bei gegebener Oberflachentempe-
ratur keinesfalls proportional der Plattenstarke sein kann. Setzen wir beispielsweise:

= c(£) venw. £~ (2)r (10)

n—2 ,4)2 1
so wird E=4d=n (,?. ——Ei"—)F , (11)

Bei grossen Feldstarken, wie sie diinne Platten ertragen, ist n > 2. Hier steigt
also die Durchschlagsspannung fiir konstante Oberflachentemperatur mit der Platten-
stairke. Bei dicken Platten dagegen, die nur geringe Feldstarken aushalten, kann
n = 2 gesetzt werden. Von einer gewissen Plattenstiarke an steigt daher die Durch-
schlagsspannung bei Dauerpriifung nicht mehr mit Vergrosserung der Plattenstarke.
Dieses Resultat steht mit der Wirklichkeit in weit besserer Uebereinstimmung als
das Ergebnis der Wagnerschen Kanaltheorie, wonach die Durchschlagsspannung
proportional der Plattenstarke sein soll.

Wir haben bisher alle Grossen auf die Oberflachentemperatur 3 der Platte

bezogen. Es gibt eine grosse Zahl praktischer Beispiele, in welchen wir ¢ schatzen
konnen. Wo dies nicht zutrifft, miissen wir versuchen, ¥ auf Grund einer Annahme
fiber die Warmeabgabe der Elektroden aus der Temperatur ¥, des umgebenden
Mediums zu berechnen. Gewohnlich setzt man die von 1 cm? der Elektroden abge-
leitete Warme proportional dem Temperaturgefalle ¥ — ¥.. Bezeichnet daher p. die
mittlere Verlustzifier der Platte und verlauft die Warmestromung symmetrisch zur

A
Platten-Mittelebene, so gilt fiir x=

_,i(%z;)q@;:,t(a_a,). (12)
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Nun ist nach Gleichung (2)

—Z——I/Zp/l“/ qodﬁ

und nach Gleichung (6)
23/,
Y A

Durch Multiplikation folgt daraus fiir die mittlere Verlustziffer

Jo
2_8 pd?
9
= 2 13
Pn=2p ™ (13)
und fiir die Umgebungstemperatur
Do
_ 2 S pd?
= A - dp K
=9 - =2 =9 — . 13

ey Iz Y (13a)

Da die Hodchsttemperatur 9, aus der Randtemperatur berechnet werden kann, so

ist die rechte Seite ausschliesslich eine Funktion von 9 und umgekehrt ¢ ausschliess-
lich eine Funktion von ¥,.. Diese Funktion ist jedoch in der vorliegenden Form so
verwickelt, dass ich sie nicht anwenden will, um den Einfluss der Warmeabgabe-
konstante u« auf die Stabilitit des Warmegleichgewichtes zu untersuchen. Es geniige
der Hinweis, dass bei diinnen Platten die Herabsetzung der Stabilitatsgrenze durch

das Temperaturgefalle ¥ — 9, sehr erheblich sein kann, und dass wir spater eine
einfache graphische Methode kennen lernen werden, um -sie geniigend genau zu
bestimmen. Hier will ich nur noch die Grossenordnung der Wiarmeabgabekonstanten u
angeben. Bei Elektroden mit natiirlicher Luftkiihlung kann

Waltt

#0001 g5

gesetzt werden. Bei Priifung in Oel ist dagegen

Watt
u=10,01 ~ 0012 m?oC
In beiden Fallen sind diinne, flache Elektroden vorausgesetzt, die mit ihrer ganzen
Flache auf der Platte aufliegen und die ihre Warme nur an das umgebende Medium
und nicht etwa an anderweitig gekiihlte oder erhitzte Metallmassen abgeben.

Wir wollen nun die Theorie auf ein Material anwenden, das wegen seiner
grossen Bedeutung fiir die Hochspannungstechnik besonderes Interesse beansprucht,
namlich auf das Bakelitpapier. Produkte, die aus Bakelitpapier hergestellt sind,
kommen unter den verschiedensten Bezeichnungen in den Handel, so als Pertinax-
papier, -platten, -durchfithrungen, oder als Haefelytplatten, -zylinder usw. Die Ver-
lustkurven eines nicht erstklassigen schwedischen Bakelitpapieres zelgt Fig. 2. Die
Aufnahmepunkte liessen sich gut durch Parabeln interpolieren, ein Beweis dafiir,
dass bis zu 20 kV/cm die Verluste proportional dem Quadrate der Feldstarke (F)
gesetzt werden diirfen. Fig. 3 zeigt die Zunahme der Verluste mit der Temperatur.
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Fig. 2. Fig. 3.
Verlustkurven von Bakelitpapier bei konstanter Verlustkurven von Bakelitpapier bei konstanter
emperatur. Feldstirke.
- 275
Die strichlierte Kurve, welche sich mit - (117 = 9)3
der experimentellen Kurve bei Tempe- = cceeeeee p =0,0016 - ¢0,087 (19 —65)
raturen iiber 50 Grad beinahe deckt,
gehorcht der Formel: F e 5
= 14
»=(20) @ o A
mit k=275 (14a) und @=117°C. (14b).

Bei dieser Temperatur wird nach Gleichung (14) die Verlustzifier unendlich gross.
In der Tat tritt bei derart hohen Temperaturen ein langsames Verkohlen des

Papiers ein, welches allmahlich zum Durchschlag filhren muss. Indessen liegt die
Hochsttemperatur Jom, bei welcher eben noch ein Warmegleichgewicht moglich ist,

erheblich tiefer als 6, so dass man die Verlustkurve zwischen 9 upd 9. auch durch

andere Gesetze mterpolleren darf, die erst fiir unendliche Temperatur eine unend-
liche Verlustziffer ergeben. Ein solches, besonders von Physikern gerne angewandtes
Gesetz ist die Exponentialfunktion. ;

p=pet@=9, (15)
Die punktierte Kurve in Fig. 3 ist mit:
o F - in
Pss = (20) 0,0016 (152)
und a = 0,087 : (15b)

gezeichnet und kann fiir Temperaturen iiber 65° ebenfalls als eine brauchbare
Interpolation bezeichnet werden. Da sich dieses zweite Gesetz bei zylindrischen
Problemen als besonders leicht anwendbar erweist, wollen wir die im vorigen
abgeleitete allgemeine Theorie nach beiden Formeln (14) und (15) durdlfuhren

g ()= (%)3- (14c)

Erstes Gesetz.
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Gleichung (5): o VZ d?v

Yo
YiE=r
_ 2 _ Yo dd
P 19)38 V(@ —1 90)2 G

—p B0 (16)
-9
Wir berecinen: Ve =1/ @ = 9 (17)
-9 \ '
fiir: (@—ﬂomu) =2 (18)

Die hochste Innentemperatur, bei welcher noch ein Warmegle1d1gew1d1t moglich ist,

betragt somit fiir gegebene Randtemperatur o
Fymax = 0,293 @ 40,700 9 = 34,3° 40,707 9 . (18a)
Die zugehorige grosste Plattenstarke ist nach Gleichung (8):

I ) —
A = —_; (@ — 79) (19)

und die hodiste erreichbare Durchschlagspannung:

Fop — V 26—, (20)

Setzen wir hierin: 4 = 0,00165 _W""%
cm°C

F2 -
und fir F< 20 kV/cm: = = 1,455 (0 — 9)3

p
so wird: Ernex = 0,049 (6 — 9)2= 0,049 (117 — ¥)2. (20a)
Also: 9= 50O 600 700 800 900

Emx= 220 160 108 67 36 .

Man kann also eine Platte aus diesem Material so stark machen wie man will.
Wenn man sie in heissem Oel priift, und die ganze Verlustwiarme in der Richtung
der elektrischen Kraftlinien abgeleitet werden muss, kommt man iiber eine bestimmte,
recht niedrige Durchschlagsspannung nicht hinaus.

Geht man nicht bis zur Stabilitatsgrenze, so kann man d1e hochste Innen-
temperatur aus Gleichung (6) und (16)

P _ (@ 3,) 2 6 -9\
“Ya=ve 1/(@ 0)3‘/(@ 29o) :




XVe Année 1924 BULLETIN No. 7 329

berechnen. Hieraus folgt namlich gemiass Gleichung (19):.

4 _ 5(0=%) (@—5)2 y
und: ]/7
190_ 1_ 1 + max .

9
— = 21
57 (21)
Fig. 4 illustriert diese Gleichung. Stabil ist im allgemeinen die Temperaturverteilung
9 _ _
AT T dem Abpehildatat Bereith Lt | ——i — 0203,
6 -9 V2
85
_9_' ;‘ |
0,28
0,24

) /
/
or2 /

0,08 /
]

004 ,/
] /

0 o 02 03 04 05 06 07 o0& 09 0

Fig. 4.
190 — -l/ ’
@ 19 = 1 —]/ (l -L 1 max )

Wenn auch das Gesetz der Temperaturverteilung interessiert, so muss
Gleichung (3) und (16) zu Rate gezogen werden. Durch einfache Umformung folgt
aus denselben:

(6 — 9)2 x2
@9~ @—%y
- —] =1. 22
(o3 (22)
Das ist die Gleichung einer Hyperbel mit der Temperaturachse @ — ¥, und der
Breitenachse:
— 9.\2
b=.d.m(6 2), (22a)
o —

weldhe in Fig. 1 eingezeichnet ist.
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An der Grenze der Stabilitat wird:

Amax
b="3
9, = Mittel (9) = 9+ 0,644 (9, — 9) ; (22b)

dv s
- = B3 [8; — 9]
(i) - g = 50107

Ob grossere Unterschiede zwischen Umgebungs- und Elektrodentemperatur zu
erwarten sind, lehrt Gleichung (13a). Hiernach gilt:

9 —

Adp 1 4 pn,

'(9: =

= —— =5 (23)
1+ 1_(4_)

ax

und maximal fiir 4 = 4,,,.:

dmax?’ ZVX’E(Q_EY: Amaxpm .
u u 2u

Aus der letzten Gleichung kann man schliessen, dass an der Stabilititsgrenze
die mittlere Verlustziffer der ganzen Platte doppelt so gross ist als die Verlustziffer

p der Randschichten. Es ist daher sehr empfehlenswert, Priifungen der Durch-
schlagfestigkeit mit Verlustmessungen zu kombinieren. Kommt man dabei zu dem
Resultat, dass bei ungefahr gleicher Elektrodentemperatur die Verluste nach einiger
Zeit auf mehr als das Doppelte gestiegen sind, so kann man ziemlich sicher sein,
dass die Platte durchschlagen wird.

'5 == '191. = (233)

Zweites Gesetz.

Als zweites Gesetz haben wir angenommen, dass die Verluste mit der Tem-
peratur nach einem Exponentialgesetz zunehmen, dass also fiir gleiche Feldstarke:

p=pes®—9 (15)

gesetzt werden kann. Wir konnen mit diesem Gesetz ein anderes kombinieren,
wonach auch die Dielektrizitatskonstante & mit der Temperatur nach einem &hnlichen
Gesetz zunimmt:

e=cef0-T (24)

Fiir unser Bakelitpapier z. B. steigt die Dielektrizitatskonstante mit ungefahr 0,6 %
pro Grad. Dies hat zur Folge, dass sich die Priifspannung E nicht gleichmassig

auf die Plattenstarke 4 verteilt, sondern dass die Feldstirke F= — % der in-
neren Schichten im Verhaltnis der Dielektrizitatskonstanten geringer ausfallt als die
Feldstarke F der Randschicht. Nehmen wir ausserdem an, dass die Verluste mit
der nten Potenz der Feldstarke wachsen, so lautet nunmehr unser Verlustgesetz:

&
mit: y=a—-nf (25a)
oder fiir: a=0,087, =000, n=2,

» = 0,075. (25b)
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Den weiteren Rednungsgang brauche ich nur anzudeuten:

Gleichung 5: — [ dv
. : ¢ Y= ]/ 2 Jo
][ Y@= 49
K} 9
- ]/ 2y Sﬂo‘ do
e? W= 5) /| — gy @—9
_ Y t5e—Ti — -
=£—1;{—ze z® 19)arctgh V1-e—7@-9, (26)
Wir berechnen: 1,875
Yinax = — (27)
Vr
fiir: Oymer — T — 1,188 15,90, (27a)

Wir sehen daraus, wie gering zuweilen die Temperaturunterschiede zwischen
Plattenmitte und Oberflache sein miissen, wenn die Stabilitatsgrenze nicht fiber-
schritten werden soll. Hierbei ist die Feldstirke in der Plattenmitte (F,) etwas
kleiner als an der Oberflache (F), da die Dlelektrmtatskonstante ¢ mit der Tem-
peratur zunimmt:

@ p— eﬁ(’aOmax—F) _ e ;l,l%g = 0,91 . (27b)

Daher betragt die mittlere Feldstarke angenihert:

Fu_ 1, 2F _1+2e-t%5
F 3 3 F 3

Nach Gleichung (8) erreichen wir die Stabilitatsgrenze bei gegebener Oberflachen-

temperatur ¥ mit einer Plattenstirke:

=0,94. (27¢)

Ay = 1,875/ 2 (28)
py

und berechnen daraus die grosste erreichbare Durchschlagspannung :

—11886
Eax = 1+2e3 r 1875 |/,1£i~094 1875]/,%——-—-

Setzen wir hierin wieder:

A =0,00165, y=0,075

F? 400 _

s —a (9 —659

p 00016 ° | 153}
so wird: Eume =130 2= 70— o0 (29a)
also: 9= 650 700 800 900

Emx = 130 105 68 43,5 .
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Das sind im grossen und ganzen dieselben Werte, wie die nach dem ersten Gesetz
(Gleichung 20a) gefundenen.
Die mittlere Verlustziffer betrigt dabei nach Gleichung (13):

5o —
9

max

wobei noch zu beachten ist, dass p zu F = 1,06 F, zu berechnen ist. Nach dem
zweiten Verlustgesetz ist daher eine. etwas hohere Verlustziffer zulassig als nach
dem ersten Gesetz.

=2,88p ~(30)

(pm)max =2 p

2. Graphische Behandlung eindimensionaler, ebener Wdrmeleitungsprobleme.

Die im vorigen Abschnitt entwickelte Theorie lasst sich erheblich vereinfachen,

wenn man eine unwesentliche Vernachlassigung und eine kleine Unsicherheit in

Kauf nimmt. Da die hierauf gegriindete graphische

rm Behandlung einfach und fiir die praktische Anwen-

rm-$6h). . dung wertvoll ist, glaube ich, dieselbe an dieser
Stelle nicht iibergehen zu diirfen.

Die erwahnte Vernachlassigung besteht darin,
dass wir die mittlere Verlustziffer p. des Mate-
riales der Verlustkurve p = @ (V) zu ¥ = 9, ent-
nehmen (Fig. 5), wobei ¥, den Mittelwert der Tem-
peratur iiber die Plattendicke 4 bedeutet. Die eben-
falls erwahnte Unsicherheit besteht darin, dass
wir fiir die an eine Elektrode bei symmetrischer

Fig. 5. " -
Grapbische Bebandlung tirg = konst. Warmestromung abgegebenen Verluste den Ansatz
a O — O d 0)
— el = — —_—
Py =474 2(dx R (30)

anwenden, wobei der Proportionalitatsfaktor ¢ wie wir spater zeigen werden,
zwischen ¢ =5 und ¢ = 6 variieren kann.

Es ist klar, dass wir mit diesen beilden Annahmen eine ausserordentliche
Vereinfachung erzielen. Denn nun ist einerseits:

Po=(Vu—Vig7 (Fig. 5)
mit: — 2ci

und andererseits auch geméass der Verlustkurve:
Pu=12 (ﬂm) .

Ist also die Oberflachentemperatur 9 vorgeschrieben, so brauchen wir nur die fiir
die richtige Feldstarke gezeichnete Verlustkurve mit der unter dem Neigungswinkel

7 durch ¥ =19 gezeichneten Geraden zum Schnitt zu bringen, um das zustande
kommende Warmegleichgewicht p., . zu erhalten Fig. 5.

Ebenso einfach bestimmt man die grosste mittlere Verlustziffer bzw. die grosste
Prifspannung, mit welcher bei konstanter Oberflachentemperatur noch eben ein
(labiles) Warmegleichgewicht moglich ist. Offenbar muss fiir diesen Fall die Gerade
durch 4 =9 die Verlustkurve beriihren. Ist diese fiir irgend eine Feldstarke Fi



XVe Année 1924 BULLETIN No. 7 333

gezeichnet, und legt man an diese Kurve die Tangente, so wird ihre Neigung im

Verhaltnis tg Tmn/tg v Kleiner als die Neigung der durch Gleichung (32) vorgesdhrie-
benen Geraden. Die grosste zulassige Verlustziffer (pn)max darf also im gleichen
Verhaltnis grosser sein als die Verlustziffer p.x im Beriihrungspunkt der Tangente
an die fir F, gezeichnete Verlustkurve. Wachsen nun die Verluste mit der nten
Potenz der Feldstarke, so folgt ohne weiteres fiir die maximale Feldstarke:

Fou 1/ tgt "7/2ci , -
x min

und fiir die Durchschlagspannung bei Dauerpriifung:

n—2

Ewx=4 7 F,V2cactg o, (33)

Mit der graphischen Methode arbeitet man also schnell und einfach und ist frei
von einschrankenden Annahmen iiber das Gesetz der Verlustkurve. Aus diesem
Grunde ist sie trotz der erwahnten Vernachlassigungen oft genauer als die friiher
mitgeteilte mathematisch exaktere Theorie.

Was ausserdem der Naherungstheorie noch besonderen Wert verleiht ist der
Umstand, dass die Lésung ebenso einfach bleibt, wenn nicht die Oberflachentem-

peratur ¥, sondern die Umgebungstemperatur ¥, gegeben ist, und wenn fiir den
Zusammenhang zwischen beiden Temperaturen der Ansatz der Gleichung (12) ge-
macht werden kann. Derartige Aufgaben, die nach der analytischen Theorie recht
umstandlich zu 16sen sind, wird man daher immer graphisch behandeln. Zunachst
berechnet man aus Gleichung (12) und (31):

V= b | (34)
B R

Dies in Gleichung (31) eingesetzt, liefert:

Po=(Un—V)tg7

. 1
mit : tgr=—p =" (35)

2l T au

Wir brauchen also nur 7 in Fig. 5 und Gleichung (32) durch v und 9 durch 9, zu
ersetzen, um alle friiheren Ableitungen auch auf
diesen allgemeinen Fall anwenden zu konnen. In
Fig. 6 ist diese Behandlung durchgefiihrt. Ausser-
dem ist durch die strichlierte Gerade mit dem Nei-

gungswinkel = auch die Oberflachentemperatur ¥
bestimmt. Die Konstruktion der Tangente mit dem
Neigungswinkel 7., liefert die Mitteltemperatur ¥ max
an der Stabilitatsgrenze und es ist sehr bemerkens-
wert, dass dieser Scheitelwert nur von der Umge-
bungstemperatur ¥, und nicht auch von dem Tem-
peraturfall 9 — 9, bezw. von u abhangt. Die zu-
geordnete Feldstarke, die das Material eben noch Fig. 6. 7
dauernd ertragt ist: Graphische Behandlung fiir 9 = konst.
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Ctg Tynin
=F, ]/ BImn (36)
2_
und . die DurchschlagSparmung:
n—1 n -
Emax - A “n F V Ctg Tmm — 4 n Fx ]/ Actg Tmin 1 . (37)
2¢i T2 U A 2cA 2un

Verglichen mit dem zuerst behandelten Grenzfall (¢ = 9., u = o0), liegt diese Durch-

schlagspannung im Verhiltnis:
E 1
e @12
1

tiefer. Ausserdem wichst jetzt die Durchschlagspannung auch fiir das quadratische
Verlustgesetz (n = 2) dauernd mit der Plattenstiarke und erreicht erst fiir 4 = oo
den friiher bezeichneten Grenzwert. Die Zunahme erfolgt fiir n = 2 mit der Wurzel

A
aus der Plattenstarke, solange C—f klein gegen 1, was fiir die Priifung von Ba-

kelitpapier in Luft bis zu Plattenstarken von 1 c¢m und dariiber der Fall sein kann.

Ich habe nun nodch zu zeigen, von welcher Grissenordnung die mit dieser
Naherungsmethode begangenen Fehler sind. Zu diesem Zwedke muss ich einen
Vergleich mit der analytischen Methode durchfiihren, wobei ich das fiir Bakelitpapier
aufgestellte erste Gesetz:

FX k
,P—‘p(ﬂ)—(ﬁ)@‘_ﬁ—)s (14)
zugrunde lege.
Der eine Fehler bestand darin, dass wir die mittlere Verlustziffer p..der mitt-

leren Temperatur ¥, nach derselben Kurve zu ordneten, wie die lokale Verlustziffer

p der lokalen Temperatur 9. Solange das Temperaturintervall (9, — ¥) == 1,5 (9, — )
so klein ist, dass zwischen diesen Grenzen die Verlustkurve praktisch genau durch
eine Gerade ersetzt werden kann, ist auch der begangene Fehler praktisch gleich
Null. Erst wenn zwischen diesen Grenzen die Verlustkurve merkbar gekrimmt ist,
wird auch der Fehler messbar. Den denkbar grossten Fehler begehen wir somit

bei einer Priifung mit dem denkbar gréssten Temperaturintervall, das ist fir ¥ = 9,
(4 = o) und Anstrengung des Materials bis zur Stabilitatsgrenze. .

2x 1 —~ 1 .
S I/ ( d(d )=?]/2 +yarcsinh1=1,148

Hierfiir leiten wir ab:

= ﬁo
und: -9 _ 7
6=79,
P 3 k
Ferner gilt allgemein: pn= (70) © — ) (6 — 3y)° . (38)
- M

An der Stabilitatsgrenze wird daher: Pos = 1 07( F) ﬁ (38a)
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Vergleicht man dieses Resultat mit dem oben angenommenen lokalen Verlustgesetz
14, so erkennt man, dass der Fehler der graphischen Behandlung hoéchstens 7 %
betragt Man kann ihn auf —+ 3Y, % herunterdriicken, wenn man die Kurve der mitt-
leren Verlustziffer. mit p. = 1,035 p zeichnet.

‘Wir erwahnten ferner die Unsicherheit, die in der Annahme des Koeffizienten
¢ liegt. Dieser Koeffizient schwankt fiir 4 = o bis 4 = 4, zwischen 6 und einem
unteren Grenzwert von 5~ 5,3. Er kann unter Annahme des Verlustgesetzes 14

als Funktion des Verhaltmsses
/ A 2
o=(—
(o) -

berechnet werden und liefert die Gleichung:

=2 s JET. , (39)
1+yi-—0 i rcsin k 1 =) l=g
a 1 —————
]/1 yi-o V2 l1+1/1—o

nach weldcher Fig. 7 aufgezeichnet ist. Die Unsicherheit in der Wahi von ¢ wird
daher beseitigt, wenn man den Parameter 6 aus der graphischen Konstruktion ab-
leiten kann. Dies ist aber in der Tat der Fall, denn nach Gleichung (32) ist:

a4\ T
o = (_A ) _ 18T (vgl. Fig. 8) (40)
tg v ‘

max

02 04 o6 08 jod

Fig. 7.
Funktion C = 7 Fig. 8.

2(1-Y1-5) Bestimmung von

i -9 —Tl—F
—l—L:arc sin h]/l Vl—a a=ba :( 4 )2

Y21 Y15%) 1 +YT—» ca — \ 4,

Man wird also zunachst die in Fig. 8 abgebildete Konstruktion mit einem geschétz-
ten Werte von ¢ durchfilhren und erhalt damit einen guten Naherungswert fiir

0= %ICJ—-' Mit diesem tritt man in Fig. 7 ein und erhalt einen genaueren Wert

fiir ¢, mit welchem die Konstruktion nétigenfalls korrigiert werden kann.
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3. Analytische Theorie fiir eindimensionale, zylindrische Wirmeleitungsprobleme.

Das widhtigste Beispiel fiir zylindrische IsolierkOrper, bei denen die Verlust-
warme hauptsachlich in radialer Richtung fortgeleitet wird, sind massive Papier-
durchfithrungen. Werden dieselben als Kondensatordurchfiihrungen gebaut (Fig. 10),
so lasst sich durch geeignete Abstufung der Stannioleinlagen erreichen, dass die
Feldstarke zwischen Bolzen und Flansch nahezu konstant bleibt. Die Verlustziffer
kann dann in erster Annaherung als eine Funktion der Temperatur allein betrachtet
werden. Behilft man sich ohne Stannioleinlagen, so ist die Feldstarke im mittleren
Teile zwischen Flansch und Bolzen nahezu umgekehrt proportional dem Radius
und daher die Verlustziffer eine Funktion der Temperatur und des Radius. Mit
diesem allgemeineren Falle wollen wir beginnen.

3a). Massive Papierdurchfiihrungen ohne Stanioleinlagen

C[_l@ (Fig. 9).

Fiir den ‘Beharrungszustand lautet die Warmeleitungsgleichung:

1 d dd

Bei konstanter Temperatur sei die Verlustziffer der nten Potenz

der Feldstarke proportional. Fiir die Abhéangigkeit der Verlustziffer
von der Temperatur gelte das Exponentialgesetz ¢ — ¥, desgleichen
fiir die Zunahme der Dielekftrizitatskonstante mit der Temperatur ein
Exponentialgesetz ¢# @ —9, Dann gilt fiir die Feldstarke zwischen
Bolzen und Flansch:

£=(’)e—'ﬂw—ﬂ—> (41a)
F r
und fiir die Verlustziffer:
_ /F n _ —/o\A .
® — Z ) pa@—9) = (_f;) ey(ﬂ—ﬂ),
p p( F) P(-. (41b)
Fig. 9. wobei: y=a-—np. (41c)
Papietd oot wog. - Mit Riicksicht hierauf lasst sich Gleichung (41) auch wie folgt dar-
stellen:
d*d 5 (i)n_z YO -7) —
ﬂd(lnr)z ~+pr ; e =0. (42)

Obschon diese Gleichung elementar Iosbar ist, wollen wir uns hier auf die
Untersuchung desjenigen Gebietes beschrianken, in welchem die Verluste mit dem
Quadrate der Feldstarke (n = 2) zunehmen. Setzen wir ausserdem:

Inl=x (43a)

o

so erhalten wir die uns bereits gelaufige Differentialgleichung:
280 L ST o (9) =0 43) (vgl. 1)
d x2 _ ,

wobei anstelle von: @ (9) = er @9 (43a)
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auch ein beliebiges anderes Tempei‘aturgesetz stehen konnte. Die geringfiigige
Warmeableitung durch den Bolzen kann man bei langen Durdhfithrungen vernach-
lassigen. Wir fiihren daher als Grenzbedingungen ein:

do

——=20
Far (r=0) f@
X =
=1 (43b)

Da auch die Theorie der eindimensionalen ebenen Wirmeleitung mit derselben
Annahme arbeitete, kGnnen wir alle Resultate dieser Theorie sinngemass anwenden,
wenn wir nur:

A — _
x durd In-_, 2 durd InL, , p durch pr2
r() 2 I'o

ersetzen.

Was uns an erster Stelle interessiert, ist wiederum die Lage der Stabilitats-
grenze. Aus Gleichung (8) und (27) erhalten wir:

T 1 /4 1 A
(l n r—) = ——]E%ax = 0,938 = |/ — (44)
0o/mx  2r ¥V p r py _

und berechnen hieraus die grosste erreichbare Durchschlagspannung:

- 2
Evu22094 Frin-- =088 )/ 1EL, (45)
To p 7

Die Durchschlagspannung massiver Papierdurchfithrungen ohne Stannioleinlagen
liegt also gerade halb so hoch wie die Durchschlagspannung von Platten, bezogen

auf gleiche Randtemperatur ©. Dabei betragt die mittlere Verlustziffer genau wie
bei Platten Gleichung (30):

(Pn)max = 2,28 D _ (46)

wennmn: B - 2 lan
Pn=0p r°2 (46a)

_ To”

Fz

die mittlere Verlustziffer bei einer iiber den ganzen Isolatorquerschnitt konstanten
Temperatur ¢ bedeutet. '

3b). Massive Kondensatordurchfiihrungen (Fig. 10).

Bei der Behandlung der massiven Kondensatorklemme wollen wir annehmen,
dass bei konstanter Temperatur die Feldstarke zwischen Bolzen und Flansch kon-
stant sei. Nach erreichtem Warmegleichgewicht ist dann die Feldstarke der inneren
Schichten etwas kleiner als die der ausseren, da ihre Temperatur hoéher und ihre
Dielektrizitatskonstante grésser ist. Machen wir fiir die Abhéngigkeit der Dielektri-
zitatskonstante und Verlustziffer von der Temperatur dieselben Annahmen wie im
vorigen Abschnitte, so erhalten wir nunmehr als Verlustgesetz unabhingig vom
Radius:

p=5e7(‘9—'97 mit y=a—np. 47
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Nach erreichtem Warmegleichgewicht gilt daher die Diiferential-
gleichung:

lLﬁ—{—ErzeY(ﬂ—"_):O (48)
d(Ilnr)? '
Durch die Substitutionen:
"
ln [— X ’
r .
2x+y(@ -9 =u (49)
wird diese Gleichung iibergefiihrt in:
d2 i I
Exbg—l—prz%e”=0. (49&)

Wenn der Bolzen keine erhebliche Warmemenge aus dem Mittel-
stiick ableitet, konnen wir als Grenzbedingungen einfiihren:

dd

. F=r, =0

' Fii ar (50)
ur: H

Fig. 10. _ 1. To du

K x=In— el B

ondensator-

durchfiihrung. r dx

Wir kénnen nun zur schrittweisen Integration der Differentialgleichung schreiten:

11__V N 1

T 4c 2pr e (51)
; . 24

oder wenn wir zur Abkirzung: —=— = R? : (51a)
pr

einfithren: du = —2 1/ c2 — re ed (51b)

'
Fiir die Integrationskonstante ¢ folgt aus Gleichuﬁg (50):

dx

2 -
c? = 1—|—%e?’“9—1”. (52)

Fiir kleine Bolzendurchmesser ist daher ungefahr: =1, (52a)

Durch weitere Integration (Integrationskonstante b) finden wir:
1 ¥ Y (9—9)
du +]/1 B ( cR ) ‘
2cx = — S —= In 5
r u .___’;_ Y@ —39)
[EEA )

r e%(ﬁ—é?—)z 2¢ . (53)

—+ In b?

oder:
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Wendet man diese Gleichung auf die Randschichten (r =r, 9 = ) an, so ergibt sich:
2

r_ : (54)
R, 1
b+ b
Dagegen erhilt man fiir die Bolzenoberfliche (r=r,, ¥ = 9;), (vgl. 52):
Y S
Rezwa 9) _ _ 02c1 — =yt 1 (55a)
() + 5 (7)
ri b\ r
I c
oder nach einigen Umformungen: b= zi—i (—%) : (55)

Treten wir damit in Gleichung (54) ein, so ergibt sich endgiiltig fiir die Dicke

4 = r —r, der Kondensatordurchfiihrungen:

L (56)

VEE T

Nach unseren fritheren Erfahrungen diirfen wir als sicher annehmen, dass die

. 20( "ro) —Rf(c,ro)-

rechte Seite dieser Gleichung bei jedem gegebenen Verhéltnis%fﬁr einen be-

stimmten Wert der Integrationskonstante ¢ ein Maximum besitzt. Die grosste Wand-
flache, bei welcher eben noch ein Gleichgewicht mdoglich ist, betragt dann:

/(1))

Fiir die Berechnung dieses Maximalwertes erhalten wir aus (46) die Bedingungs-
gleichung:
1+ b c 1. c+1

= =l = T —i—?lnc_l (48)
Das Resultat der Rechnung enthilt Fig. 11 und Tabelle I

) Tabelle I,
% 0 0,071 0,217 0,331 0,436 | 0,507 0,560 1,000

¢ 1 1,01 1,10 1,25 1,5 1,75 2,0 -

b 1 0,981 0863 | 0752 | 0644 | 0582 | 0,543 -
Finax | 1 0,938 0855 | 0802 | 0,772 | 0,752 | 0,737 | 0,662
2 (96 =1) max 1,386 1,366 1,314 1,272 1,258 1,239 1,235 1,188
I; 0,074 | 0,073 0,070 | 0,068 | 0,067 0,066 | 0066 | 0,063
V2 F,. I;‘ 1,310 | 1,232 | 1,125 1,055 1,020 0,995 0,972 0,878
(%) - 1 1 1,02 1,05 1065 | 1,08 1,00 1,14
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4

Je kleiner also der Bolzen-
durchmesser im Verhaltnis

& ; zum Flanschdurchmesser, um-
e~ grosser darf man die Wand-

‘o — ey "5/;,;? stairke machen und desto mehr
— T Spannung halt die Durd-

a8 e fiihrung aus. Der Grenzwert

06

fiir Lf" =1, welchen die Ta-

belle enthilt, ist nach Glei-

o | | chung (28) fiir einseitig ge-
kiithlte Platten berechnet.
o2 - Beziiglich der Durchschlag-

_ spannung liegt die Konden-
; ) T o8 a9 4o L- sa_torklerpme unggfﬁh_r in der
o Gz a5 64 1='0511 % @ ? 7 Mitte zwischen beidseitig ge-

i L kiihlten Platten und massiven
Durchfiihrungen ohne Stanioleinlagen. Wir erhalten namlich:

A (1/? Fon ﬁ) [ (59)
F 7 p

wobei gemass (27b): I;L" =1- %(1 — g = B @o= D) | : (59b)

~

Also fiir 2 =0 bis 0,25:
r
i P

Enax = (1,31 ~ 1,10) |/ — (59a)
Yy P

e . A F?
Dagegen war fiir beidseitig gekiihlte Platten (29): Euax = 1,76 V———_—
Yy P
. L ; . ]/,1 F?

und fiir gewohnliche Papierdurchfiithrungen (45): Enax =088 |/ —— -
7 P

Im Priiffeld zu entscheiden, ob eine Durchfiihrung bei einer bestimmten Span-
nung oberhalb oder unterhalb der Stabilitatsgrenze arbeitet, erfordert eine viel-
stiindige Dauerprobe. Es ist daher erwiinscht, von vorneherein die mittlere Verlust-
ziffer angeben zu kdnnen, welche ein Isolator in der Nahe der Stabilitatsgrenze
besitzt. Die allgemeine Formel hierfiir lautet:

Pn=— (;ir,.:z),, 4 (ftf)rg' (60)
Hieraus berechnen wir: T
(D)o = 2}:1 [b 1 ;c _}_% 1-40—0] ?215 -
B 1— —% 1+c¢ 1 - I;:
=2p r f£“+ * (61)
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Wie die letzte Reihe der Tabelle I zeigt, ist angenahert: p. = 2p (61a)

wobei jedoch p zu einer Feldstirke zu berechnen ist, die ungefahr 7 % .hoher liegt
als die mittlere (dies wegen der Zunahme der Dielektrizitatskonstante mit der
Temperatur). Die hochste Verlustziffer an der Bolzenoberflache ist:

Pomes = p @7 Gums =9 = p (c2 — 1) : | (62)

Da nun gemass Tabelle I der Exponent p (Jymax — 19) ungefahr gleich 1,3 gesetzt
werden kann, so ist ungefihr:

Pomax 22 3,7 P (62a)

Dies Resultat ist wichtig fiir praktische Anwendungen der Theorie. Denn wie
Fig. 3 zeigt, ist es nicht immer moglich, die ganze experimentell bestimmte Verlust-
kurve p = @ (9) durch eine Exponentialfunktion zu interpolieren. Nach Gleichung
{62a) ist dies aber auch nicht notig, sondern es geniigt, wenn in dem Gebiet p

bis 3,7 p eine gute Annaherung erzielt wird.

Zum Schluss seien noch einige praktische Ziffern gegeben, die zeigen sollen,
mit welchen Grenzen man bei der Konstruktion grosser Kondensatordurchfiihrungen
zu rechnen hat. Wertet man Gleichung (59a) fiir eine Verlustkurve nach Fig. 3 aus,
so erkennt man sofort, dass Transformatordurchfiihrungen mit dieser Papierqualitat
fiir Betriebsspannungen iiber 66 kV zwischen Bolzen und Flansch nicht mehr her-
stellbar sind. Man muss also entweder die Konstruktion oder das Material ver-
bessern.

Nehmen wir zunichst den letzten Fall an: Es moge durch fortgesetzte Ueber-
wachung der Verlustziffer die Qualitat auf folgende Hohe gebracht haben (die
Werte sind vom Verfasser experimentell festgestellt):

_ 1 _ Watt
= 00212 2= 000165 5
B = 0,016 y=0018 —
0C 018 5¢
und fiir 20 kV/em und fiir 709C:  pgo = 0,002 Wa“

Dann ergeben sich bei einem Verhaltnis L1 - 0,2 folgende Grenzen fiir die erreich-

r ‘
bare Betriebsspannung zwischen Bolzen und Fassung:
90C 40 50 60 70 80 90
p fir 20 kV/em 0,0011 0,0013 0,0016 0,0020 0,0025 0,0031
Esy 208 192 172 154 138 124

Vergleicht man diese Grenzwerte mit Tabelle I, Seite 339, so sieht man, wie
ausserordentlich viel durch Verbesserung der Papierqualitat gewonnen worden ist.
Immerhin ist es nicht ausgeschlossen, dass man in Zukunft mit der Betriebsspannung
zwischen Bolzen und Flansch noch hoher gehen will, und dann diirfte es notig
werden, die Warmeableitung zu verbessern. Hierzu glbt es verschiedene Wege:

Vielversprechend erscheint die Anordnung einer inneren und dusseren Kiihlung
nach Art von Fig. 12. Aeusserlich gleicht die Type den Olgefiillten Porzellandurch-
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- fiithrungen der General-Electric. Co. Doch wird in
- unserem Falle das Oel nicht so sehr als Isolier-

é; ---- = material, sondern vielmehr als Kiihlmittel beniitzt.
A Infolge der natiirlichen &usseren Kiihlung, die in
C " NHE Fig. 12 durch Kiihlschlangen unter dem Flansch

HE unterstiitzt wird, wird das mittlere spezifische Ge-
B . wicht und daher der Druck des Oeles im ausseren
Mantel etwas grosser als im Durdhfithrungsrohr.
4 | Es kommt daher die durch Pfeile angedeutete Oel-
HH zirkulation zu stande, die infolge des hohen Wertes
NEME der Warmeabgabe-Konstante (u« 22 0,012) nur eine
7 E ganz geringe Erwarmung des Rohres iiber die Oel-
: temperatur zulasst. Es liegt nahe zu denken, dass
Sl trotzdem die innere Kiihlung nicht wirksam sein
H konne, da die innere Kiihlflache so viel kleiner ist
13 als die aussere. Die im folgenden durchgefiihrte
£ E , mathematische Analyse beweist jedoch die Unrich-
~1H8 ‘tigkeit dieser Anschauung.

Der Einfachheit halber vernachlassige ich dies-
mal die Veranderlichkeit der Dielektrizitatskonstante
mit der Temperatur, setze also # =o0 und a =y,
Ausserdem will ich von den Unterschieden der Oel-
temperatur im ausseren Mantel (r = r) und im Durch-
fithrungsrohr (r = r,) absehen und an beiden Stellen
mit ¥ =719 rechnen. Als Grenzbedingung fiir den
ausseren Umfang erhalten wir dann wie friiher:

v

LR

INALYA

r 2c¢

R, 1
b+

(54)

Fig. 12.

. it . f s
Durchfiihrung mit dusserer u. innerer Kiihlung 8lag§hgen g5115t iil.ll‘ den ijnneren Um g SRS
G = OQelstandsglas. ) cidiung ( a)-‘
C = OQelzirkulation,
D = Durchfiihrung. To 2¢

P = Porzellanmantel. - = — ¢ C- ‘ (63)
7 2 Ko "y (L) +L(&)
I b\ r
Die Papierdicke betragt wie frither (gemass Gleichung 54):
A:R( _l_o_) 2¢_ _ Ry, (64)
r

1
b—f"?

Untersucht man, fir welche Werte von ¢ und b diese Dicke ein Maximum wird,

so erhalt man als Bedingungsgleichung mit (—g) =Q:
r

Die Losung enthalt Fig. 13 und Tabelle II.



XVe Année 1924 BULLETIN No. 7 343
Tabelle IL
>
% sehr klein 0,167 0,20 0,25 0,333 | 0,500 1
To \ ¢ 1l r
— TR 0,044 | 0,05 0,0575 | 00675 | 0,089 -
In?2
c 14+ —= 1,743 1,865 2,060 2,455 13,49 —
In L
)
o 2
b 1— -2—?* 0,597 0,575_ 0,544 0,498 0,455 —
o
Fooe (1— 7) i@ 1,280 1,288 1,298 1,305 1,320 1,324
o 1 o 3 ) § :
VZ foue - ) vVac 1,81 1,82 1,835 | 1,845 1,865 | 1,875
|
f”’ﬂx £
1,4
1
P el 1 o
1,0
08 K
06 AT
5ot}
04
P g
<
B2 K é )
0 a/ 02 03 Qs 4G5 Qg6 a7 a8 09 lo L g*
' r y n i
Fig. 13. 8

Man sieht aus Tabelle II, dass selbst bei so kleinen Ver-

haltnissen wie % = 0,2 die innere Kiihlung die zu-

lassige Betriebsspannung der Durchfiilhrung um 50 %
erhoht, so dass wir nunmehr mit « = 0,0212 und
pre = 0,002 (F =20 kV/cm) folgende Grenzen fiir die
Dauerspannung zwischen Bolzen und Flansch erhalten

(fir - = 0,2).

Tabelle Il
4 0C 40| 50 | 60 | 70 | 80 | 90
p (F20 kV/cm 0,0011/0,0013|0,0016(0,002(0,0025|0,0031
Eop = V2 Fup |/ 2 F2 | 306 | 282 | 254 | 227 | 203 | 182
a p
Bei Serienschaltung von
2 Durchftihrungen (Fig.14) 514‘ 474 | 426 | 381 | 341 | 306

R
% iz

Durchfiihrung mit dusserer und innerer

ihlung.

P = Porzellanmaniel.

K
F =
D
C

Flansch.

= Kompound.

Durchfiihrung.
Oclz.rkulation.
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Man kann noch weitergehen und, wie Fig. 14 zeigt, eine erste Durchfiihrung,
die nur aussere Kiihlung besitzt mit einer zweiten, doppelt gekiihlten Durchfiihrung
in Serie schalten. Damit ergeben sich die Ziffern der letzten Reihe in Tabelle III.
Bei Serienschaltung von 2 doppelt gekiihlten Durchfiihrungen erhOohen sich die
Ziffern noch mehr, und nichts hindert, noétigenfalls zur Serieschaltung von mehr
als 2 Durchfithrungen iiberzugehen, die nicht einmal notwendigerweise konzentrisch
angeordnet zu sein brauchen. Man sieht: Auch ohne weitere Verbesserung der
Papierqualitat lassen sich die Grenzen fiir eine betriebssichere Konstruktion von
Kondensatordurchfiihrungen beliebig erweitern. Voraussetzung bleibt aber immer, dass
man die Materialeigenschaften genau kennt und die Warmeleitungstheorie beherrscht.

Das Unterwerk Olten der S.B.B.

Von E. Heusser, Ingenieur, Aarau.

Der Verfasser gibt eine kurze Beschreibung | L’auteur fait une courte description de la sous-
der Freiluftschaltanlage Olten der S. B. B., worin | station exterieure des chemins de fer fédeéraux
besonders die fiir diese Anlage ungiinstigen drt- | ¢tablie a Olten dans des conditions locales par-
lichen Verhdltnisse und Witterungseinfliisse Er- | ticulierement difficiles.
wdhnung finden. Ferner werden Angaben gemacht Il donne des renseignements sur U'essai de
liber den Versuch, Isolierdl direkt aus den Trans- transvaser lhuile directement des fiits servant
portfdssern der Lieferanten in die Apparate der | au transport dans les appareils du poste.
Freiluftschaltanlage einzufiillen. '

# Am 16. Mai 1924 wurden die ersten Ziige mittels elektrischer Traktion iiber
die” Strecke Olten-Basel gefithrt und die Tageszeitungen meldeten als besonderes
Ereignis die Vollendung der Elektrifikation der ganzen Gotthardroute von Basel bis

Fig. 1. 433000 kVA 60/15 kV. Ansicht: Apparate”und Sammelschiene 60 kV.

Chiasso. Mit diesem Zeitpunkt kam auch das Unterwerk Olten, eines der grdssten
seiner Art, in regelméissigen Dienst und da dieses, wie eine Anzahl anderer S.B. B.-
Unterwerke, als Freiluftanlage gebaut ist, verlohnt es sich, dessen Entwicklung
technisch etwas zu verfolgen. )
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