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Die Länge ,—~ von b' nach oben aufgetragen, ergibt den Punkt D.
1 — A

Dann ist der Linienzug A0DAk die „bessere" Bezugslinie für die Nutzleistungen,
als die Gerade A0 Ak.

3. Die Drehmomentenlinie.

Ziehen wir die Ordinate Aaaœ, so schneidet diese dieA-Linie im Punkte h œ.
Nun berechnen wir nach Seite 276:

hi (1 — r)2 t sin v
Ci (1 + £? 4- 2 fi sin v) (r - £?)

und bilden: Kir =—•0 Ci

Dann ist der primäre Kupferverlust für 0

A h
P CO CO

Ilcocu ^ TS

A b
Die Länge i

m m von bœ nach oben aufgetragen, ergibt den Punkt kw und A0 kœ

die „bessere" Drehmomentenlinie, als A0Aœ.

4. Die Schlüpfung.
Die prozentuale Schlüpfung s in irgend einem Betriebspunkte ist das Verhältnis

des Ordinatenabschnittes zwischen den beiden Bezugslinien zu dem Abschnitt, der
das Drehmoment darstellt.

k l
s 100 in Prozent.

kA

Den Anlass zu dieser Untersuchung gab die Tatsache, dass bei mehreren
untersuchten kleinen Motoren (1/2a- 8 PS) die, aus dem Kreisdiagramm konstruierten
Betriebskurven, mit den durch Bremsung gewonnenen, nur sehr roh übereinstimmten.
Besonders die Drehmomente ergaben sich aus dem Diagramm immer als zu klein.
Konstruiert man das Diagramm nach den obigen Angaben, so ist die Uebereinstim-
mung eine bedeutend bessere; natürlich entspricht auch diese Theorie der Wahrheit
nicht genau.

Wenn man aber dem Kreisdiagramm überhaupt eine theoretische Berechtigung
zuerkennt, dann führen konsequente mathematische Schlüsse zu den gegebenen
Resultaten, die zum mindesten über die Ungenauigkeiten des Diagrammes einigen
Aufschluss geben.

Eine neue Methode zur Berechnung von Freileitungen.
Von E. Regli, Ing., Bern.

Der Verfasser behandelt, unter strenger
Anlehnung an die Kettenlinie, eine neue
Berechnungsmethode für Freileitungen, welche auf der
Eigenschaft derAehnlichkeit von Kettenlinien unter
sich beruht und hauptsächlich für extreme Fälle
(grosser Höhenunterschied der Aufhängepunkte)
Anwendung finden kann.

L'auteur expose une nouvelle méthode pour
le calcul de résistance nécessaire d'un fil tendu.
Cette méthode est basée sur le fait que toutes
les chaînettes sont semblables et convient surtout
pour les cas où les deux points d'attaches sont
placés à un niveau très différents.
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Die neuen Leitungen, die über das Gebirge gebaut wurden, haben ganz extreme
Fälle zur Folge gehabt, für welche die bisherigen Berechnungsarten langwierig und
schwerfällig waren. Es handelte sich bei solchen Fällen um Erweiterungen in den
Annäherungstheorien. Die bisherigen Theorien behandeln die der Kettenlinie an-
geschmiegte Parabel. Der Zweck war folgender: Man stellt die unendliche Reihe
der Kettenlinie auf, streicht die Glieder der höheren Potenzen, so dass wir schliesslich

eine Gleichung erhalten, die die Form einer Parabel hat. Diese Art der
Annäherung ist gültig für kleine Spannweiten mit eventuellen kleinen Ueberhöhungen.
Anders verhält es sich, wenn wir grosse Spannweiten mit grossen Ueberhöhungen
haben. Für diese Art von Leitungen sind, wie gesagt, die alten Theorien schwerfällig

und unübersichtlich.
Die mathematische Untersuchung hat jedoch gezeigt, dass man mit den

Gesetzen der Kettenlinie auf allerdings andere Weise den Annäherungen ausweichen kann.
Die Fehler, die in dieser Berechnungsart auftreten und die auf die genaue

Berechnung bezogen wurden, rühren von Ungenauigkeiten der hierbei notwendigen
Kurventafeln her.

Zum vorneherein sei bemerkt, dass man bei dieser Berechnungsmethode keine
Zustandsgieichung aufstellen kann, denn andernfalls käme man notwendigerweise
wieder auf Annäherungen. Dieser Nachteil kann jedoch auf ganz einfache Weise
behoben werden. Wir werden dies im Laufe der Untersuchungen ersehen.

Entwickelt man die Kettenlinie in die unendliche Reihe, so erhält man folgende
Beziehung:

y a cos h — ~ l'a -f- lx-w-
~û(1 + 2

streicht man die Glieder der Potenzen von 4 und 6 usw. dann erhalten wir, wie
gesagt, eine Parabel, deren Scheitel um den Betrag a, Parameter genannt, vom
Nullpunkt entfernt ist. Demnach wird:

1 x2
y " + -2~i-

Dass diese Annäherung berechtigt ist, zeigt folgender Fall:

Setzen wir a 700 und x 50

so ergibt das zweite Glied den Wert:

x2 2500
2 a 2-700 1,79

und das ist 0,00256 mal des Parameterwertes 700. Würde man die Potenz 4 mit
in die Rechnung nehmen, so erhielte man einen so kleinen Wert, der überhaupt
keinen Einfluss mehr ausübte.

Der Fall erhält sofort ein ganz anderes Bild, wenn wir eine starke Ueber-
höhung annehmen. Da die Bundesvorschriften eine gewisse Sicherheit gegen Bruch
verlangen, wird man den Parameter resp. die zulässige Beanspruchung heruntersetzen

müssen. Beim Fall mit Ueberhöhungen wächst die Ordinate, so dass das
X

Verhältnis — grösser wird, demnach das dritte Glied auch, so dass es unter

Umständen nicht vernachlässigt werden darf.
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Die Berücksichtigung dieser Zusatzglieder macht die Berechnung kompliziert.
Bei Anwendung der hyperbolischen Funktionen in unseren Berechnungen wird:

cos ft2-- sin ft2 — 1

a a

Die Form der Kettenlinie nach Gleichung:
a

y cos a

ist in der Fig. 1 widergegeben. Die
senkrechte auf irgend eine Tangente, die durch
den Fusspunkt des Berührungspunktes geht,
schneidet zwischen diesem Fusspunkt und
Schnittpunkt mit der Tangente den
konstanten Wert a heraus, also den Parameter
der Kettenlinie.

Eine andere Gleichung lautet:

u x
u a cos h —a

Setzen wir diese Gleichungen einander
gegenüber, dann wird:

U X 1cos ft — cos a 1

a

eine Formel, die uns vortreffliche Dienste leistet, besonders bei Fällen mit Ueber-
höhungen.

Die Kettenlinien haben die Eigenschaft, unter sich ähnlich zu sein. Auf diesen
Satz richten wir unser Hauptaugenmerk. Vergleichen wir die beiden Kettenlinien,
so finden wir folgende Eigenschaften:

Pig. I.

m
X X

ax cos h —- und y2 ö2 cos h 2

a i ö2

Setzen wir — —so bedingt das, dass die cos ft einander gleich sein müssen,
y2 ß2

oder:
1 AI

cos h —i-
M V1 U1

cos h

Legen wir eine Kettenlinie zugrunde, so können wir aus dieser alle Werte einer
andern durch reine Proportionen bestimmen. Dasselbe geschieht mit der Bogenlänge,

die den sin h entsprechen. Wir haben demnach :

/i öi Xi ö,
~r —^ wenn - —-
t2 ö2 x2 ö2

ist.

Wir benützen diese Eigenschaft, um eine für uns praktische Kurve aufzustellen. Zu
diesem Zwecke setzen wir die Bogenlänge als Funktion des Parameters bei
konstanter Distanz. Es ist somit:

l f{a) wenn x konst.
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104.2

Diese Kurve hat die Aehnlichkeit mit einer Hyperbel. Im Bereiche der grossen
Parameter ist die Aenderung der Bogenlänge sehr gering. Unsere Kurve, die wir

zu diesem Zwecke vorzugsweise
benützen, hat die konstante
Distanz 100 Meter vom Scheitel
gemessen und ist im Bereiche der
Parameter 100 bis 1600 ausgeführt.

Fig. 2 veranschaulicht uns
die Kurve.

Will man nun die Bogenlänge

einer Kettenlinie bestim-
a0 men, die den Parameter at und

Tiöo die Distanz xx hat, so ermittelt
Pig 2. man vorerst den Parameter a^.

Es ist: a0 — öj *i
für a0 finden wir auf der Kurve /q und schliesslich wird:

— i±L
x0

Diese zwei Proportionen genügen, um die Bogenlänge einer Kettenlinie zu
bestimmen. Auf eines soll hier noch aufmerksam gemacht werden : die Ausrechnungen
mit dem Rechenschieber werden oft ungenau, es ist deshalb ratsam, spezielle
Rechnungen auf gewöhnliche Art auszuführen. Wir werden später auf solche Fälle
stossen, wenn wir die Zustandsänderungen mit in Rechnung nehmen.

Der Fall mit Ueberhöhungen.
Der Fall mit Ueberhöhungen gestaltet sich schwieriger, doch kommen wir auch

hier mit dem Satze der Aehnlichkeit zum Ziele. In diesem Falle stellen wir die
Werte der Ueberhöhungen ins Verhältnis mit den Parametern, so dass

fti _ Qi

h0 a0

Um die Bedingung hierzu zu erhalten, stellen wir die unendlichen Reihen auf
und bilden sogleich die Differenz der Ordinatenwerte:

h\= y2 — Ui ho ~ y02 ~ yoi

Dasselbe machen wir für eine andere Kurve, die uns wiederum als Grundkurve
dienen soll:

-(i+ir(t)H(t)v"ll
Wenn wir den Satz der Vergleichung der Reihen zu Hilfe nehmen, können wir
ohne weiteres schreiben:

;.) 4 (*!-*?)
«o "1



XVe Année 1924 BULLETIN No. 6 287

oder: (xl - xl)
al (*02 - *oi) '

nehmen wir das folgende Glied mit der Potenz 4, dann ist

ai _ (xj - x*)
at (*0 2 ~ *0l)

Quadrieren wir den Wert mit der Potenz 2 und setzen ihn demjenigen der
Potenz 4 gleich, so folgt, dass

/ JCI — jcf y
V *02 - *01 /

*2 - *r
Xo 2 Xo\ / Xo2 Xoi

Durch Trennung der einzelnen Glieder tritt folgende Vereinfachung ein:

(xl - *f) (xl - *f) _ (xl - *?) (*!+ *?) *2 - *f *1-
(*02 - *0l) (*02 - *0l) _ (*02 - *0l) (*0 2

I *01)

klammert man xl, *f aus, so folgt :

1 1

und
xl - *f

*0 2 — *01

-*f
*0 2 ' *01

xl
*0 2 *01 *02+ *01

*r
" *01

+-
*52 *0.

auf gleichen Nenner gebracht und umgeändert erhalten wir schliesslich unsere
Endlösung:

A
*?

*01 + 2 Xo2 + *01

*02 2 *oi *02

*02
*01

oder

*2
*1

•*0 2

*01

Wir haben also die einfache Lösung, dass sich unter den angegebenen
Voraussetzungen die Abszissen der einen Kurve verhalten wie diejenigen der andern.
Damit ist uns aber nicht voll gedient, denn alle vier Abszissen sind für uns
Unbekannte, die wir noch zu bestimmen haben. Dazu benötigen wir vier Gleichungen.
Wir kommen jedoch auch anders zum Ziele, denn es ist x2 *, +d. Damit haben
wir schon eine Unbekannte eliminiert und wir können nun setzen:

*i + d *02
*01

Um die folgenden Unbekannten zu ermitteln, gehen wir vom Grundprinzip
aus. Es ist:

Ux y0r

y2 y02

öl flj— *!=*„! —
a0 +

demnach x2 Xr,o—•
a0

2 02
a0

Subtrahieren wir die entsprechenden Werte von * und y so erhalten wir:

und

y2 - yl ht (y02 - y0i)-^- K
a0 u0

*2 " *! dx (*02 - *0l) do-^
a0 a0
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Durch entsprechende Gleichsetzung erhalten wir wiederum:

Jh.
K wenn

di hl.
«o

ist.

Wir bestimmen aus diesen Gleichungen die Werte h0 und Üq. Hierauf zeichnen wir
uns eine Kettenlinie mit dem Parameter a0 1000 und nötigenfalls eine solche mit
a0 100 auf. Dazu konstruieren wir uns einen Masstab mit zwei zu einander
senkrechten Schenkeln, die die Masstäbe der Abszissen einerseits und die Ordinaten
andererseits enthalten. Mit den Werten h0 und d0 auf unserem Masstab gleiten wir
nun so lange auf unsern Normalkettenlinien entlang, bis die entsprechenden Punkte
auf die Kurve zu liegen kommen und wir die Werte X02 und X01 ablesen können.

•*0 2Hierauf bildet man den Wert k
*01

*i ~"t~ h _^02_ _
*01

~ k

Es wird sodann

h
k - 1

x1 + d.

Damit ist unsere Aufgabe gelöst, x, und x2 sind bis auf die Ablesungsfehler
genau bestimmt.

Zusammenfassend haben wir folgenden Vorgang:
1. Bestimmung von h0 und do,
2. » o* to » *01,

3. » k ^02
*01

4. di
» Xi k - 1

Hierbei ist genau auf die Vorzeichen zu achten von denen selbstverständlich
x, abhängt.

Um die Bogenlänge, d. h. ihre Abszissen zu bestimmen, könnte man von
ähnlichen Gesichtspunkten ausgehen, doch hat es keinen Vorteil, denn unsere frühere
Angabe ist einfach genug:

x2 entspricht a02, diesem /02 und schliesslich Z2

*1 » «01, » 4)1 » » 4,
so dass die Bogenlänge 2 nach folgender Gleichung bestimmt werden kann:

l h-li •

Der Durchhang.
Um den Durchhang zu bestimmen,

benützen wir nicht mehr die Aenlichkeitsbedin-
gungen, sondern wir gehen von zwei Formeln
aus, von denen eine aus rein geometrischen
Verhältnissen aufgebaut ist und für die Praxis
kein Interesse hat. Die zweite Formel hingegen
ist eine günstige Lösung, die wir als universelle
Formel betrachten wollen. Die Vereinfachung,
die gemacht werden musste, ist für die in der
Praxis auftretenden Fälle kaum bemerkbar.
Für den zweiten Ausdruck sind wir an hyper-

Fig.3. bolische Tafeln gebunden.

n y
A

7

M y y,

36 * X*
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Diese Formel ist unpraktisch, sie kann jedoch als Kontrollformel benützt werden.
Der Wert jc ist die Abszisse des Berührungspunktes jener Tangente, die parallel
zur Hypothenuse des Dreieckes, gebildet aus Distanz und Ueberhöhung, gezogen
ist. Die Umständlichkeit dabei ist die Bestimmung von x.

Formel 1. Aus der Fig. 3 lassen sich folgende Verhältnisse ohne weiteres
herauslesen.

f =yi + {x~x1) tga-y

'i -u, <* - *1)
X2 Xj

Setzen wir für yt und y2 die entsprechenden
Werte ein, so folgt:

Fig. 4.

a cos h —— - a cos h -

U *1 a a \y — a cos h — (x — xt).
a *2 - *i

Eine Umhüllungskurve findet man, wenn man eine Gleichung nach einem
Parameter — in unserm Falle nicht der Parameter der Kettenlinie, sondern eine
bestimmte Grösse, die für diesen Fall in Frage kommt und zwar Xi und x2, —

differenziert, hierauf Null setzt, und den Parameter aus beiden Gleichungen eliminiert.
Es ist jc2 xi + d,

y fis x) -|^- ç>(£x) 0.

Die differenzierte Gleichung lautet:

_ uxi x je, + d x x, a Xi+rf xi xt+d0 - sin h — -jsinh — Y-^stnh — cos h ——-—I—, - sin h -1ad a d a d ad a

.a Xj Xj Xj+ —r cos h sin h
d ad a

Versucht man x, aus den beiden Gleichungen zu eliminieren, so wird man
zu keinem Resultate gelangen, denn man stösst hierbei auf transzendente Gleichungen.
Wir sind deshalb veranlasst, einen Kunstgriff anzuwenden, der in der Anwendung
einer Eigenschaft der Parabel ruht und darin besteht, dass der konjugierte
Durchmesser einer Parabel den Sehnenabschnitt des andern halbiert. Dies gilt wohlweislich
nur für die Parabel. Wenden wir diesen Satz auf die Kettenlinie an, so sollte die
differenzierte Gleichung für diesen Ansatz zu Null werden, was jedoch nicht zutrifft;
ein Beweis dafür, dass diese Eigenschaft der Kettenlinie nicht zukommt. Wir machen
also folgenden Ansatz:

Formel 2. Die universelle Durchhangsformel ist auf folgende Art und Weise
zustande gekommen. Lässt man eine Sekante derart einer Kettenlinie entlanggleiten,
dass die Abszissendifferenz der Schnittpunkte

konstant bleibt, so umhüllen sämtliche

Sekanten einer Kurve die wir die
Durchhangskurve nennen wollen (Fig. 4).

Der Durchhang wächst mit dem
reziproken Wert des cos a, des Neigungswinkels

der Sekante mit der Abszissenaxe.
Die Sekantengleichung heisst

allgemein:
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*i 2 x,

d
~~2

wonach
Xo

2x — d
~2~

2 x —I- d

Wir setzen dann diese Werte in die Sekantengleichung ein und erhalten:

y — a cos h
2 x — d

2 a
2x-\- d .2a:

a cos h —^ a cos h

ausgewertet wird:
,2a: — d x a 2x

y a cos h — 1 cos h

2 a

d x a

2 a
x —

2 x

2 a 2 a

2 x — d

,2a - d
-j^cosh—zd 2 a

2a — d 2a:-fd
2d cosh 2~a

2 d cos h
2 x — d

2 a

Fassen wir die gleichnamigen Glieder zusammen, so erhalten wir einen Ausdrude,
den wir nach einem trigonometrischen Satze umformen können. Es besteht die
Beziehung für hyperbolische Funktionen:

cos h x + cos h y 2 cos h -
y x — ya cosh M

2 2

Wendet man diese Beziehung auf unsern Fall an, so wird schliesslich:

da 2x
« -cos*--. a 2 x -4- dT"»-2T oder

u x u d
y — a cos h — cos h -r— •

a 2 a

Der Durchhang selbst ergibt sich somit aus der Subtraktion der letzen
Endformel, also der Durchhangskurve und der Kettenlinie aus der die Durchhangskurve

abgeleitet worden ist. Anders geschrieben lautet die Formel:

y a cos h cos h
2 a

1
a

cos a
cos h

2 a
1

Ein Nachteil bleibt, wie gesagt, an dieser Formel haften. Es ist dies der
Umstand, dass man sie nicht mit den Zustandsänderungen verbinden kann. Wir wollen
jedoch auf anderem Wege zum Ziele zu gelangen suchen.

Temperatur und Zug haben auf die Bodenlänge einen nur geringen Einfluss,
der im ersten Fall zu vernachlässigen erscheint, doch bei weiterer Untersuchung
auf den Parameter grossen Einfluss ausübt und somit auch auf den Durchhang.

Ein Beispiel soll dies veranschaulichen.
Aus unserer Hilfskurve nehmen wir den Parameter 500 als Grundlage an.

Diesem entspricht eine Bogenlänge für die konstante Distanz a:0 von 100,668 m.
Eine Vergrösserung von 20 °/0 des Parameters ergibt einen 0,203 % kleineren Wert
der Bogenlänge. Dies ist ein schlagender Beweis für die Beobachtung von
Temperatur und Zug.

Wenn sich die Bogenlänge durch den Einfluss von Temperatur und Zug um
n % ändert (der Zug macht weniger aus, denn sonst könnte man diesen Vorgang
der Rechnung nicht so einfach gestalten), so verändert sich eine andere Bogenlänge
unter gleichen Umständen ebenfalls um n %. Das Verhältnis der Bogenlängen bleibt
demnach ungestört, die Folge davon ist, dass auch das Verhältnis der entsprechenden
Parameter unverändert bleibt.
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Konstatieren wir durch Temperatur und Zug eine Verlängerung der Bogenlänge,

so haben wir folgenden Weg einzuschlagen:
Man bestimmt das a0 und l0 der Hilfskurve, stellt an diesem Verhältnis den

Einfluss der Temperatur (und des Zuges) fest, berechnet somit 1'0 nach der
bekannten Beziehung:

+ 10) + £P-0-) 'o( 1 ^Toö

dem Werte für 1'0 entspricht ein Wert für a'0 auf der Hilfskurve. Damit das
Verhältnis nicht gestört wird, muss

l g #0 Cl

,/ — sein.l\ ûi a\

Es ist also : a\ ax — •

a0

Aus diesem Wert für a\ erhalten wir den neuen Durchhang.

Ermittlung der Züge und Zugbeanspruchungen.
Es ist aus den Gesetzen der Kettenlinie:

H — 9 Po <7 Pmin die Horizontalkomponente, die konstant bleibt
V qy l die Vertikalkomponente, die proportional dem Gewichte ist.

Der resultierende Zug ist somit:

p y m2a- v*.
Setzt man die obigen Werte in die Zugformel ein, und ersetzt man die spez.
Zugbeanspruchung durch den Wert p0 a y, so wird

P q y po -4- y212

qy]/ a2 + P und pro cm2 p y y ay cos h—

d. h. der Zug ist proportional der Ordinate des betreffenden Aufhängepunktes.

Anpassung an die Vorschriften.

Laut Bundesvorschriften muss bei tiefster Temperatur ohne Zusatzlasten eine
5 fache Sicherheit gewährleistet werden und eine 2 % fache bei 0° mit einer Zusatzlast

von 1,5 kg/m. (Diese Vorschriften sind z. Z. in Revision begriffen.)
Zur Projektierung von Leitungen ist es zweckmässig, eine Kurventafel

aufzuzeichnen, woraus man ohne weiteres die Möglichkeit eines Falles beurteilen kann.
Zeichnet man zum Beispiel einige Kettenlinien, die alle ihren Koordinatenanfangspunkt

an derselben Stelle haben, so erhält man eine Schar sich durchdringender
Kurven. Zieht man sodann in einer bestimmten Höhe eine Parallele zur Abszissen-
axe, so schneidet diese gerade sämtliche Kettenlinien, deren Parameter kleiner sind
als der Ordinatenwert dieser Parallelen, d. h. alle geschnittenen Kettenlinien gehören
zu den möglichen Fällen. Diese Parallele ist aber auch der Ort aller Punkte gleicher
Sicherheit. Diese Art der Tafel ist für unsere Zwecke ungeeignet, denn der
Platzbedarf für die Kurvenschar wäre zu gross. Wir umgehen diese Umständlichkeit
wenn wir sämtliche Scheitel der Kettenlinien im Nullpunkt beginnen lassen. Damit
erreichen wir den Vorteil, dass die Werte aller Ueberhöhungen auf denselben
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Masstab bezogen werden können. Eine Aenderung tritt aber ein mit der Geraden,
die in diesem Falle keine Gerade mehr bleibt, sondern in eine Kurve übergeht,

die einer Kettenlinie ähnlich

ist, jedoch steiler verläuft.
Diejenigen Kettenlinien, die
durch diese Kurve gleicher
Sicherheit geschnitten werden,

sind audi in diesem
Falle im Bereiche der
Möglichkeit, insofern diese Kurve
gleicher Sicherheit als Grenzwert

vorgeschrieben wird
(Fig. 5).

Die Gleichung der Kurve
gleicher Sicherheit wird
somit folgende Form haben:

Pn + yy/n konstant für
x-fache Sicherheit,

200 300 100 500 600

Fig. 5.

Kettenlinienschar mit Kurven gleicher Sicherheit. Für die Kurve S 2lh
ist mit 1,5 kg/m Schnee gerechnet worden.

and ers geschrieben lautet sie:

Xn
a„ cos h

an
konst.

Aus dieser Form der hyperbolischen Funktion entnehmen wir, dass an und x„
veränderliche Werte sind. Diese Form auszuwerten wäre zu umständlich. Wir nehmen
an, wir hätten für Kupfer kz — 3000 kg,'cm2, eine Anzahl Kettenlinien mit ihrem
Scheitel im Nullpunkt aufgezeichnet, alsdann für eine Kettenlinie mit dem Parameter
a 500, z. B. den Punkt 5facher Sicherheit beredinet, in der Kettenlinie mit a 300
eingetragen und dazu den Ordinatenwert (genau gesagt den Wert der Ueberhöhung)
herausgegriffen. Mathematisch ausgedrückt heisst dies:

Pn + y y „

On y + Y y'n

a„ 4- y'„

Kz

s

s

Kz

s y

s Sicherheit

y spez. Gewicht • 10-3
in kg/cm3

konst.

Aus der Endformel können wir ohne weiteres sämtliche Werte der Ueber-
höhungen leicht berechnen und somit die Kurven gleicher Sicherheit eintragen.
Nehmen wir nun an, die bisherigen Vorschriften seien endgültig festgesetzt, so
beobachten wir an unserer Kurventafel, dass links der Kurve für 5fache Sicherheit
sämtliche Fälle für normale Temperaturen möglich sind.

Sobald aber die Temperatur- und Längenänderungen in Betracht gezogen
werden, treten Veränderungen in der Lage der Kurven gleicher Sicherheit ein.
Temperaturzunahme und Längenänderung rufen eine Verschiebung der Kurven nach
links hervor, also eine Aenderung in günstigem Sinne. Anders gestaltet sich der
Fall bei Temperaturabnahme, doch kann die Längenänderung den Ausgleich wieder

herstellen. Ungünstigen Einfluss haben die Zusatzlasten, denn nach der Formel
für das virtuelle spez. Gewicht wird das resultierende spez. Gewicht grösser, umso
grösser noch bei Annahme grösserer Schneewalzen, worauf die nachstehende
Formel hinweist.
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Es kann nun vorkommen, dass die Kurve 272facher Sicherheit links oder
redits der Kurve 5facher Sicherheit zu liegen kommt. Dies hängt ganz von den
Annahmen ab. Die Formel:

Kz
a il

S }'res

gibt uns zum vorneherein Aufschluss, ob der Fall mit Zusatzlasten möglich ist,
denn wir kennen die Ueberhöhung und damit ist uns der erforderliche Wert für
a gegeben.

Fortschritte in der Reinigung von Isolierölen.
Von J. Wenger, Zürich.

Der Verfasser bespricht nach Erwähnung der
bisher gebräuchlichen Reinigungsverfahren für
Isolieröl eine zu diesem Zwecke in neuerer Zeit
in Anwendung gekommene Oelreinigungsmethode
nach dem Prinzip der Zentrifugalapparate. Er
beschreibt den Bau und die Wirkungsweise dieser
Apparate und macht Angaben über Leistungsfähigkeit

und Versuchsergebnisse derselben.

L'auteur rappelle les moyens d'épuration de
l'huile en usage jusqu'à ce jour et rend compte
d'un nouveau procédé basé sur l'emploi d'appareils

à force centrifuge. Il décrit un appareil de
ce type et son fonctionnement et donne quelques
résultats d'expérience.

1. Einleitung.

a) Allgemeines.
Von den in der Elektrotechnik verwendeten Mineralölen, deren chemische

Zusammensetzung noch mehr oder weniger unbekannt ist, dient der grösste Teil als
isolierendes Medium. Ihre Brauchbarkeit als solches hängt in hohem Masse von
der elektrischen Festigkeit ab und die Prüfung letzterer bildet einen wichtigen
Bestandteil einer allgemeinen Oeluntersuchung.

b) Hauptfaktoren, von denen die Isolierfestigkeit eines Oeles abhängt.

Abgesehen von ganz groben Verunreinigungen wie Metallschlamm usw., ist die
Isolierfestigkeit des Oeles hauptsächlich bedingt durch seinen Gehalt an Wasser
und kleinsten Faserteilchen.

Es ist seit langem bekannt, dass die Feuchtigkeit die elektrische Festigkeit in
sehr starkem Masse beeinflusst. In der Tat kann ein Wassergehalt von *l2 °/oo

genügen, um die Durchschlagsfestigkeit eines Isolieröles auf den halben Wert herunterzusetzen.

Die neuesten Untersuchungen ') weisen aber darauf hin, dass die im Oel
enthaltenen kleinsten Faserteilchen (z. B. von Isolierbaumwolle herrührend) ebenfalls
an der Verschlechterung der Isolierfestigkeit aktiven Anteil nehmen. Die Feuchtigkeit

wird von ihnen aufgenommen und die so leitend gewordenen Partikelchen
bilden in den elektrischen Feldern Brücken, welche an der meist beanspruchten Stelle
den Ueberschlag einleiten können.

Das Isolieröl ist deshalb sehr empfindlich sowohl auf seinen Gehalt an Feuchtigkeit

wie auch an kleinsten mechanischen Beimengungen. In Laboratorien, wo

') Z. B. Hirlobe, Ojawa und Kubo. Electrical Insulating properties of transformer oils. Electrician

1917 p. 656 und F. Schröter, Reinigung und Durchschlagsfestigkeit von Transformerölen. Arch. f.
El. Techn. 1923, Heft 1, S. 67.
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