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In Norwegen wurden schon durch Gesetz vom 15. Mai 1896 die elektrischen
Anlagen bestimmten Sicherheitsvorschriften unterstellt und für Anlagen mit höherer
Spannung Genehmigungen vorgeschrieben. Die technische Ausgestaltung der
Vorschriften ist einer Elektrizitätskommission aus drei Mitgliedern, die vom König
ernannt wird, übertragen. Ein Enteignungsrecht wurde den elektrischen Anlagen in
gewissem Umfang durch § 12 des Gesetzes vom 9. Juni 1913 verliehen. Einschneidender

für die Elektrizitätswirtschaft als diese Bestimmungen ist das Wasserkraftgesetz

vom 4. August 1911 geworden. Unter den Bedingungen für den Ausbau
von Konzessionen ist besonders die Verpflichtung zu nennen, dass der Unternehmer
an die interessierten Gemeinden bis zu einem gewissen Umfang Strom nach den
Vorschriften der Regierung abgeben muss. Weiterhin kann sich der Staat einen
Teil der Kraft reservieren. Für die Abgabe der Kraft werden Maximalpreise
vorgesehen; nach.einer bestimmten Reihe von Jahren ist Heimfall an den Staat möglich.

Grössere Unternehmungen haben ihre Hauptlinien so zu bauen, dass andere
Anlagen ihren Strom auf Verlangen des Staates durch dieselben Leitungen führen
können. — Auch in Norwegen hat sich der Staat in umfangreicher Weise selbst
auf dem Gebiet der Erbauung und des Betriebes von Wasserkraftanlagen und
zugehöriger Fernleitungen betätigt. Im letzten Jahre ist ein Gesetzesentwurf seitens
der Regierung ausgearbeitet worden, der die Energieverteilung der kommunalen
Kraftwerke der Oberleitung des Staates unterstellen soll. Die Elektrizitätskommission

hat hierfür einen Plan ausgearbeitet, demzufolge das Land in Kraftversorgungsbezirke

geteilt werden soll. Wo grössere Anlagen erforderlich werden, soll der
Staat den Bau der Kraftwerke und Hauptübertragungslinien übernehmen. Ferner
soll auch bei der Verteilung seine Unterstützung in dringenden Fällen in Aussicht
genommen werden.

In Dänemark bildet das Gesetz vom 19. April 1907 die Grundlage der
Elektrizitätswirtschaft. Es enthält zwar in der Hauptsache Sicherheitsvorschriften, ist
aber auch in anderer Hinsicht von besonderer Bedeutung, da in ihm die Haftung
des Starkstromunternehmers eingehend geregelt, ferner ein Leitungs- und
Enteignungsrecht vorgesehen ist. Die Ausübung der dazugehörigen Befugnisse ist einer
Elektrizitätskommission übertragen, die dem Minister für öffentliche Arbeiten untersteht.

Wie in den beiden anderen skandinavischen Staaten, beschäftigt sich auch
in Dänemark der Staat in neuerer Zeit lebhaft mit der Ausgestaltung der Energiequellen.

Er hat einen technischen Ausschuss eingesetzt, der die Nutzbarmachung
der Kraftquellen des Landes studieren soll. Es handelt sich hierbei nicht nur um
Wasserkräfte, sondern auch um Torf- und Braunkohlenfelder. (Fortsetzung folgt.)

Der einphasige Spartransformator.
Von Privatdozent Dr. ing. P. Andronescu, Zürich.

Der Autor entwickelt für den Spar- oder Auto-
Transformator ein Kreisdiagramm, aus welchem
das Verhalten desselben bei allen Belastungs-
zuständen ersichtlich ist.

L'auteur établit un diagramme polaire
représentant le fonctionnement de l'auto-transformation

à différentes charges.

I. Schaltungsmöglichkeiten im Einphasen-Wechselstromkreis.
Der Spartransformator bildet einen Einphasen-Wechselstromkreis, welcher durch

eine bestimmte Schaltung von ohmschen Widerständen, selbstseitigen und
gegenseitigen Induktivitäten und Kapazitäten gekennzeichnet ist. Zur Untersuchung
desselben, wird es vor allem zweckmässig sein, über die Schaltungsmöglichkeiten, die
in einem Wechselstromkreis vorkommen können, einen kurzen Ueberblick zu geben.

Wir können einen Wechselstromkreis durch folgende vier Schaltungsmöglichkeiten

von ohmschen Widerständen, Induktivitäten und Kapazitäten charakterisieren.
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1. Fall. Es werden in Serieschaltung ohmsdie Widerstände, Induktivitäten und
Kapazitäten angeordnet, so dass in allen diesen Teilen derselbe Strom fliesst (Fig. 1).

2. Fall. Es werden zwei parallele Kreise gebildet, deren jeder aus- einer reinen
Serieschaltung der im 1. Fall genannten Widerstände besteht (Fig. 2).

r l c j2 M/wvwïïtrHr
l2 '0

Fig. 3Fig. 1 Fig. 2

3. Fall. Serie-Parallelschaltung nach Fig. 3 oder Fig. 4. Die Bezeichnung
„Serie-Parallel" bezieht sich dabei auf die einzelnen Gruppen, die aus einer reinen
Serieschaltung, oder aus einer reinen Parallelschaltung gebildet sind, und das Wort

„reine" soll die Hintereinander- oder die
Parallelschaltung der einzelnen Gruppen
charakterisieren.

4. Fall. Die komplexe Serie-Parallelschaltung
ist diejenige, die weder aus reiner Serie-

noch aus reiner Parallelschaltung gebildet ist.
Die einzelnen Zweige bilden jedoch Serie-
Parallelschaltungen. Als Beispiel sei die

Brückenschaltung oder das Steinmetzsche Ersatzschema zweier parallel geschalteter
Transformatoren angeführt (Fig. 5 und 6).

Fig. 5 Fig. 6

Aus Fig. 5 ersieht man z. B., dass die Zweige 1 und 3 mit dem Zweig 5 keine reine
Parallelschaltung bilden, weil durch die Zweige 1 und 3 nicht derselbe Strom fliesst.

II. Beziehungen zwischen Spannungen und Strömen im Einphasen- Wechselstromkreis.

Es sei angenommen, dass die Spannungen und die Ströme in Funktion durch
Sinuskurven darstellbar seien. Das ist möglich, wenn die Widerstände, Induktivitäten

und die Kapazitäten zeitlich konstante Grössen sind. In diesem
Falle lässt sich die Beziehung zwischen Absolutwert einer effektiven

Spannungsdifferenz V und Absolutwert des dazu gehörigen
effektiven Stromes / durch die Impedanz z bezw. durch den

inversen Wert der Impedanz, die Admitanz y ~ ausdrücken.

V Iz, Vy I.

Fig. 7
Die Impedanz z bezw. die Admitanz y werden als gerichtete

Grössen betrachtet, weil sie in zwei zueinander senkrecht
stehende Komponenten zerlegt werden können. Die absoluten

Werte der Komponenten von z sind : der ohmsche Widerstand r und die resultierende
Reaktanz x. Dabei ist x xs — xc, wobei xs den induktiven, xc kapazitiven Anteil
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der Reaktanz bedeuten. Die absoluten Werte der Komponenten von y sind g und b,
wobei g die Konduktanz und b die Susceptanz ist.

Aus den Fig. 7 und 8 ersieht man, in welcher Beziehung die Spannungsdifferenz

V, der Strom /, die Impedanz z und die Admitanz y zueinander stehen.
Zwischen den absoluten Werten von z, y, r, x, g und b bestehen folgende

Beziehungen :

zy=l (1) 7"=y" ^
und daraus lassen sich ableiten :

ZU ii1"2 + x2) (g2 + b2) ]/(rg + xb)2 rg + xb 1

9 b rr J?ö x== « 9——2 b
y2 y2 a z2 z

Aus Fig. 9 ersieht man die Lage des Impedanzvektors z und des Admitanz-
vektors y gegenüber einer festgelegten Axe d.

In der Richtung der Axe d kann man entweder den Strom / oder die
Spannungsdifferenz V annehmen. Aus der gleichen Figur geht auch hervor, dass die

x
-2

(3)

Fig. 8 Fig. 9

Regeln der Addition und Subtraktion der Vektoren, auch auf Impedanz- und Admi-
tanzvekforen anwendbar sind. Hingegen ist die Multiplikation weder skalar noch
vektoriell auszuführen.

Aus der Gleichung (1) folgt, dass unter dem Produkt z ~ ein Vektor zu

verstehen ist, dessen absolute Grösse gleich dem Produkt der absoluten Grössen der

einzelnen Vektoren z und-|- ist und dessen Richtung gegenüber der Axe d um

(+ cp — <p)gedreht wird. Damit werden die Regeln der Multiplikation und Division
für die Impedanz- und Admitanzvektoren eindeutig bestimmt. Die Division, der
Impedanz- und Admitanzvektoren ist mit der Festlegung der Multiplikation ebenfalls

eindeutig bestimmt, denn — bedeutet einen Vektor, dessen absoluter Wert gleich
Z2

ist dem Quotient der absoluten Werte der beiden Vektoren ZiZ2 und der gegenüber
der Axe A um q>x — <p2 gedreht wird.

Die Bestimmung der absoluten Grössen der Impedanz bezw. Admitanzvektoren,
sowie deren Komponenten, kann auch durch Einführung der symbolischen Methode
erfolgen. Man denke sich alle Vektoren senkrecht zur d-Axe mit / multipliziert,
wobei ;2 — 1 ist. Dann nennt man die d-Axe die reelle, die dazu senkrechte Axe
die imaginäre Axe.

Für den Impedanz- bezw. Admitanzvektor kann man somit schreiben : 3 r+jx
X) g — jb. Man operiert nun mit den imaginären Grössen genau so wie mit
algebraischen Grössen. Die Beziehungen zwischen algebraischen Grössen, die durch
die Gleichungen (1) und (2), sowie durch die Gleichungen (3) festgelegt waren,
lassen sich nun in folgender Weise bestimmen:
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3t) (r-hjx) (g - jb) 1 somit: rg + xb 1.

xg rb.
anderseits t> — -L —. r„ ^ g — jb3 r -f- / x r + x

sodass: 9 Ja^_x2 ^ "2^2 wird.

Liegt irgend eine Schaltung vor, so wird meistens verlangt, diese Schaltung
durch eine reine Serieschaltung zu ersetzen. Solange es sich um eine reine Serie-,
reine Parallel- oder reine Serie-Parallelschaltung handelt, lässt sich der Ersatz dieser
Schaltungen durch eine reine Serieschaltung auch ohne Anwendung der symbolischen
Methode leicht durchführen.

Liegt hingegen eine komplexe Serie-Parallelschaltung vor, so erweist sich die
Anwendung der symbolischen Methode als vorteilhafter.

Es ist zu beachten, dass in einem Wechselstromkreis, in welchem die ohmschen
Widerstände und die Reaktanzen bekannt sind, zwei Fälle auftreten. Im ersten Fall
ist das Verhältnis zweier Ströme 7X und 72, sowie deren Phasenverschiebung cp12

eindeutig bestimmt. Mit zwei Strömen 7X und /2 kann man immer folgende graphische
Addition vornehmen :

7X rx + 7j x1 72 r2 + 72 x2. Siehe Fig. 10.
Daraus ergibt sich:

für das Stromverhältnis (y-]
\ '2 / ^1 ^

für die Phasenverschiebung (p12 der Ströme

A. /, tg - ig W, - - ig
1 + tg (fjt tg (p2 xx a2 + rx r2 '

wobei tg(Pl=^- tg cp2 ^ •

'1 '2
Im zweiten Fall will man z.B. die Spannungsgleichung:
14 7X ax' +- 7j rx' + 72 a2' + 72 r2' auf die Gleichung :

Fk 7X w + 7X r reduzieren; man muss dann, gestützt auf die obigen Beziehungen
zwischen 7X und 72, den Ausdruck: 72 a2'+ 72 r2' in den Ausdruck 7X a-x" -f-7X rx"
umwandeln, wobei ax" und rx" die Unbekannten darstellen, sin <pX2 und cos <pX2

lassen sich als Funktion von rx r2 ax und~w2 sowie von rx" r2' xx" x2' darstellen.
Man erhält somit zwei Gleichungen mit zwei Unbekannten: xx" und rx".

Aus dem ersten Fall (siehe Fig. 10) ergibt sich:

rn„2rr
1 (jci w2 + rx r2)2 (^i^2 + rxr2)2

cos <pX2 - j + tg2 ^ - (/f+ xf) (r| +^ - zf z|

sin2 fn cos2 9?X2 f#2 Vi* -^2 + ^ (r| +^
(*xr2-rxx,)2 (ax r2 — rx a2) 2

_2 _2Zj Z2

Der zweite Fall ergibt:

C0S2W (*" x* + rx" r-21)2 _ (V'r^-ri" V)2
cos <Pi2 //2 /2 sin <px2 //2 /2

Zj Z2 zx z2

Nun lassen sich für aï" und rx" folgende Gleichungen anschreiben:

V V + rx" r2'
Z* Z%

(vx x2 + rx r2)
zx z2

Ax" r2' - rx" a2'
Zl Zz

(jcx r2 - rx a2)
ZX Z2
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Iy Z2 Zï Zy" Z2'
Anderseits hat man: -^ ;— —sodass: f z.2

\z2
folglich wird:

h Zy Zy" Zy Z-, \ Z2

Xy" V [*1 (x2 x.2' + r2 r2') + r, (r2 x2' - r2 x2)]
Z2.

1

[xy (r2' jv2 - r2 x2') + rx (x2 x2 + r2 r2')]
Zz

x und r sind nun bekannt. -v x1, + jf1" r r1' + r1".

Solange der Fall einer reinen Serie-Parallelschaltung vorliegt, lässt sich in der
oben angegebenen Weise diese Schaltung zu einer reinen Serieschaltung reduzieren.
Hat man es hingegen mit einer komplexen Serie-Parallelschaltung zu tun, so wird
die Reduktion zu einer reinen Serieschaltung mittels Anwendung der symbolischen
Methode einfacher.

Als Beispiel untersuchen wir das Verhältnis zweier Ströme einer

Brückenschaltung: z.B. ^ (siehe Fig. 5). Durch die Anwendung der beiden Kirchoffschen
4

Regeln erhält man:
Fr 4 (33 + 34) + 4 33 (4)
14 /1 (31+32) + /532 (5)

4 34 4 32 + 4 (32 + 35) (6)

Für 4 0 bleiben nur zwei Unbekannte übrig, Iy und /4. Zur Bestimmung derselben
genügen die Gleichungen (4) und (5).

Wenn die Gleichung (6) auch für 4 0 besteht, so ist die Beziehung /4 34 4 32
als eine spezielle Bedingung zu betrachten, und in diesem Falle ist 4 0 auch
wenn 35 nicht unendlich ist. Aus den Gleichungen (4) und (6) bezw. (5) und (6) wird
4 eliminiert, und es ergibt sich:

4 (33 + 34) + (4 34 — 4 32) 3 3^= V*

Iy(3y + 3a) + (4 34 - 4 3a) 32^35 Vk,

oder: - 4 3^^+ 4 (S8 +34 + 3^3;) V* (7)

'{A+9--3$x)+'<&h-v- <8>

Aus den Gleichungen (7) und (8) erhält man:

/ q _j_ Q I
^3 ~ 32) \ _ / 33 — 32

/,/3, + 3a+ 3,3 4l3a + 34 + 34 3 3

3a 3b

Wie früher gezeigt wurde, lässt sich nun der ohmsche Widerstand und die
Reaktanz von 3a bezw. 3b bestimmen, und daraus ersieht man, dass es immer möglich
ist, das Verhältnis zweier Ströme und deren Phasenverschiebung eindeutig zu
bestimmen.

Nachdem wir gezeigt haben, welches die Schaltungen sind, die in einem
Wechselstromkreise vorkommen können und wie sich mittels Einführung der Impedanzen
und Admitanzen solche Kreise behandeln lassen, wollen wir nun in gleicher Weise
den Spartransformator behandeln.
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III. Der Spartransformator.
Wir können die Aufgabe folgenderweise formulieren: Es soll in einem

Belastungskreise ein Teil der Klemmenspannung Vtk abgedrosselt werden. Beim
Wechselstrom geschieht die Abdrosselung am besten mit einer Drosselspule D2

(siehe Fig. 11). Soll aber die gewünschte Spannung V2k am Belastungsort für alle
Belastungsströme Ib konstant
bleiben, so ist die Induktivität
der Drosselspule zu verändern.
Diese Lösung ist jedoch nicht
praktisch, denn im Leerlauf
(/„ 0) wird V2k Vm und da in
der Belastung V2k konstant
bleiben muss, wird die Regulierung

kompliziert. Die Drosselspule

muss die Bedingung
erfüllen, dass die abgedrosselte
Spannung Vj für konstante

Klemmenspannung Vlk bei
allen Belastungsströmen Ib

konstant bleibt. Es lässt sichdas leicht erreichen, wenn man den Fluss (k 0) der
Drosselspule konstant hält. Demzufolge schaltet man an die konstante Klemmenspannung

Fik eine andere Drosselspule Dx die mit der Drosselspule D2 eine gegenseitige

Induktivität Ll2 besitzt (siehe Fig. 12). Damit ist die Lösung gefunden. Je
nachdem die gegenseitige Induktivität L12 positiv oder negativ ist, wird die Spannung

Vjk abgedrosselt oder erhöht.
Aus Fig. 12 ergibt sich:

Fik Ii Z\ + Ib *21

Vfk Ib {Z2 + Z3) + Ii Xi2

h

'Ii D2

VA S r2x2

h \ 4/wv^-irüip-,
V r, x,

r,xrf f*

•v
Fig. 11 Fig. 12

wobei z, n + (*„ + *sl)

z2 r2 + (*22 -f- xs2)

z, r, + -x,.

Vj 4- /„ z3,

*1 *11 + *sl

(9)

(10)

Xcy Xc22 *s2

Fig. 13

*si und *s2 sind die totalen Streureaktanzen.1) *s) *sli + xst2 xs2 xs22-\- xs2t.
Die Reaktanzen *sli, *s22 entsprechen einer Streuung erster Ordnung, diejenigen
*si2, *s2i einer solchen zweiter Ordnung. *M ist eine Reaktanz der ersten Spule,
die dem mittleren Fluss der sekundären Spule entspricht. Dabei wird nur die erste
Spule gespiesen. x22 ist eine Reaktanz der zweiten Spule, die dem mittleren Fluss
der ersten Spule entspricht, und dabei wird die zweite Spule gespiesen.

W. W9
Daraus folgt: *„ x12 — jr22 x21 —
wobei Wx und VV2 die Windungszahlen in d.er ersten bezw. zweiten Drosselspule
bedeuten.

Weil xn resp. *22 immer positive Grössen sind, werden von x12 und x21 in
den obigen Ausdrücken nur die absoluten Werte berücksichtigt. Mit Rücksicht auf
die Flussverteilung lässt sich für den Fall, in welchem beide Spulen vom Strom
durchflössen sind, das Verhältnis der EMK, die dem gemeinsamen Fluss (k <I>)

entsprechen in folgender Weise schreiben:

h *il H- L *2i h *ii L *2
Ib *22 + IX *12 h *12 h X.22

(Siehe Fig. 13) (11)

Andronescu, Archiv für Elektrotechnik, Heft 1, 1923.
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Nun um zu sehen, inwieweit die Spannung V^ bei allen Belastungsströmen /„ konstant
bleibt, bildet man den Ausdruck für Vj

Vj (A *12 L h *22) + A *s2 + h r2 (12)
Anderseits hat man:

Fik (A *11 + h *21) "t- A *si + A ri • (13)

Aus den Beziehungen (11) und (13) lässt sich für Vj schreiben:

Vj Vk - A *si - A g) ^12j +'A *s2 + h r2. (14)

Daraus ersieht man, dass: erstens V2k — Vik-V^ kleiner oder grösser als V,k wird,
je nachdem x12 positiv oder negativ ist, und zweitens : wenn jts, rx resp. xs2 r2 klein

sind, man bei konstanter Kleinspannung Vik, Vj ^ lAk — angenähert als konstant
betrachten kann. Xn

Nun entsteht die Frage:
Kann man Vj variabel machen, derart, dass bei einem festgelegten Vj1 seine
Grösse bei verschiedenen Belastungen konstant bleibt?

Aus der Gleichung (14) ersieht man, dass in allen Fällen die Streureaktanzen
und die ohmschen Widerstände xsl xs2 rx r2 klein sein müssen.

Da der absolute Wert von — gleich ist, kann man bei konstanter Streu-
*11 VIA

reaktanz Vj variabel machen indem man x12 mittels Aenderung des Windungszahlverhältnisses

varieren lässt. Will man jedoch die Windungszahl konstant halten, und
x12 variieren, indem man den Flux in der Sekundärspule mittels Aenderung des
magnetischen Widerstandes oder bei konstantem magnetischem Widerstande, durch
die Lage der Sekundärspule variieren lässt, so muss man darauf achten, dass durch
eine Verkleinerung des maximalen absoluten Wertes der gegenseitigen Induktivität x12
die doppelverkettete Streuung zunimmt, so dass stets eine Erhöhung der Streureaktanzen

Xji und xs2 entsteht, und somit Vj bei Aenderung des Belastungsstromes A,
nicht mehr konstant bleiben kann.

Wir behandeln nun den Fall wo die gegenseitige Induktivität beider Drosselspulen

ZA und D2 maximal ist. Weil der Spannungsabfall infolge des Streufluxes
und des ohmschen Widerstandes klein ist, kann man die Drosselspule Dx auch in

folgender Art eingeschaltet denken (siehe
Fig. 14): Im Falle a ist V2k<Vrik, im
Falle b V2k> F«,. Die beiden Drosselspulen
bilden in diesem Falle den sogenannten
Spartransformator. Durch diese Anordnung wird
eine Ersparnis an Kupfermaterial erreicht,
weil die Windungszahl der Drosselspule Dx
kleiner geworden ist und gegenüber dem
gewöhnlichen Transformator für dieselbe
Spannungsübersetzung, ist die Ersparnis
noch grösser, weil durch den Spartransformator

nur ein Teil der Leistung hindurch
geht, nämlich nur Vjh. Aus diesem Grunde wurde ihm auch der Name Spartransformator

gegeben.
Ein Spartransformator mit variablem Windungszahlverhältnis kann somit als

Induktionsregler verwendet werden. Zu dem Vorteil des Konstanthaltens der
Streuungsverhältnisse, kommt der Nachteil, dass eine stetige Aenderung der Spannung Vj
mit konstruktiven Nachteilen verbunden ist, was eine Verteuerung des Apparates
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mit sich bringt. Aus diesem Grunde wird der Induktionsregler auf dem Prinzip der
variablen gegenseitigen Induktivität x12 bei konstanter Windungszahl gebaut, indem
man durch eine dritte Spule, die kurzgeschlossen ist, die Wirkung des Streufluxes xs2
möglichst heruntersetzt. Wir bleiben nun beim Spartransformator. Um einen genauen
Ueberblick über den Zusammenhang der Ströme
bei verschiedenen Belastungen gewinnen zu können,
wollen wir durch Anwendung der Beziehungen, die
wir auf Seiten 485 u.486 abgeleitet haben, den
Spartransformator behandeln. Wir haben zwei Fälle zu
unterscheiden. Im ersten Fall handelt es sich um die
Heruntertransformierung, im zweiten Fall um die Fig. 15

Herauftransformierung der Sekundärspannung V2k.
Für die Heruntertransformierung der Spannung lässt sich schematisch der

Spartransformator durch ein Schema nach Fig. 15 darstellen.
Es handelt sich dabei um eine reine Serie-Parallelschaltung, so dass man mit

oder ohne Anwendung der symbolischen Methode gleich schnell zum Ziele kommt.
Der Spartransformator wird aus r, xl xr31 r3 x3 x13 und der Belastungskreis aus r2
und x2 gebildet.

Durch die Anwendung des ersten und zweiten Kirchhoffschen Gesetzes lassen
sich folgende Gleichungen aufstellen:

Pik /i Fi + L Xt -j- /3 Xt3 + /3 r3 -(- /3 x3 -f- I x13 (15)

Pik A n —h It Xt -f- /3 xt3 I2 r2 + h x2 (16)

U=Iz + h. (17)

Aus den Gleichungen (15) und (17) erhält man:

Vir h (r, + r3) + 7, (xt + 2x13 + x3) - I2r3- h (v3 + x,3). (1£)

Aus den Gleichungen (16) und (17) erhält man:

Pik h r, +1, (xi + Xi3) + I2 (x2 - x,3) -hl2r2 (19)

und aus den Gleichungen (18) und (19) ergibt sich:

h r3 + h (x3 + xt3) - I2 (r2 + r3) - I2 (x2 + v3) 0. (20)

Aus dieser Gleichung (20) lässt sich gemäss früher erwähntem Fall, das Verhältnis

sowie die Phasenverschiebung y12 bestimmen (siehe Fig. 16).

Aus den rechtwinkligen Dreiecken OAC und OBC erfolgt:
' Li Y ri + (v3 H- Xii)2

h J (r2 -F r3)2 + (x2 + x3) 2 (21)

(jt3 + v13) (r2 + r3) - r3 (x2 + x3)
tg n. lg fe - <p.) (Xi+—} {xi-^-- (rz + fi)

(22)

Das Verhältnis der Ströme It und I2 sowie die Phasenverschiebung <pl2 sind somit
bekannt.

Aus der Gleichung (18) lässt sich die Beziehung zwischen Vik und festlegen,
wenn man /2 r3 + I2 (x3 xi3) eliminiert. Wir ersetzen I2 r3 +12 (x3 + v13) durch

/i r/' -f L Xt" und können somit schreiben:

Xi" (x3 + X"13) + r" r3

Vi
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Andererseits hat man:
r,"2 + x"2 7i 4- (x3 + xl3)2

x,"(x3 + x13) + r," r3 ^ ,3 l(v [(*>+*3)(*2 + x3) + (r2 + r3)r3] (23)

ri + (x3 xl3)2 r2 4- r3f + (x2 + x3)

somit:
ri+ (x3+x,3)2

(r2 + r3)2 4~ (x2 4~ x3)

Die zweite Beziehung zwischen x," und r," ist:

x," r3 - r," (x3 + x13) ^ ^2 [(*3 + x13) (r2 4- r3) - r3 (x2 + x3). (24)

Aus den Gleichungen (23) und (24) lassen sich x," und r" bestimmen :

Man erhält:

x," -—7—i2 I -,— .—,2 [((x3 4-x13)2 - ri) (x2 -f x:t) + 2 r3 (x3 + xl3) (r2 + r3)]
(r2 ~r~ r3) -r \Xz "i X3)

ri' 7—7—-2——7 7 ^2 [2 r3 (x3 4- *,) (x3 4- xI3) - (r2 4- r3) ((x3 4- x[3)2 - r32)].
(r2 4- r3)2 4- (x2 4- x3)

Zwischen Vtk und /, erhält man somit folgende Beziehungen:

Vlk I\ (n 4- r3 — r/') 4~ h (xi 4- 2 Xi3 4- x3 — xi'),
Es sei: ß r, + r3 - r/'

x Xi 4- 2 x,3 4- x3 — x,"

und somit die Impedanz

z Yq2-\-X2 X fg Q9 — •

Die Beziehung zwischen F* und /j für r2
und x2 variabel ist nun eindeutig
bestimmt. Aus der Fig. 16 ersieht man,
dass bei konstantem Strom 7j, /1 r3 4- /1

(jr34-ji'13) konstant bleibt, so dass, wenn
x2 und r2 im Belastungskreis geändert
werden, B sich auf einem Kreis mit OC
als Durchmesser bewegt.

Anderseits sieht man, dass die
Strecke OF dem Strome /2 proportional
ist. Der geometrische Ort von F ist
allerdings nur dann ein Kreis, wenn x2
oder r2 konstant bleiben, denn nur in
diesem Falle sind die Strecken BC oder \ / /OB dem Belastungsstrom /2 proportional, \ // /
und da B sich auf einem Kreis bewegt, / /ist der geometrische Ort von F ebenfalls
ein Kreis. Betrachten wir den Fall
x2 konstant r2 variabel. Den geo- Fig. 16

metrischen Ort der Impedanz z kann
man entweder rechnerisch durch Eliminierung von r2 aus den Gleichungen für q und x
oder graphisch ermitteln. Da die graphische Methode übersichtlicher und einfacher ist,
suchen wir auf diesem Wege den geometrischen Ort der Impedanz z. Für (r2 4- r3) 0
kommt der Punkt B nach 0 zu liegen, /2 wird ein Maximum, und somit ist der
Durchmesser OFm des Kreises mit als Mittelpunkt bekannt.
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Man hat für (r2 + r3) 0

I2 If (ri + (x3 + x13)2) OF-
(x2 + x3)2 ri + (X3 + X13)2

Daraus ergibt sich: OFm
^ *'3^ ^

2 OMi.
(X2 H— X2)

Wir suchen nun die Lage des Mittelpunktes Mt. Der Winkel <£ COA <<T DOF <p3,
ist konstant. Folglich ist der Winkel <J BOF y>3 n — cp3 ebenfalls konstant.

TC JT JC
1

Va + <p3 rt. Weil cp3 höchstens gleich sein kann, so ist y>3 — —. tg <p3 — •

£ £ Tß

Folglich bildet OFm mit I2max den Winkel y>3 und OFm mit OC den Winkel ^V3+ "2"

Dabeiist tg (v>3 +=—x— 'a y 2 tg<p3 x3 -f xi3

Die Lage des Kreises mit M, als Mittelpunkt ist somit bekannt. Um den
geometrischen Ort der Klemmenspannung V,k OG bei konstantem Strom h finden
zu können, addiert man zu der Strecke OF die konstanten Strecken FH + HG.
wobei FH It (xt + 2x]3 + x3) und HG h (o + r3) ist. Der Punkt G bewegt sich

ebenfalls auf einem Kreise mit einem Durchmesser gleich OFm. Die Lage des
Mittelpunktes M2 dieses Kreises lässt sich in folgender .Weise bestimmen : Man addiert
zu der Strecke OMt die Strecken MtP und PM2 Dabei sind MtP FH und PM2 HG.

Aus der Fig. 16 ersieht man, dass die Koordinaten des Mittelpunktes M2 sind:

07 PMz - SO, TM2 MÏP — MiS.

Wir müssen SO und MtS bestimmen:

Der Winkel <ZM,OS 2<p3 - ~
somit: SO OM, cos {2 <p3 —7Ç) OMt sin 2 cp3

Mt S OMt sin ^2 <f3 — ~J — OMt cos 2 cp3.

Für die Koordinaten des Kreismittelpunktes M2 lässt sich schreiben:

OT /, (r, + r3) — OMt sin 2 <p3

TM2 h (x, + 2 X13 + x3) + OMt cos 2 <p3.

2 2 fn (T)

Dabei ist : cos 2 <p3 ———7-^ 1, sin 2 cp3
\-\-tg2cp3 ' 1 + tg2 (p3

Durch Einsetzen der Werte für sin 2 cp3, cos 2 (p3 und OMt in die obigen Gleichungen
ergibt sich:

=407= /, (r,+ r3)~
r3 (A-3 + X13)

(x2 -+- x3)

TM2 — It + 2 x13 x3) +
ri - (x3 + x13)2

2 (x2 + x3)

Die Lage des Kreismittelpunktes M2 ist damit bestimmt. Macht man lx — iAn,i,ere>

dann stellt der Kreis mit M2 als Mittelpunkt den Impedanzkreis dar.
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Der inverse Kreis ist der Admitanzkreis oder Stromkreis bei konstanter
Klemmenspannung. Der Admitanzkreis bezw. Impedanzkreis bei konstanter Spannung

lässt sich experimentell nachweisen, da bei konstanter Klemmenspannung die
Induktivitäten praktisch konstant bleiben.

Bei solchen Aufgaben kommt es vor, dass sich zur Lösung derselben, dieser
oder jener Weg vorteilhafter zeigt. In unserem Falle haben wir auf Seite 589 die
zwei Spannungsgleichungen aufgestellt, und ohne irgend eine Bemerkung, wurde
zuerst die Beziehung zwischen /, und I2 festgelegt, und dann in der Gleichung (18), die
durch Eliminierung von I3 aus der Gleichung (15) entstand, die Summe /2 r3 -f- /2 (w3 + w13)

eliminiert. Man hätte ebensogut eine Beziehung zwischen Ix und /3 finden und nachher
in der Gleichung (15) die Summe h r3 + h (x3 + ^13) eliminieren können. Der bereits
festgelegte Weg ist aber aus folgenden Gründen vorteilhafter. In dem gegebenen
Wechselstromkreis sind nur x2 und r2 variable Grössen. Für r2 00 (/2 0) hat man:
Fik Ix (rx + r3) + /, (jq + 2 xl3 + x3). Wenn man nun eine Beziehung zwischen
Fik und Ii finden will, auch für den Fall, wo r2 00 ist, dann wird es zweckmässig
sein xx" und r/' derart zu bestimmen, dass für r2 00, xx" und rx" gleich Null
wird. Das ist eben nur dann möglich, wenn man den bereits angenommenen Weg
einschlägt.

Nachdem wir den Mittelpunkt M2 des Impedanzkreises bestimmt haben, wollen
wir nun eine Diskussion anschliessen über die verschiedenen Grössen, die sich anhand
dieses Impedanzkreises festlegen lassen. Zuerst fällt uns das negative Vorzeichen
in dem Ausdruck für OT auf. Wenn man durch passende Werte von Widerständen
und Reaktanzen OT negativ bekommen könnte, so wäre es möglich, den Fall her-

7t
zustellen, wo die Phasenverschiebung zwischen Fik und It gleich-^- wird. Weil der

Impedanzkreis bei Konstante x2 abgeleitet wurde, so betrachten wir die Fälle

x2>0
(25) ^<0 W

Für den Fall x2 0 wird OT negativ, wenn

.x3 -{- X13 n + r3
> ist ;

x3 r3 '

dabei ist aber: x3 + konst. Wi r, konst. W,

X13 konst. Wi W3 r3 konst. W3,

x3 -f- X13 W3 + Wi r1i -f- r3 Wi H- W3
so dass : vrT ;

x3 W3 r3 W3

Daraus ersieht man, dass für x2 gleich oder grösser als Null es nicht möglich ist, OT
negativ zu erhalten. Befindet sich hingegen im Belastungskreis auch eine Kapazität C,,
so ist x2 < 0 und es kann :

*3 + xxa x3 + xX3

x2 -(- x3 x3

und somit OT negativ werden. Durch passende Wahl von C2 kann man somit den
Fall erreichen, wo der Strom Ix der. Klemmenspannung V,k um 90° nacheilt. Die
Hauptpunkte im Impedanzkreis sind der Leerlaufs- und Kurzschlusspunkt.

Im Leerlauf (r2 00) ist: xx" rx" 0

somit Q rx + r3

x xx +2x]3 +w3
Der Punkt F kommt in 0 und die Leerlaufimpedanz ist OG0.
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Im Kurzschluss (r2 0) f pk rx + r3 — rlk"
Es sei angenommen: x2 0, dann ist | xk Xj-|-2x)3 + x3 — x,,,".

Dabei erhält man für r)k" folgenden Ausdruck:

nk" 2_?
2 [2 r3 x3 (x3 + x13) - r3 (x3 + x13)2 + r33]

'3 l~ X3

Man unterscheidet zwei Grenzfälle:
I. Fall xx 0 x13 0

II. Fall w3 0 x13 0

Im ersten Fall wird rlk" r3.
Im zweiten Fall ist nk" 0. Der zweite Fall ist mit dem Leerlauf identisch,

denn für x3 0 wird P2k ebenfalls Null, so dass /2 0 ist.
Daraus ersieht man, dass für x2 Er: 0 Qk -x r x rpositiv ist und der Kurzschluss Punkt Gk sich 3/1,2

mehr und mehr dem Punkt R nähert, je kleiner r1

und r3 werden.
Wenn x2 von Null verschieden ist und z.B.

durch die kapazitive Wirkung negativ ausfällt,
dann kann der Fall eintreten, dass für r2 0
Qk negativ wird.

Für den Fall der Herauftransformierung
der Spannung hat man folgendes Schaidings- F,g'17

schema (Fig. 17). In diesem Falle handelt es sich
um eine reine Parallelschaltung und folglich die Ersetzung dieser Schaltung durch
eine reine Serieschaltung, die ebensogut mit oder ohne Anwendung der symbolischen
Methode ausführbar ist.

Aus der Fig. 17 erhält man:
V,k — /3 r3 —|— /3 x3 /2Xi3 (27)

Pik h (r2 ~F r0 ~T~ 4 (x2 •*') — 4 x3i (28)

/. 4 + 4 • (29)

Ersetzen wir den Strom /3 in Gleichung (27) und (28) durch (4 —4)> so erhält man :

/1 r3 + Ii (x3 -j- x3i) /2 (n -f- r2 + r3) -4- /2 (xt + x2 -p x3 -p 2 Xi3). (30)

Die Gleichung (27) in Abhängigkeit von I, und /2 wird:
Km /1 r3 + /, .x3 - I2 r3 - 4 (x3 + x,3). (31)

Wir müssen nun in der Gleichung (31) /2 r3 -j- 4 (*3 + *13) durch h r," ; /, x,"
ersetzen.

Wir wollen diesmal die Lösung mittels der symbolischen Methode r/' und x,"
versuchen. Aus den Gleichungen (30) und (31) ergibt sich:

Pk /, r» +ix'~(r, + r, + r,") + j(*+£+ *s +2 jfej"(r»+ + *ls)l] (32)

Der Ausdruck : a — r^~j~î^X3^~Xi3\—T (r3 -P / (x3 -P x13))
(r, + r2-fr3) + | (x, + x2 + x3 -P 2x,3)

lässt sich in folgender Art schreiben:

[rj - (x3 -{- Xi3)2 -P / 2 r3 (x3 -\- xt3)] [(r, -P r2 + r3) - / (x, -p x2 ~~P x3 —1~ 2 x,3)]

(n -j- r2 -p r3)2 -P (x, -p x2 -p x3 ~P 2 Xi3)2
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Daraus erhält man:
2 r3 (x, + x2 + x3 + 2 x,3) (*3 + *«) - (n + r2 + r3) ((x3 + xl3)2 - r32}

r"

somit:

(a + r2 -+- r3)2 + (xi + X2 + x3 + 2 X13)2

((x3 + 2 - r32) (x, + x2 + x3 + 2 JC13) + 2 r3 (x3 + x<3) (r, + r2 + r3)

(n + r2 + r3)2 + (xi + x2 + x3 + 2 X13)2

Q r3- r"
X x3 — x/ z ]/«2 + x2 und tg <p

Genau so wie im vorigen Fall bewegt sich die Impedanz z auf einem Kreis,
wenn x2 oder r2 konstant bleiben.

Wir betrachten den Fall_X2 konstant.
In Fig. 16 hat -man für OD und DF dieselben Werte wie vorher; hingegen

werden FH h x3 und HG + h r3.

tg<p3tg <p3 hat sich nicht geändert:

Der Strom /2max hat sich geändert und beträgt:

Ii [r3 + (x3 + Xi32)

X3 + Xi3

r3

r 2 —*2 max

OF2

(Xi x2

Daraus erhält man:

OK
/. (r32

x3 + 2 Xi3)2

(x3+xI3)2)

ri + (x3 + x,3)2

2 OMi(x, -)- x2 + x3 + 2 Xi3)

Die Lage des Kreises mit Mi als Mittelpunkt ist somit festgelegt, weil der Radius
7t

OMi und der Winkel <£ COFm ^3 + -y bekannt sind. Anderseits kann man für

die Koordinaten des Mittelpunktes M2 schreiben:

r3 (x3 + x,3)
or=/, r3- Xi + x2 + x3 -h 2 Xi3

TM2 /,[.
r32 — (x3 H~ X|3)2

2 (xi + x2 + x3 -f- 2 Xi3)

Nicht weniger interessant ist bei Aenderung des Windungszahlverhältnisses die
Variation der Phasenverschiebung des Stromes /3 mit der Spannung V2k zu verfolgen.

Aus den drei Gleichungen auf Seite 589 kann man
leicht die Beziehung zwischen /3 und V2k festlegen, und dann
daraus bei Aenderung der gegenseitigen Induktivität x12,
den Verlauf der Phasenverschiebung zwischen dem Strome 13

und der Spannung V2k untersuchen.
Im folgenden soll jedoch in einfacher Weise gezeigt

werden, wie diese Variation ermittelt werden kann. Unter
der Annahme, dass der ohmsche und der induktive
Streuungsabfall im Spartransformator klein sind, ergibt sich,
dass F)k und V2k fast in Phase sind.

Anderseits kann man annäherungsweise die
zugeführte Leistung gleich der abgegebenen setzen:

Vik Ii cos fpi Qé V2k /2 cos <p2 (Siehe Fig. 18). Fig. 18

Nun setzt man voraus: der gemeinsame Fluss (&<£) soll bei Variation des
Windungszahlverhältnisses konstant bleiben. Es sei W2 konstant und Wi variabel. Aendert
man den Belastungskreis nicht, so bleibt, da V2k konstant ist, /2 ebenfalls konstant.
Die Klemmenspannung Vik wird mit der Variation der Windungszahl Wi derart
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geändert, dass, (ft <P) konstant bleibt. Nun kann man leicht sehen, dass, wenn Flk

grösser als V2k ist, Ix cos cpl <C I2 cos (p2 wird, so dass I3 die Spannung V2k dem
Strom um mehr als 90° nacheilt.

Der Strom I3 kann somit gegenüber der Spannung V2k, je nachdem Vjk grösser
oder kleiner als V2k ist um mehr oder weniger als 90° nacheilen (siehe Fig. 19).

Zum Schluss wollen wir noch die Frage stellen, ob der Streuungskoeffizient o,
gegeben durch den Ausdruck:

ö 1
xt|

x, x3
beim Spartransformator eine Bedeu- Iî cos fj

tung hat. Beim gewöhnlichen Transformator gibt
uns o an, wieviel Spannung von der vom Primärstrom

im Primärkreis induzierten EMK für den
sekundären Kreis unwirksam bleibt, wenn die vom
Primärstrom im Primärkreis induzierte EMK gleich
1 Volt ist.

In dem Impedanzkreis des gewöhnlichen Transformators lässt sich o durch das
TR

Verhältnis -^ausdrücken.2)
Beim Spartransformator für Heruntertransformierung lassen sich leicht aus

Fig. 16 die Strecken TR und TN in folgender Weise ausdrücken:

TR TM2 — RM2 h (x, + 2 x,3 -j- x3

77V TR + RN=h{xi + 2xi3 + x3)\\

>['-

.)[i

(x3 -+- x,3)2

so dass:

Wir können

TR
1

(x, + 2 x13 + x3) (x2 4- x3)J

rl 1

(x, + x3 + 2 x13) (x2 + x3)J

(x3 + x13)2

TN

(xi H- 2 X|3 4- x3) (x2 + x3)

rl ;
(x, 4- 2 xI3 4- x3) (x2 4- x3)

(xs 4- x,3)2

(x, 4- 2 x13 4- x3) (x2 4- x3)
o1 setzen.

In diesem Falle hat dieses keine physikalische Bedeutung mehr, es ist bloss als
TR

eine Verhältniszahl zu betrachten, die über das Verhältnis -=- Aufschluss geben kann.
TN

Wir haben
TR

TN

Oi

1

xT (x2 4- X3)

wobei xT (x, 4- 2 xl3 4- x3) die induktive Reaktanz der reinen Serieschaltung der
Spulen (V/, und W3) angibt.

Analog erhält man für den Spartransformator bei Heruntertransformierung:

TR TM, - RM»

TN TR 4 RN

/,x3[l -
It X3[, +

(x3 4- X13)2

x3 (x, 4- x2 4- 2 xl3 4- x3) _

Taxa (x, 4- X2 4- 2 x,3 4- x3)]•
2) Andronescu, Archiv für Elektrotechnik, Heft 1, 1923.
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j _
(*3 + -Via)2

so dass: 7? ^ + *' + 2jf'î +
77V j _j_. ri

*3 (*i + *2 + 2 *,3 + jr3)
wobei angenommen sei:

j
(*3 + *.3)2

a-3 (jt, -f- *2 + 2 w13 + x3)

TR ö-2

somit:
77V 1 ' ^

x3 (xt + x2 + jr3 + 2 x13)

Wollen wir noch sehen, wie sich die Spannung F2k infolge der Spannungsabfälle,

erzeugt durch die ohmschen Widerstände und Streuungsreaktanzen ändert,
so bilden wir z.B. für den Fall der Heruntertransformierung, genau wie früher auf
Seite 588 folgende Beziehungen :

Fk — V2k Vj (Ii x,i I3 jc3T) Ii rt + h xst. (33)
Dabei hat man :

h -^13 ~T~ I3 X33 Ii *13 I3 X33 /^J

h *11 + Is *31 Ii *11 h *31 '

somit : Vj (/, xt3 + I3 *33) — + 7, r, + 7, *s,.
*33

Anderseits kann man noch schreiben (siehe Fig. 15):

V2k Ii *13 73*33 + I3 *s3 -f" 73 f3 (35)

Fk Fj -4- I xX3 73 *33 73 *s3 + 73 r3 (36)

Ii *13 I3 *33 Fk VJ I3 *33 I3 r3 (37)

somit F/ f 1 + —) Fk - I3 *s3 - 73 r3) —7, r, + 7, wsl (38)
\ *33 *33

und im Falle der Herauftransformierung (siehe Fig. 17) erhält man:

Fk 72 *n — 73 *31 + 72 rl 72 jfs, -|- F2k (39)

Fk ~ F2k Fi ~ T *11 I3 *31 ~F 72 r1 + 72 atsi (TO)

72 x,i — I3 *3i 72 Xu I3 x3,Anderseits : " TT= ~ 7FT~ ' 41>
73 a33 72^13 72 ^13 73 ^33

somit: Fj =(73 *33 — 72 jf(3) f 72 rx -)- 72 wsi. (42)
*33

Dabei ist aber : Fk h *33 - h *13 + h r3 -F 73 ^s3, (43)

so dass : Vj (Fk - I3 r3 - I3 *s3) ^ + 72 r, + 72 *s, (44)

Aus den Gleichungen (38) und (44) kann man die Wirkung der ohmschen
Widerstände r1} r3, sowie der Streuungsreaktanzen *si, *s3 ersehen. Für konstante
Klemmenspannung Fk wird Vj um so weniger variieren, je kleiner die Widerstände
und Streuungsinduktivitäten sind. Somit bleibt auch F2k angenähert konstant.
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