Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 14 (1923)

Heft: 7

Artikel: Festigkeitsversuche an Holzgestängen [Fortsetzung]

Autor: Häusler, W.

DOI: https://doi.org/10.5169/seals-1060384

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Diese neue Auffassung steht, soweit der Berichterstatter feststellen konnte, mit fast allen europäischen Landesvorschriften für die Errichtung und den Betrieb von Starkstromanlagen im Widerspruch. Einzig die amerikanische Praxis scheint in ihren neuesten Vorschriften gleicher Auffassung zu sein (vergl. National Electrical Safety Code Art. 97 a).

Ein Fall aus unserer schweizerischen Praxis scheint übrigens die Richtigkeit der neuen Auffassung voll zu bestätigen. In einem seit Jahren im Betrieb befindlichen Grosskraftwerk mit abgehenden 500, 8000, 50000 und 80000 Voltleitungen hat sich durch Zufall herausgestellt, dass die verschiedenen nach Vorschrift getrennt verlegten Erdelektroden (sieben an der Zahl) praktisch zu einem Erdungssystem zusammengeschlossen sind und sich daraus nie die geringsten Schwierigkeiten ergeben haben.

Es wäre sehr erwünscht, von Seite der Betriebsingenieure über diesen Punkt möglichst viel Material zu erhalten, das für oder gegen den Vorschlag spricht. Die Unterlagen müssten aber derart sein, dass jeder einzelne Fall in seinem vollen Umfange bis in die Einzelheiten verfolgt werden könnte.

Wenn man sich auf das Zusammenlegen aller Erdungen an eine gemeinsame, dafür aber sehr gute Erdelektrode nicht entschliessen könnte, so wäre höchstens folgende Trennung als zweckmässig zu bezeichnen:

a) Für Kraftwerke und grosse Transformatorenstationen ohne ausserhalb der Werke verlaufenden Niederspannungsanlagen:

Alle Betriebs- und Schutzerdungen mit getrennten Erdleitungen zu einer gemeinsamen, aber sehr guten Erdelektrode vereinigen. Eine getrennte Erdelektrode käme nur in Frage für die vorübergehende Erdung zur Vornahme von Reparaturarbeiten von ausserhalb der Werke verlaufenden Leitungen ohne Schutzseil.

b) Für kleinere Transformatorenstationen zur Speisung von Niederspannungsnetzen:

Vereinigung der Hoch- und Niederspannung und der Betriebserdung der Hochspannungsseite mit getrennten Erdleitungen zu einer ersten Erdelektrode und Vereinigung der Betriebserdung der Niederspannungsseite zu einer zweiten Erdelektrode.

Die Trennung unter Abschnitt b) sollte aber nur dann zugelassen werden, wenn die zwei Erdelektroden genügend weit voneinander distanziert werden könnten und für die Elektrode der Betriebserdung der Niederspannungsanlage ein Widerstand von maximal 2 bis 3 Ohm gesetzlich vorgeschrieben würde. Nur dadurch werden ähnliche Unfälle, wie die auf Seite 378 u. ff. beschriebenen 15 Todes- und Brandfälle für die Zukunft zum Verschwinden gebracht werden können. (Fortsetzung folgt.)

Festigkeitsversuche an Holzgestängen.

Bericht an die Obertelegraphendirektion, Bern erstattet von W. Häusler, Bern.
(Fortsetzung)

Im Anschluss an die im Bulletin No. 6 beschriebenen Versuche geht der Autor im folgenden auf weitere Versuche der Oberfelegraphendirektion an Kuppelstangen über, die durch verschieden geformte Zwischenlagen voneinander distanziert sind. Er kommt auch hier zum Ergebnis, dass eine wesentliche Erhöhung der Festigkeit von Kuppelstangen gegenüber derjenigen von zwei einfachen Stangen bei grösseren Spitzenzügen kaum möglich ist und sich jedenfalls wirtschaftlich nicht lohnt.

Comme suite à l'article, contenu dans le bulletin No. 6, l'auteur rend compte d'essais exécutés par l'administration des télégraphes sur des poteaux accouplés au moyen d'entretoises diverses.

389

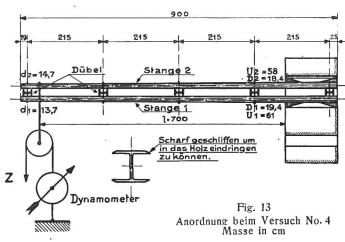
Dans ces cas aussi, lors d'une forte fraction au sommet, l'augmentation du moment résistant est peu importante par rapport au moment résistant de deux poteaux non accouplés.

L'accouplement de deux poteaux accolés ne se justifie donc pas.

Versuch No. 4.

(Tabelle VI und Fig. 13)

Dieser Versuch wurde an einer Kuppelstange mit 5 Eisendübeln aus 8 cm langen T-Stücken (N P. No. 10) ausgeführt.


Versuch N	Io. 4 (Fia. 13)
-----------	---------	----------

Tahel	10	VI	

			Gen	nessene	Werte			Berechnete Werte									
No.	Zug am Dynamo- meter kg	Stan- genzug kg	Aus- biegung cm	bung am	Verschie- hung am Fussende		Korrigier- ter Kraft- hebelarm cm	Träg- heits- moment Jt cm4	Vergrösserungs- taktor des Trag- heitsmomentes einer einzelnen Stange c			Wider- stands- moment Wt cm ³	Vergrösse- rungsfaktor des Wider- stands- momentes c1	Biegungs- moment	Span- nung kg/cm²	Bemerkungen	
1	150	100	10	0	0	Entlastet zeigt	700	14 850	2,23	2,02	11,47	1295	1,95	70 000	54		
2	200	200	24	0	5	Dynamometer 100 kg an	700	12 400	1,98	imag.	_		-	140 000	_		
3	250	300	35	0	10	A	699	12 680	2,06	0,44	9,9	1280	1,93	210 000	164	ď es	
4	300	400	42	0	12		699	14 100	2,24	1,67	11,12	1270	1,92	280 000	220	PGrenze	
5	350	500	51	0	15	. 8	698	14 400	2,29	1,82	11,27	1280	1,93	349 000	273		
6	400	600	60	0	18	Eisendübel wer- den deformiert	697	14 600	2,32	1,92	11,37	1285	1,93	418 000	325		
7	450	700	67,1	0	18	den delormiert	697	15 300	2,44	2,21	11,66	1315	1,98	488 000	371		
8	500	800	84,0	6	22	.a 6	695	13 800	2,2	1,52	10,97	1260	1,90	556 000	442	94.	
9	0	0	10	0	5		700	-	_	_	_	_	- ·	_	-	Diese Span- nungen korri-	
10	500	800	88	0	22		695	13 200	2,1	1,1	10,55	1250	1,87	556 000	445	gieren sich nach dem am	
11	550	900	99	0	24		693	13 100	2,08	1,0	10,45	1250	1,87	624 000	500	Schlusse be- rechneten mitt- leren Verstär-	
12	600	1000	114	0	26	,	691	12 500	1,99	imag.			_	691 000	_	kungsfaktor.	
13	650	1100	129	14	28	(688	12 000	1,99	imag.	_			756 000	-		
14	690	1180	_	_		Bruch d. Stange No. 1 an der	680	-		_	<i>a</i>	*		802 400		#	
15	0	0	40	0	12	Einspannstelle					-						

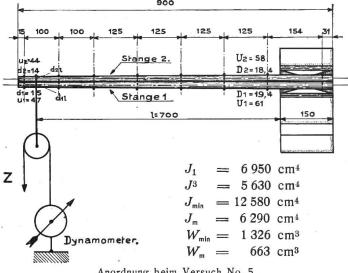
		ı d	Gem	essene V	Verte		- 1	Berechnete Werte									
No.	Zug am Dynamo- meter		biegung	bung am Kopfende	Verschie- bung am Fussende	Bemerkungen	Korrigier- ter Kraft- hebelarm	heits- moment	Stange	neutralen Achse	Abstand der äusser- sten Faser- schicht	moment Wt	moments	Biegungs- moment	nung	Be nerkungen	
	kg	kg	cm	mm	mm		cm	cm4	С	cm	CIII	cm ³	C_1	cmkg	kg/cm²		
1	150	100	10	0	0	Entlastet zeigt Dynamometer	700	14 620	2,33	1,92	11,37	1290	1,92	70 000	54	*	
2	200	200	26	2,5	4	100 kg an	700	11 250	1,80	imag.	_			140 000	_	2	
3	250	300	33,5	2,8	6		699	13 040	2,08	0,95	10,40	1255	1,9	210 000	167	197	
4	300	400	39,5	3	8		699	14 750	2,35	1,97	11,42	1290	1,95	279 900	216	PGrenze	
5	350	500	47,0	3,5	9	4 4	698	15 410	2,46	2,26	11,21	1315	1,98	349 000	265		
6	400	600	55,0	5	10		698	15 800	2,51	2,41	11,86	1330	2,04	418 000	314		
7	450	700	62,0	5,5	12		697	16 300	2,59	2,59	12,04	1355	2,05	488 000	360		
8	500	800	72,0	6	15		696	16 000	2,55	2,49	11,94	1340	2,02	556 000	415		
9	550	900	80,5	6,5	15		695	16 000	2,55	2,49	11,94	1340	2,02	626 000	468		
10	0	0	13	0	2		700	_	- 1		-		-				
11	550	900	82,5	8	16		695	15 600	2,48	2,32	11,77	1330	2,01	626.000	470	Diese Span- nungen korri-	
12	600	1000	91,5	8,5	18		694	15 600	2,48	2,32	11,77	1330	2,01	694 000	520	gieren sich nach dem am	
13	650	1100	100	10	18		693	15 600	2,48	2,32	11,77	1330	2,01	762 000	570	Schlusse be- rechneten mitt- leren Verstär-	
14	700	1200	111	12	20		691	15 200	2,41	2,16	11,61	1310	1,98	830 000	635	kungsfaktor.	
15	750	1300	129	14	22		688	14 000	2,23	1,61	11,06	1265	1,91	894 000	705	~	
16	800	1400	150	15	26	Fasern reissen	684	12 800	2,04	0,22	9,67	1320	2,00	958 000	720		
17	810	1420	190	16	32	Bruch	674	9 750	1,55	imag.		:		958 000	(100)		

Aus der Tabelle VI ist ersichtlich, dass mit Eisendübeln aus T-Stücken keine Verstärkung erzielt wird, weil dieselben zu schwach sind, um den auftretenden Schubkräften in Längsrichtung genügend Widerstand zu leisten. Im übrigen bietet dieser Versuch das gleiche Bild wie Versuch No. 3. Wenn x imaginär wird, so ist das berech-

$$\begin{split} J_{\text{min}} &= 6950 + 5630 = 12\ 580 : 2 = 6290\ \text{cm}^4 \\ W_{\text{min}} &= 716 + 610 = 1326\ \text{cm}^3 \\ W_{\text{m}} &= 663\ \text{cm}^3 \\ J \, t &= \frac{P/2 \cdot l^3}{3\,E\,J} \cdot \left(\frac{131\,D_1}{131\,D_1 - l} + \frac{202\,D_2}{202\,D_2 - l}\right) \end{split}$$

nete J_t unter den möglichen Minimalwert gesunken, d. h. die Durchbiegung ist zu gross, weil die Einspannung nachgegeben hat (No. 2), oder weil sich der abnehmende Elastizitätsmodul geltend macht (No. 12 und 13).

Versuch No. 5 Tabelle VII (Fig. 14)


Dieser gelangte an einer normalen Kuppelstange mit 8 Schrauben zu ³/₄ " Durchmesser zur Ausführung (Tabelle VII). Das Trägheitsmoment bestimmt sich aus

$$J_{t} = \frac{P_{2} l^{3}}{3 E f} \left(\frac{D_{1}}{d_{11}} + \frac{D_{2}}{d_{21}} \right) \text{cm}^{4} = \frac{P_{2} l^{3}}{3 E f} \cdot 2,56 \text{ cm}^{4}$$

Auch bei diesem Versuch zeigt sich, dass die Kuppelschrauben die gegenseitige Verschiebung der Stangen nicht verhindern können. Trägheits- und Widerstandsmoment sinken daher fast auf den minimalen Wert. Die 8 Schraubenbolzen vermögen keine wesentliche Verstärkung zu erzeugen. Der Verstärkungsfaktor ergibt sich hier durch Vergleich der Bruch-

belastungen zu
$$C_2 = \frac{1420}{590} = 2,4.$$

Er wird grösser als der in obiger Tabelle berechnete, weil die Kuppelstangen etwas stärker waren, als die bei Versuch 2 verwendete Einzelstange. Aus der Berechnung geht hervor, dass die Beobachtungen 2 und 3 sehr ungenau sind, d. h. die gemessene Durchbiegung ist infolge Nachgebens (Zusammendrückens) der Bretterzwischenlagen in der Einspannung zu gross. Die Durchbiegung in Funktion der Zugkraft ist aus Fig. 15 ersichtlich. Die Befürchtungen der Verwaltung, der Verstärkungsfaktor für Kuppelstangen könnte in Wirklichkeit

Anordnung beim Versuch No. 5 Fig. 14

Masse in cm

kleiner sein als der errechnete, sind also, wie obige Resultate zeigen, gerechtfertigt.

Aus den Versuchen 3-5 geht klar hervor, dass die Kuppelungsanordnung den auftretenden Schubkräften nicht gewachsen ist. Die gegenseitige Stangenverschiebung beträgt am Fussende 30-50 mm. Um diesen Mangel zu beseitigen, ist es notwendig, die in der Längsrichtung der Stangen wirkenden Schubkräfte zu bestimmen. Zu diesem Zwecke schneiden wir aus den mit P belasteten, mit Dübeln gekuppelten Stangen ein Stück von der Länge △ x heraus (Fig. 16).

An diesem Balkenstück von der Länge $\triangle x$ werden oberhalb der neutralen Achse Druckspannungen von verschiedener Grösse auftreten, unterhalb derselben Zugspannungen. Denkt man sich die sämtlichen Druckspannungen in beiden Quer-

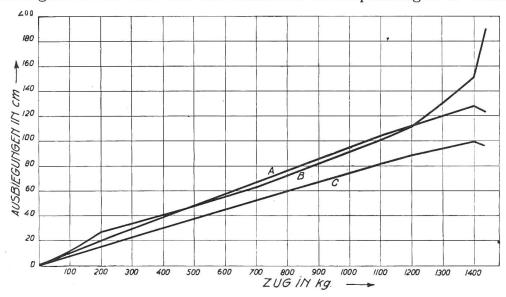


Fig. 15 (Versuch No. 5)

A= Berechnete Ausbiegungen mit Berücksichtigung der Querschnittverjüngung $f=\frac{P\,l^3\cdot 2,56}{3\cdot \varepsilon\,J_{\rm m}\,C_{\rm m^2}}$

B = Beobachtete Ausbiegungen.

C = Berechnete Ausbiegungen mit Konstanten $yf = \frac{P \cdot l^3}{3 \varepsilon \cdot J_m C_m}$

schnitten zusammengefasst zu den Druckkräften D_r bezw. D_{r1} und beachtet man, dass $D_r > D_{r1}$ ist, da die Biegungsmomente mit zunehmendem x ebenfalls wachsen, so muss $D_r - D_{r1}$ diejenige Kraft sein, welche die eine Stange an der andern in der

neutralen Faser zu verschieben sucht. In gleicher Weise lassen sich unterhalb der neutralen Achse die Zugspannungen zusammenfassen zu einer Gesamtzugkraft $Z-Z_1$, die gleich D_r-D_{r1} ist,

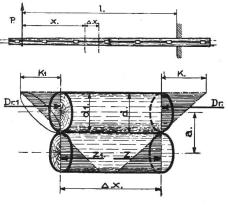
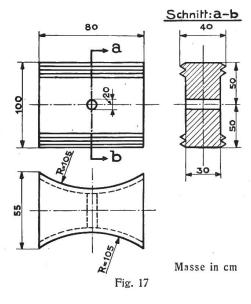



Fig. 16

aber entgegengesetzte Richtung hat. Wenn die Spannungen aufgetragen werden, so sind D_r und D_{r1} gleich dem Inhalt der Spannungskeile, die einen schief abgeschnittenen geraden Kreiszylinder darstellen. Der Inhalt des letztern ist

$$V = \frac{\pi d^2}{4} \left(\frac{h_1 + h_2}{2}\right) \text{ und da } h_1 = 0; \quad V = \frac{\pi d^2}{4} \cdot \frac{h_2}{2},$$
 oder $D_r = \frac{\pi d^2}{4} \cdot \frac{k}{2}$ und $D_{r1} = \frac{\pi d_1^2}{4} \cdot \frac{k_1}{2}$, folgt $D_r - D_{r1} = \frac{\pi d^2}{4} \cdot \frac{k}{2} - \frac{\pi d_1^2}{4} \cdot \frac{k_1}{2}$.

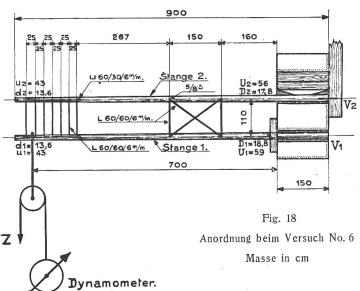
Werden die entsprechenden Momente mit M und M_1 bezeichnet, so ist für gekuppelte Stangenquerschnitte

$$k = \frac{M}{W} = \frac{M}{5 \frac{\pi d^3}{32}}$$
 und $k_1 = \frac{M_1}{5 \frac{\pi d_1^3}{32}}$ also ist auch $D_r - D_{rt} = \frac{4}{5} \left(\frac{M}{d} - \frac{M^1}{d_1} \right) \log d$.

Für die ganze Länge wird M = P l und $M_1 = P \cdot 0 = 0$,

folglich

$$D_{r}-D_{r1}=\frac{4}{5}\cdot\frac{Pl}{d}\,\mathrm{kg}.$$


Das gleiche Ergebnis erhält man, wenn man das Biegungsmoment Pl durch den Abstand a der Wirkungslinien von D_r und Z dividiert; man muss nur beachten, dass D_r und Z nicht mit den Schwerachsen der Stangen zusammenfallen. Diese Kräfte wirken vielmehr in den Schwerpunkten der Spannungskeile. Es wird nun

$$a = d + 2\mu \tag{2}$$

wobei μ den Schwerpunktsabstand für einen schief abgeschnittenen geraden Kreiszylinder bedeutet.

$$\mu = \frac{r^2}{4} \frac{tg \ a}{h}$$
 und $tg \ a = \frac{h}{r}$, also $\mu = \frac{r}{4}$ und $2 \ \mu = \frac{d}{4}$.

Setzt man diesen Wert in (2) ein, so erhält man $a = \frac{5}{4}d$; somit beträgt die Schubkraft in Längsrichtung

$$S = D_{\rm r} - D_{\rm r1} = \frac{4}{5} \frac{P l}{d} \, \text{kg}.$$

Bestimmen wir die Schubkraft für Beobachtung No. 16, so erhalten wir

$$S = \frac{4}{5} \frac{1400 \cdot 700}{18,9} = 41500 \text{ kg}$$

und die Schubbeanspruchung der ³/₄" Bolzen

$$t = \frac{4 \cdot 41\ 500}{3 \cdot 9 \frac{\pi d^2}{4}} = 2170 \text{ kg/cm}^2.$$

Die Schubspannung soll im allgemeinen nur $\frac{4}{5}$ der zulässigen

Inanspruchnahme gegen Zug oder Druck betragen. Die letztere beträgt daher

$$k = \frac{t}{0.8} = 2720 \text{ kg/cm}^2$$

und überschreitet somit die Streckgrenze.

Der Lochleibungsdruck der Schraubenlöcher beträgt

$$L = \frac{S \cdot 125}{700 \cdot 1.9 \cdot 18.9} = 208 \text{ kg/cm}^2;$$

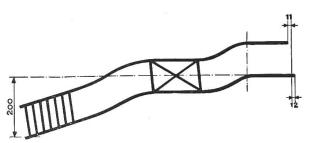

er ist zu gross und könnte damit Grund zu Stangenverschiebungen geben.

						Tabelle	e VIII
Stangenlänge in Meter	8	9	10	1,1	12	13	8
Volumen der gewöhnlichen einfachen Stangen in m ³	0,1414	0,1809	0,2138	0,264	0,305	0,368	0,1414
Preis für gewöhnliche Stangen in Fr	26.—	33.—	40. —	50. —	60. —	70. —	26. –
Preis pro m^3 in Fr	184.—	183.—	187. –	189. –	196.—	190. –	184. —
Widerstandsmoment W einer Kuppelstange an der Einspannstelle		$W_{\min} = 2 W_{1} = 1054$	$W_{\min} = 2W_1$ 1245				$W_{\text{max}} = 4 W_1 \text{ cm}^3 1768$
Der dem W entsprechende Durchmesser einer dickern einfachen Stange in cm an der Einspannstelle	20,8	22,1	23,3				26,2
Durchmesser der dickeren einfachen Stange am Fussende in cm	22	23	24	,			27
Durchmesser der dickeren einfachen Stange am Kopfende in cm	16	17	18				22
Volumen der dickeren einfachen Stange in m³	0,2268	0,2827	0,3463				0,3768
Preis der dickeren einfachen Stange in Fr	42.—	52.—	64				70. –
Preis der Befestigung von 8 Traversen auf dickern einfachen Stangen in Fr.	18.40	18.40	8.40				18.40
Traversenpreis in Fr	48.—	48. –	48.—				48. –
Totaler Preis für dickere Stangen in Fr	108.40	118.40	130.40				136.40
Preis der beiden zu kuppelnden Stangen in Fr.	52.—	66	80. –		-		52
Preis der Befestigung von 8 Traversen auf Kuppelstangen in Fr.	29.60	29.60	29.60				29.60
Traversenpreis in Fr	48. –	48. –	48. –				48. —
Preis der 8 Kuppelschrauben samt Unterlagplatten in Fr.	18.—	18.—	18. –				36. –
Arbeitszeit zur Ausführung der Kuppelung .	3 Std.	3 Std.	3 Std.				6 Std.
Arbeitslohn zur Ausführung der Kuppelung in Fr.	7.20	7.20	7.20				9.60
Totaler Preis für Kuppelstangen in Fr	154.80	168.80	182.80				182.40
Mehrpreis für Kuppelstangen in $^0/_0$ gegenüber einer dickeren einfachen Stange gleicher Festigkeit	42,60/0	42,5%/0	40,4%/0	0			33,50/0

Da der Vergrösserung des Bolzendurchmessers bestimmte Grenzen gesetzt sind, sollen bei weitern Versuchen die Faserschichten der neutralen Achse durch zwischgelegte Gusstücke nach Fig. 17 zur Mitarbeit herangezogen

oder die Schraubendistanzen auf ca. 50 cm reduziert werden. Mit Rücksicht auf die grossen Vorräte an Traversen und Mittelstücken für Kuppelstangen kommt für die Tele-

graphenverwaltung nur die Vermehrung der Schrauben in Betracht.

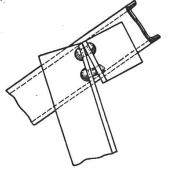


Fig. 21

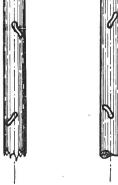


Fig. 23

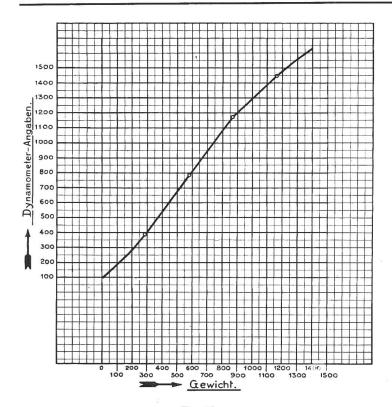
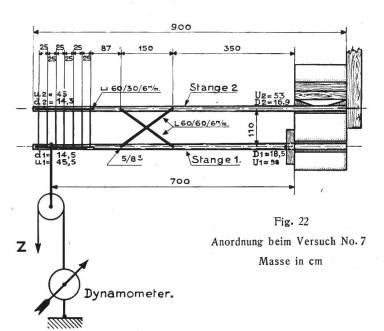



Fig. 19
Eichkurve des Dynamometers der B.K.W.

Dynamometer- Angaben in kg	Gewicht der angehängten Kisten in kg	Verhältniszahl des Gewichtes zu Dyn. Angab.
390	291	0,74
780	584	0,75
1175	877	0,66
1450	1170	0,81

Vergleichen wir die Preise von Kuppelstangen mit denjenigen von stärkern Einfachstangen.

Wie aus Tabelle VIII ersichtlich ist, sind Kuppelstangen im Vergleich zu dickeren einfachen Stangen gleicher Festigkeit unwirtschaftlich. Wenn für die Kuppelstangen das minimale Widerstandsmoment, d. h. zweimal dasjenige einer Einzelstange angenommen wird, was den tatsächlichen, durch die Versuche nachgewiesenen Verhältnissen entspricht, so ergibt sich für dieselben eine Preiserhöhung von rund 40% gegenüber einer dickeren einfachen Stange gleicher Festigkeit. Selbst wenn es durch Vermehrung der Kuppelschrauben gelingen sollte, den Verstärkungsfaktor im Maximum auf 4 zu erhöhen, ergäbe sich immer noch ein Mehrpreis von 33%.

Versuch No. 6. (Tabelle IX und Fig. 18)

Doppelstange mit niedrig eingebautem Kreuz und aufmontiertem Isolatorengerüst.

Die am Ende der Versuche vorgenommene Eichung des Dynamometers hat die in Fig. 19 dargestellte Kurve ergeben. Die Angaben des Dynamometers werden im folgenden nach dieser Eichkurve korrigiert, weil dasselbe verschiedene Ruhestellungen einnahm. Die elastische Formänderung der Doppelstange ist aus Fig. 20 ersichtlich.

Die Traversenbefestigung wurde nach Fig. 21 deformiert.

Da die Lappenvernietung zu schwach ist, trägt sie auch nicht viel zur Tragwerkverstärkung bei; sie dürfte ganz weggelassen werden, da sie die Herstellungskosten der Traversen erheblich verteuert.

Versuch No. 7. (Tabelle X und Fig. 22)

Doppelstange mit Kreuz ohne horizont. Verbindungstraversen. Einbauhöhe $\sim \frac{2}{3}$ (700 – 150) cm.

					-								Tabelle 1X
No.	meter	Stangenzug		No. I V_1	der Stange No. 2 V ₂	Bemerkungen	No.	meter	Stangenzug		Verschiebung der Stange No. 1 V ₁	Verschiebung der Stange No. 2 V ₂	Bemerkungen
	kg*	kg	cm	mmı	ııı m	, I	_	kg	kg	cm	mm	mm	1
1	150	120	1,5	0	0		21	200	220	13,5	0	50	
2	200	220	8,5	0	3		22	250	340	23,5	0	50	
3	250	340	14,5	1	5		23	300	430	30,5	0	50	
4	300	430	19,5	2	6		24	350	530	40,5	0	50	
5	350	530	29,0	2	18		25	400	600	45,0	20	50	z =
6	400	600	39,5	2	32	Stange No. 2 ver- ankert	26	450	670	58,0	20	55	
7	450	670	47,0	2	38	antert	27	500	740	62,0	20	55	
8	500	740	52	2	40		28	550	820	65,5	20	57	
9	0	0	24	_ 2	35	Entlastet	29	600	890	70,5	20	62	
10	500	740	54	2	45		30	650	960	75,0	22	70	
11	550	820	61	2	50		31	700	1040	81,0	22	75	
12	560	840	71	2	_		32	775	1150	87,0	25	80	*
13	0	0	31	2	_	Entlastet	33	800	1180	96	25	90	×
14	560	840	71,5	2	70		34	850	1260	109	40	97	
15	600	890	75,5	2	75	(35)	35	850	1260	118	45	97	
16	650	960	79	2	80		36	900	1340	127	45	97	
17	700	1040	87	2	90	*	37	950	1400	139	60	97	
18	750	1110	98	2	105	Festklemmungs- balken ausgewich.	38	1000	1480	170 ,	100	100	
19	0	0	23	2	90	Entlastete Zug-	39		1560	179	110	105	Bruch der Druck- stange 50 cm über
20	150	120	5	0	50	stange neu verankert. $V_2 = 50 \text{ mm}$ $V_1 = 0$ Ausb. $= 0$	40	1100	1630	200	120	110	stange 50 cm über der Einspannstelle Bruch der Zug- stange an der Ein- spannstelle

	versucti 110. 1 (1 tg. 22)										labelle X	
No.	Zug am Dynamometer	Stangenzug	Ausbiegung	Verschiebung der Stange No. 1 V ₁	Verschiebung der Stange No. 2 V ₂	No.	Zug am Dynamometer	Stangenzug	Ausbiegung	Verschiebung der Stange No. 1 V ₁	Verschiebung der Stange No. 2 V ₂	Bemerkungen
	kg	kg	cm	mm	mm		kg .	kg	cm	mm	ınm	
1	150	120	2,5	0	0	22	0	0	28	_ *	- "	
2	200	220	3,5	0	0	23	850	1260	59	22	20	
3	250	340	7,5	0	0	24	910	1350	62	22	20	
4	325	480	9,5	3	0	25	950	1400	65	24	20	
5	350	530	11,0	3	0	26	1000	1480	67	24	22	
6	400	600	13,5	6	0	27	1050	1560	70	24	22	
7	450	670	16,5	7	0	28	1050	1560	78	24	22	
8	500	740	19,5	10	0	29	1100	1630	81	24	22	
9	550	820	26,5	15	3	30	1150	1760	84	24	22	
10	0	0	11	12	3	31	1180	1750		_	_	Schraubenbolzen am Kreuz abgeschert
11	200	220	16	12	3	32	0	0	40	_	-	Neuer Bolzen angebracht
12	300	430	19	12	3	33	1000	1480	88	_	-	
13	400	600	22	12	3	34	1100	1630	_	26	24	
14	500	740	25,5	12	3	35	1150	1700	97	26	24	
15	550	820	29	12	3	36	1200	1800	112	36	30	
16	600	890	32	12	3	37	1230	1860	_		-	Einspannung ausgerissen
17	650	960	35	15	3	38	0	0	42	36	10	Einspannung wieder herge- stellt
18	700	1040	40	18	3	39	1100	1630	111	40	16	
19	750	1110	45	19	3	40	,1150	1700	115	45	20	
20	800	1180	50	20	22	41	1200	1800	122	46	20	(Kreuzholzen abgeschert Zug
21	850	1260	56	20	22	42	1220	1840	_			Kreuzbolzen abgeschert. Zug am Dynamometer sinkt auf 830 kg. Bei 900 kg Dyn. Bruch der Druckstange an der Einspannstelle

Die elastischen Formänderungen sind gleich denjenigen im vorhergehenden Versuch.

Die Kreuzbefestigungsschrauben sind zu schwach und sollten durch stärkere ersetzt werden $(^{3}/_{4}'')$. Die Schraubenlöcher in den Stangen sind in der Richtung der Kreuzdiagonalen deformiert (siehe Fig. 23).

Versuch No. 8.

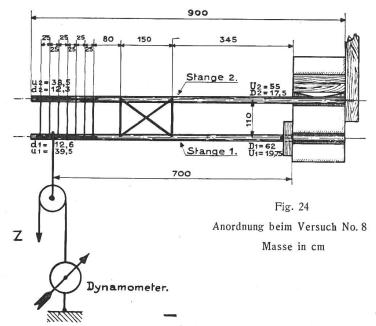
(Tabelle XI und Fig. 24)

Doppelstange mit normaler Kreuzeinbauhöhe wie in Versuch No. 7.

Tabelle XI

						Tabelle Al
No.	Zug am Dynamometer	Stang enzug	Ausbiegung	Verschiebung der Stange No. 1	Verschiebung der Stange No. 2	Bemerkungen
	kg	kg	cm	mm	mm	4
1	150	120	2	0	0	
2	200	220	7	0	0	
3	250	340	11,5	0	0	
4	300	430	12,5	0	0	
5	350	530	18	0	5	
6	400	600	21	0	5	
7	450	670	25	0	5	
8	500	740	30	0	5	
9	550	820	34	0	8	
10	600	890	38	0	12	
11	650	960	42	0	15	
12	0	0	13	0	17	
13	700	1040	49	0	22	
14	750	1110	54	0	24	
15	800	1180	58	0	25	
16	850	1260	62	0	26	
17	900	1340	68,5	0 .	28	
18	950	1400	73,0	0	30	
19	1000	1480	77	0	32	
20	1050	1560	81	0	32	W E
21	1100	1630	85	0	34	
22	1150	1760	91	0	36	
23	1190	1790	107	0	38	
24	1200	1800	-	0	-	Bruch der Druckstange an der Einspannstelle (Ast)

Die Kreuzbefestigungsschrauben sind in der Richtung der Diagonalen ca. 5 cm verschoben.


Versuch No. 9.

Doppelstange mit einer Horizontaltraverse.

Durch direkten Vergleich der Zugkräfte, die in den Versuchen 6-9 den Bruch herbeiführen, mit denjenigen in No. 2, ergeben sich folgende Verstärkungsfaktoren

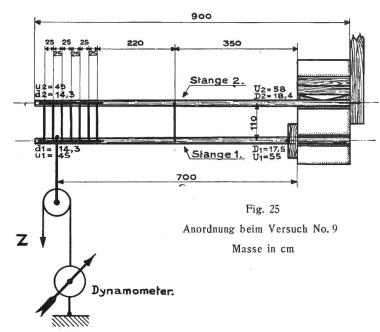
gegenüber einer einfachen Stange. Für Stange No. 6 erhalten wir $C_2 = \frac{2 \cdot 815}{590} = 2,76$.

Stange No. 7 kann nicht verglichen werden, da der Stangenbruch nach Abscheren

der Kreuzbefestigungsbolzen erfolgte, folglich wird c grösser als $\frac{1840}{590} = 3,12$. In Versuch No. 8 erreicht c_2 den Wert $\frac{1800}{590} = 3,1$. Die letzte Probe, Doppelstange

Horizontaltraverse, ergibt $c_2 = \frac{1180}{590} = 2,0$, ein Resultat,

das von vornherein zu erwarten war. Aus diesen Zahlen kann geschlossen werden, dass die maximale Verstärkung erreicht wird, wenn das Kreuz in ca. 2/3 Stangenhöhe eingebaut ist, und dass eine Horizontaltraverse keine Erhöhung der Gestängsfestigkeit ergibt. Aus Probe 7 und 8 geht hervor, dass die wagrechte Verbindungstraverse des Kreuzes

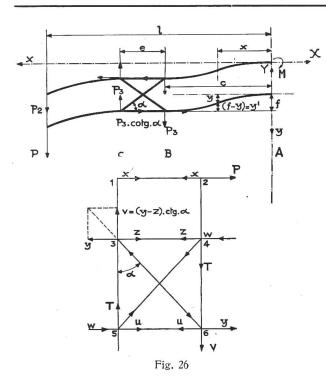

ohne Nachteil weggelassen werden kann, was eine beträchtliche Materialersparnis bedeutet. (Für 5000 Kreuze ergäbe sich eine Eisenersparnis von 60 000 kg.)

Die Wirkung der Kreuzverstrebung ist aus Fig. 26 ersichtlich. Nach dieser wird die Druckstange immer grössere Spannungen aufweisen als die Zugstange,

weil bei der erstern das Biegungsmoment durch das Moment Druckkraft mal Ausbiegung vermehrt wird, während bei der letztern das Umgekehrte zutrifft. Dies wurde durch die Versuche bestätigt, da die Druckstange immer zuerst brach.

Setzen wir voraus, dass die Kreuzdiagonalen keine Längenänderungen erfahren, so folgt daraus die Gleichheit der Durchbiegungen in den Knoten 1 und 2, 3 und 4, 3 und 6, 4 und 5, 5 und 6, 4 und 6, 3 und 5.

Die Ausbiegungen in den erwähnten Punkten können aber nur gleich sein, wenn auch die Kräfte die sie hervorrufen, gleich sind.



$$X = P_1 - X$$
; $-Y + Z = -W - Z$; $W + U = Y - U$, daraus $Z = U$.

Y kann nur gleich W sein, wenn Z = U = 0 ist.

Die Gleichgewichtsbedingungen für eine Stange ergeben sich daher nach Fig. 26 zu

$$2 P_3 \cot g \ a - X = 0$$
 $P_2 - P_3 + P_3 - Y = 0$
 $P_{21} - P_3 (c + e) + P_3 c \pm 2 P_3 \cot g \ a f - M = 0.$

Wir haben 3 Gleichungen und 5 Unbekannte, somit ist das System statisch unbestimmt.

Das unbekannte P_3 kann mit Hilfe der elastischen Linie bestimmt werden. Die Differentialgleichung der Biegungslinie von A-B lautet:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + \frac{2P_3 \cot g a}{E \cdot Jx}$$
$$y' = -\frac{P_2 (l-x) - P_3 e}{E \cdot Jx}$$

wobei a=0 und Jx mit wachsendem x abnimmt, somit in Funktion von x auszudrücken ist. Die Gleichung der Tangente des Biegungswinkels setzt man gleich Null, indem für x=c eingesetzt wird, woraus sich P_3 ergibt. Nun ist es möglich, die Gesamtdurchbiegung zu berechnen. Das Minimum derselben erhält man, wenn

y total nach c differenziert wird. Es ergeben sich sehr komplizierte Formeln. Näherungswerte erhält man, wenn das Trägheitsmoment konstant angenommen wird.

Versuch No. 9 (Fig. 25)

Tabelle XII

No.	Zug am Dynamo- meter	Stangen- zug	Aus- biegung	Verschie- bung der Stange No.1	Verschie- bung der Stange No. 2	No.	Zug am Dynamo- meter	Stangen- zug	Aus- biegung	Verschie- bung der Stange No. 1	Verschie- bung der Stange No. 2
	kg.	kg	cm	mm	mm		kg	kg	cm	mm	mm
1	150	120	4	0	0	8	550	820	65	0	6
2	200	220	21	0	0	9	600	890	74	0	6
3	250	340	27	0	0	10	650	960	80	0	6
4	300	430	30	0	2	11	700	1040	92	0	8
5	350	530	40	0	3	12	750	1110	104	0	10
6	450	670	40,5	0	4	13	790	1180	131	0	10
7	500	740	58	0	5	141)	800	1180	_	0	_

¹⁾ Bruch der Druckstange 1 m ob Einspannung (Ast).

(Fortsetzung folgt.)

Technische Mitteilungen. - Communications de nature technique.

Leitungsführungsmaterial für Schaltanlagen. Mitgeteilt durch die Bernischen Kraftwerke, Bern.

Im Bulletin No. 9, Jahrgang 1922, wurden über die Klemmarmaturen für Stütz- und Durchführungsisolatoren der Bernischen Kraftwerke A.-G. einige Mitteilungen gemacht. Die für rohrförmige Leiter, sowie für Apparateteile (Trennmesser, Drosselspulen und Sicherungen) ausgeführten Kappen sind inzwischen durch eine weitere Konstruktion von Draht-Kappenhaltern, welche im folgenden kurz beschrieben werden sollen, ergänzt worden.

Die Kappenhälften besitzen kerbförmige Ausschnitte, in welchen Draht von 5-12 mm Durchmesser eingeklemmt werden kann. Die Einkerbungen sind auf den seitlichen, sowie auch auf der oberen Fläche vorhanden, so dass, wie aus Fig. 1 und 2 hervorgeht, die Armaturen für die Stütz- und für die Durchführungsisolatoren verwendet werden können. Der nach innen vorstehende Wulstrand der Kappenhälften ist je mit 2 gut abgerundeten Warzen versehen, welche in die Nute des Isolatorenhalses eingreifen und das