Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

**Band:** 14 (1923)

Heft: 6

Artikel: Festigkeitsversuche an Holzgestängen

Autor: Häusler, W.

**DOI:** https://doi.org/10.5169/seals-1060381

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

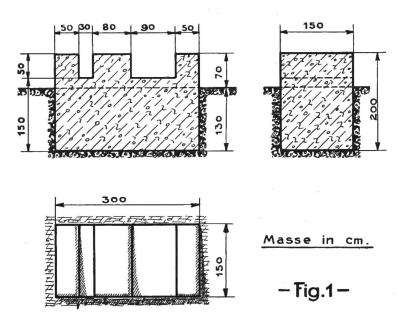
# Festigkeitsversuche an Holzgestängen.

Bericht an die Obertelegraphendirektion, Bern erstattet von W. Häusler, Bern.

Mit Rücksicht auf die in Revision begriffenen bundesrätlichen Schwachstromvorschriften von 1908 sind eine Reihe von Festigkeitsversuchen an Holzgestängen durch die Obertelegraphendirektion ausgeführt worden, über die in den folgenden Bulletinausgaben berichtet wird. Diese Versuche ergaben bei einseitig eingespannten Einfachmasten mit der Rechnung gut übereinstimmende Resultate; dagegen kann bei einseitig eingespannten Kuppelmasten, auch bei guter Verkuppelung derseiben, nur bei kleinen Spitzenzügen mit einer wesentlichen Vergrösserung des Trägheitsmomentes gegenüber demjenigen von zwei ungekuppelten Stangen gleicher Dimensionen gerechnet werden.

Dans le bulletin présent et dans les suivants l'auteur rend compte d'une série d'essais que la direction générale des télégraphes a fait entreprendre sur des poteaux en bois en vue de la revision des prescriptions fédérales de 1908. En ce qui concerne les poteaux simples les résultats d'essai concordent avec les calculs.

Il en est de même pour deux poteaux accolés, tant que la traction est très faible. Plus la traction au sommet augmente, plus le moment d'inertie des deux poteaux accouplés s'approche de celui de deux poteaux isoles.


# A. Erste Versuchsserie in Ostermundigen.

Um gewisse Fragen betreffend Berechnung der hölzernen Tragwerke abzuklären und die Ergebnisse bei der kommenden Revision der Schwachstromvorschriften verwerten zu können, drängte sich die Durchführung von Festigkeitsversuchen an Holzstangen immer mehr auf. Es handelte sich darum, erstens einmal die reine Gestängefestigkeit mit möglichst vollständiger Einspannung zu ermitteln und zweitens das Verhalten der Stützpunkte mit den gegenwärtig üblichen Bodenbefestigungen an bestehenden, zum Abbruch bestimmten Leitungsanlagen festzustellen.

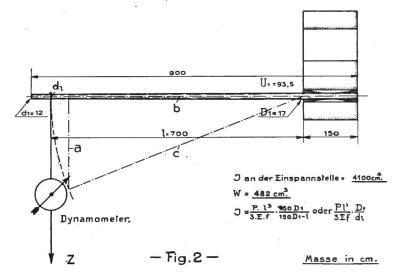
Zur Erhaltung der Tragwerkfestigkeit, ohne Einfluss der Eingrabung in die Erde, musste zuerst eine Versuchsanordnung mit einem armierten Betonblock geschaffen werden. Das Versuchsprojekt stützte sich auf folgende Annahmen: Die Festigkeitsproben werden mit 9 m Stangen, einer Einspannlänge von 1,5 m und einem Stangendurchmesser an der Einspannstelle von zirka 18 cm ausgeführt. Das Biegungsmoment, das den Stangenbruch herbeiführen wird, beträgt  $M_b = 480 \frac{\pi \, 18^3}{22}$ = 2745,6 mkg. Bei einem Krafthebelarm von l = 700 cm ergibt sich die horizontale Zugkraft P beim Bruch zu zirka 400 kg. Für Kuppel- und Doppelstangen wird P zirka 2000 kg und das grösste zu erwartende Biegungsmoment  $M_{max} = 2000 \left(700 + \frac{1.5}{2}\right)$ = 15 500 mkg. Das Widerstandsmoment des in der Erde sich befindlichen Teiles des Betonblockes ist  $W = \frac{b h^2}{6} = \frac{130 \cdot 300^2}{6} = 1950000 \text{ cm}^3$ . Die grösste Kantenpressung erhalten wir nach der Biegungsgleichung zu  $\sigma_{max.} = \frac{15\,500 \cdot 100}{1\,950\,000} = 0.8 \,\mathrm{kg/cm^2}$ . Sie wird bei Vernachlässigung der Reibung und der seitlichen Einspannung noch kleiner. Der Einspannungssockel kann daher als eingespannt betrachtet werden. Die grösste Betonrandspannung, hervorgerufen durch die Holzstangen bei Zwischenlage von 10 cm breiten Brettern hat folgenden Wert:  $\sigma = \frac{6 \cdot 15500 \cdot 100}{150^2} = 41 \text{ kg/cm}^2$ , was zulässig ist. Die gefährdeten Betonquerschnitte müssen aber armiert werden, um die von der Biegungsbeanspruchung herrührenden Zugspannungen des Betons aufzunehmen. Als Armierung wurden alte Eisenkonstruktionen verwendet.

Nachdem die Grössenverhältnisse der Versuchsanordnung (siehe Fig. 1) bestimmt waren, konnte auch der nötige Platz im Hofe des Zentralmagazins in Ostermundigen ausfindig gemacht werden. Als fixer Befestigungspunkt des Zugseiles diente eine in das Fundamentmauerwerk eines Magazingebäudes mit Zement eingegossene Ankerschraube. Zur Ausübung des nötigen Zuges wurde eine schwere Kabeleinzugswinde

verwendet, die direkt auf den Erdboden gesetzt war. Die Verankerung derselben geschah vermittels Eigengewicht, Reibung und nötigenfalls Kettenbefestigung. Die Seiltrommel samt Winde musste an Ort und Stelle so placiert werden, dass das über eine Rolle geschlungene Seilende parallel zum Zugseil lief. Die Seilverbindungen bestanden aus eisernen S-Haken und Oesen. Das zur Verfügung gestellte Dynamo-



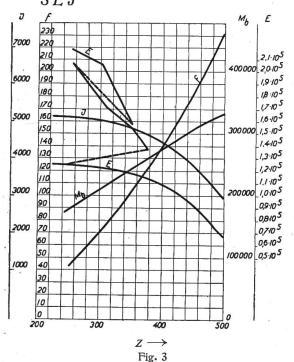
meter, mit einer Teilung von 250 bis 2000 kg, konnte bei Einschaltung einer losen Rolle für Züge bis 4000 kg Verwendung finden. Um gleichartiges Holzmaterial zu erhalten, bezog man sämtliche Stangen, die unter sich möglichst dieselben Dimensionen aufwiesen und im Jahre 1918 zur Imprägnierung gelangt waren, vom gleichen Lager. Nach Vorbereitung der verschiedenen Tragwerkkonstruktionen mit der Durchführung der Versuche an Stangen mit vollkommener Einspannung am 1. Juni 1922 begonnen werden. Die Festklemmung der Holzmaste in den Nuten des Sockels


geschah durch Zwischenlegen von Brettern oder Balken und nachheriges Einschlagen von harthölzernen Keilen, deren Länge zirka 50 cm betrug. Um bei der Ausbiegung der Versuchsobjekte die Reibung zwischen Stange und Unterlage auf ein Minimum

zu reduzieren, wurden Gasrohrstücke dazwischen gelegt. Die bei den Versuchen beobachteten Grössen sind in den folgenden Tabellen eingetragen, welchen die betreffende Tragwerkskizze beigefügt ist.

## Versuch No. 1.

Dieser Versuch gelangte an einer einfachen Stange zur Ausführung. Die Ergebnisse sollten zum Vergleich mit denjenigen kombinierter Stangen dienen (siehe Fig. 2).


Die Resultate des Versuches No. 1 sind sehr ungenau



und zu Vergleichszwecken fast unbrauchbar. Einmal sind die Angaben des Dynamometers im untern Bereich unrichtig und zweitens nimmt der Elastizitätsmodul des verwendeten Holzes von Beobachtung No. 15 an sehr rasch ab. Diese Abnahme ist aus den Kurven der Fig. 3 deutlich zu erkennen. Für einen bestimmten Querschnitt ist das erstere unveränderlich, also eine gerade Linie, während die Durchbiegungen den Zugkräften direkt proportional sind. Die Zugkräfte sind mit einer innerhalb der Proporzionalitätsgrenze gleichbleibenden Grösse zu multiplizieren. Sie sind durch eine Gleichung von der Form y = mx ausgedrückt und stellen somit eine durch den Anfangspunkt der Koordinaten gehende Gerade dar.

| -   | -                          |                 |                                | 1                                                   |                                                                                |                                                                                                      |                                                                     |                                  |                                  |                                                                  | Tabelle 1                                                       |  |
|-----|----------------------------|-----------------|--------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--|
|     | Beo                        | bachtunger      | 1                              | Berechnungen                                        |                                                                                |                                                                                                      |                                                                     |                                  |                                  |                                                                  |                                                                 |  |
| No. | Zug am<br>Dynamo-<br>meter | Aus-<br>biegung | Bemerkun-<br>gen               | Korrigierter Krafthebel- arm $b = \sqrt{c^2 - a^2}$ | Trägheitsmoment $J = \frac{P  l^3}{3  E  f}$ Formel für konstanten Querschnitt | Trägheits- moment $J = \frac{P  l^3}{3  E  f}  \frac{D_1}{d  l}$ mit Berück- sichtig. der Verjüngung | Zugkraft aus $J$ und $f$ berechnet $P = \frac{3 f E J dl}{l^3 D_1}$ | Biegungs-<br>moment<br>P·1 kg/cm | Beanspru-<br>chung des<br>Holzes | Elastizitäts- modul $E$ $E = \frac{P l^3}{3 J f} \frac{D_1}{dl}$ | Elastizitäts-<br>modul E<br>nach Eich-<br>kurve korri-<br>giert |  |
|     | kg                         | cm              | 1                              | em                                                  | cm <sup>4</sup>                                                                | cm <sup>4</sup>                                                                                      | kg                                                                  | emkg                             | kg/cm <sup>2</sup>               | kg/cm <sup>2</sup>                                               | kg/cm²                                                          |  |
| 1   | 250                        | 51,5            |                                | 698                                                 | 5560                                                                           | 7660                                                                                                 |                                                                     | '                                | -                                | 1,85 105                                                         | 0,74 105                                                        |  |
| 2   | 0                          | 2               | Dynamometer<br>ungenau         | 700                                                 | _                                                                              | _                                                                                                    | _                                                                   |                                  |                                  |                                                                  | _                                                               |  |
| 3   | 250                        | 44              |                                | 699                                                 | 6460                                                                           | 8900                                                                                                 |                                                                     | -                                |                                  | 2,17 105                                                         | 0,87 105                                                        |  |
| 4   | 0                          | 2               |                                | 700                                                 | . —                                                                            | _                                                                                                    |                                                                     | ,                                | -                                | _                                                                | _                                                               |  |
| 5   | 250                        | 44              |                                | 699                                                 | 6460                                                                           | 8900                                                                                                 |                                                                     | _                                |                                  | 2,17 105                                                         | 0,87 105                                                        |  |
| 6   | 300                        | 55,7            |                                | 698                                                 | 6100                                                                           | 8410                                                                                                 |                                                                     |                                  | -                                | 2,05 105                                                         | 1,06 105                                                        |  |
| 7   | 350                        | 85              |                                | 696                                                 | 4680                                                                           | 6410                                                                                                 | _                                                                   |                                  |                                  | 1,56 105                                                         | 0,91 105                                                        |  |
| 8   | 0                          | 4               |                                | 700                                                 | , —                                                                            | _                                                                                                    | -                                                                   |                                  | -                                | -                                                                | _                                                               |  |
| 9   | 250                        | 46              | 20                             | 699                                                 | 6180                                                                           | 8540                                                                                                 |                                                                     |                                  | _                                | 2,08 105                                                         | 0,83 105                                                        |  |
| 10  | 310                        | 69,5            |                                | 697                                                 | 5400                                                                           | 7450                                                                                                 | - ,                                                                 |                                  | ,— ,                             | 1,69 105                                                         | 0,90 105                                                        |  |
| 11  | 355                        | 88              | 25                             | 694                                                 | 4500                                                                           | 6210                                                                                                 |                                                                     | ·                                |                                  | 1,51 105                                                         | 0,89 105                                                        |  |
| 12  | 375                        | 103             | Dynamometer ungenau            | 693                                                 | 3960                                                                           | 5460                                                                                                 | _                                                                   | _                                | _                                | 1,36 105                                                         | 0,83 105                                                        |  |
| 13  | 0                          | 8,5             | Entlastet                      | 700                                                 | _                                                                              | _                                                                                                    |                                                                     |                                  | _                                | _                                                                |                                                                 |  |
| 14  | 250                        | 76              |                                | 696                                                 | 3700                                                                           | 5100                                                                                                 | 200                                                                 | 174 000                          | 360                              | 1,24 105                                                         | 0,49 105                                                        |  |
| 15  | 375                        | 122             |                                | 689                                                 | 3350                                                                           | 4620                                                                                                 | 332                                                                 | 254 000                          | 527                              | 1,13 105                                                         | 0,69 105                                                        |  |
| 16  | 400                        | 136             |                                | 687                                                 | 3180                                                                           | 4390                                                                                                 | 374                                                                 | 275 000                          | 570                              | 1,07 105                                                         | 0,68 105                                                        |  |
| 17  | 425                        | 152             | F                              | 683                                                 | 2960                                                                           | 4080                                                                                                 | 425                                                                 | 290 000                          | 600                              | 1,00 105                                                         | 0,66 105                                                        |  |
| 18  | 450/425                    | 172             | Fängt an zu<br>fliessen        | 679                                                 | 2730                                                                           | 3770                                                                                                 | 490                                                                 | 305 000                          | 633                              | 0,92 105                                                         | 0,62 105                                                        |  |
| 19  | 450                        | 185             |                                | 675                                                 | 2490                                                                           | 3440                                                                                                 | 536                                                                 | 304 000                          | 631                              | 0,84 105                                                         | 0,57 105                                                        |  |
| 20  | 475/450                    | 205             | 2                              | 670                                                 | 2320                                                                           | 3200                                                                                                 | 610                                                                 | 318 000                          | 660                              | 0,78 105                                                         | 0,54 105                                                        |  |
| 21  | 500/475                    | 228             | D1                             | 662                                                 | 2120                                                                           | 2920                                                                                                 | 700                                                                 | 330 000                          | 685                              | 0,71 105                                                         | 0,50 105                                                        |  |
| 22  | 500                        | 250             | Bruch an der<br>Einspannstelle | 654                                                 | 1860                                                                           | 2560                                                                                                 | 800                                                                 | 327 000                          | 680                              | 0,62 105                                                         | 0,44 105                                                        |  |

Wenn wir nun annehmen, die beobachteten Ausbiegungen seien richtig, so bestimmt sich die am Hebelarm l wirkende Kraft P aus der Durchbiegungsformel  $f = \frac{P \, l^3}{3 \, E \, J}$ , da J aus den Stangendimensionen an der Einspannstelle berechnet werden kann. Diese Formel ist aber nur



 $E = {
m Elastizit atsmodul, kg/cm^2},$   $f = {
m Ausbiegung, cm,}$   $M_b = {
m Biegungsmoment, cmkg,}$   $Z = {
m Einseitiger Zug in kg,}$  $J = {
m Trägheitsmoment, cm^4}.$  werden kann. Diese Formel ist aber nur für konstanten Querschnitt gültig, eine Voraussetzung, die beim Stangenmaterial nicht zutrifft. Untersuchen wir nun den Einfluss der Querschnittsverjüngung auf die Ausbiegungen.

Die Differentialgleichung der elastischen Linie hat allgemein folgenden Wert:

$$\frac{dy^2}{dx^2} = \frac{M}{EJ} \tag{1}$$

M = Biegungsmoment,

E = Elastizit atsmodul,

J = Trägheitsmoment.

Für unsern Fall ist J nicht mehr konstant, sondern ändert mit der Länge x, und zwar setzen wir stetige und proportionale Abnahme voraus.

Es verhalten sich nun

$$\frac{l}{\frac{D_1}{2} - \frac{d_1}{2}} = \frac{l - x}{\frac{dx}{2} - \frac{d_1}{2}};$$

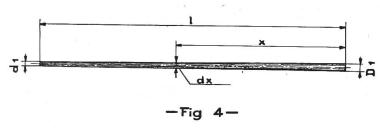
daraus folgt

$$dx = \frac{(l-x)(D_1-d_1)}{l} + d_1 = D_1 - x \frac{(D_1-d_1)}{l} = D_1 - \frac{x}{\frac{l}{D_1-d_1}}$$

Nach den im Pflichtenheft für imprägnierte Holzstangen vorgeschriebenen Dimensionen wird  $\frac{l}{D_1-d_1}\cong 150$ , somit  $dx=D_1-\frac{x}{150}$ , d. h. auf 150 cm Länge nimmt der Stangendurchmesser im Mittel um 1 cm ab. Das Trägheitsmoment ergibt

sich zu  $Jx = \frac{\pi \left(D_1 - \frac{x}{150}\right)^4}{64}$  und das Biegungsmoment für einen beliebigen Querschnitt im Abstande x lautet  $M_x = P(l-x)$ . Wir erhalten nach Einsetzen dieser Werte in Gleichung (1)

$$\frac{d^{2} y}{dx^{2}} = \frac{P(l-x)}{\frac{\pi \left(D_{1} - \frac{x}{150}\right)^{4}}{64}}$$


Durch zweimalige Integration ergibt sich die Gleichung der Biegungslinie zu

$$J = \frac{PD_1 x^2}{6 E J} \left[ \frac{(3 l - x) D_1 - \frac{2 l x}{150}}{\left(D_1 - \frac{x}{150}\right)^2} \right] = \frac{PD_1 x^2}{6 E J} \left[ \frac{(3 l D_1 - x (3 D_1 - 2 d_1))}{\left(D_1 - \frac{x (D_1 - d_1)}{l}\right)^2} \right]$$

und die maximale Durchbiegung für x = l

$$f = \frac{P l^3}{3EJ} \left[ \frac{150 D_1}{150 D_1 - l} \right] = \frac{P l^3}{3EJ} \frac{D_1}{d_1} \text{ cm},$$

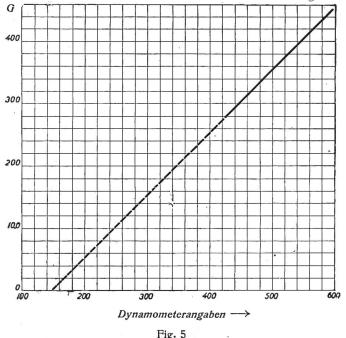
wobei J das konstante Trägheitsmoment an der Einspannstelle bedeutet, während D und d die zu l gehörenden Enddurchmesser darstellen.



Der Klammerausdruck nimmt beim Versuchsobjekt den Wert 1,38 an, d. h. die Ausbiegungen der Stangen aus der Formel für konstantes J berechnet, müssen um 38% erhöht werden. Die mit obiger Gleichung berechneten Zugkräfte P sind aus der Tabelle ersichtlich und zeigen, dass mit

ersichtlich und zeigen, dass mit einem unveränderlichen E viel zu grosse Werte erhalten werden. Die Randspannung würde bei Bruch etwa auf  $\frac{800\cdot654}{482}\sim1100\,$  kg/cm² steigen, was für Holz zu gross ist.

Die elastische Formänderung durch die Schubkraft bestimmt sich aus folgender Gleichung


$$f_{\rm s} = \frac{13}{5} \frac{PlS}{EJb} \, \rm cm,$$

wobei S das statische Moment des halben Querschnittes, bezogen auf die neutrale Achse ist und b die Breite des Querschnittes in der neutralen Achse. Bei Einsetzung dieser Werte wird

$$f_{\rm s} = \frac{13}{20} \frac{Pl}{3EJ} D_1^2.$$

Das Verhältnis der beiden Durchbiegungen, hervorgerufen einerseits durch ein Biegungsmoment und anderseits durch eine Schwerkraft, beträgt

$$\frac{f_b}{f_s} = \frac{\frac{Pl}{3EJ} l^2}{\frac{13}{20} \frac{Pl}{3EJ} D_1^2} = 1,54 \frac{l^2}{D_1^2} .$$



Eichkurve des Dynamometers.

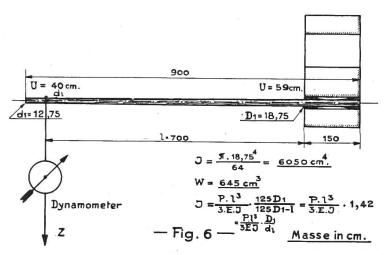
Für  $l=700\,\mathrm{cm}$  und  $D_1=20\,\mathrm{cm}$  wird  $\frac{f_b}{f_s}=1885,\,\mathrm{d.\,h.}$  die durch eine Schubkraft erzeugte Ausbiegung ist in unserem Fall 1885 mal kleiner als die durch ein Biegungsmoment verursachte, und es kann daher deren Einfluss auf die Versuchsergebnisse vernachlässigt werden.

Es ist nun anzunehmen, dass die Ungenauigkeit der Dynamometerangaben auf die berechneten Werte den kleinern Einfluss haben, als die Abnahme des Elektrizitätsmoduls. In der Gleichung für  $E = \frac{Pl^3}{3fJ} \frac{D_1}{d_t} \sin dl$ ,  $d_t$ , f und  $D_1$  direkt gemessen worden, so dass ein etwaiger Fehler nur bei P, also beim Zug-Messinstrument zu suchen ist. Aus den berechneten Werten von E, die von  $2,18 \cdot 10^5$ 

bis  $0.62 \cdot 10^5$  variieren, ist klar ersichtlich, dass das Dynamometer zu grosse Züge anzeigt; denn das mittlere Elastizitätsmass für Holz beträgt nur  $1.0 \cdot 10^5 - 1.08 \cdot 10^5$  kg/cm². Die beobachteten Mängel des verwendeten Messinstrumentes werden also durch die Rechnung bestätigt.

Nach Beendigung des Versuches wurde das Dynamometer neu geeicht. Die Ergebnisse sind aus Tabelle II ersichtlich.

|     |                                 | 4                            | Tabelle II                                                                     |
|-----|---------------------------------|------------------------------|--------------------------------------------------------------------------------|
| No. | Gewichts-<br>belastung<br>in kg | Dynamo-<br>meter-<br>Angaben | Faktor, mit welchem<br>die Dynamometer-<br>Angaben zu multipli-<br>zieren sind |
| 1   | 290                             | 435                          | 0,67                                                                           |
| 2   | 344                             | 492                          | 0,7                                                                            |
| 3   | 397                             | 536                          | 0,74                                                                           |
| 4   | 442                             | 587                          | 0,75                                                                           |

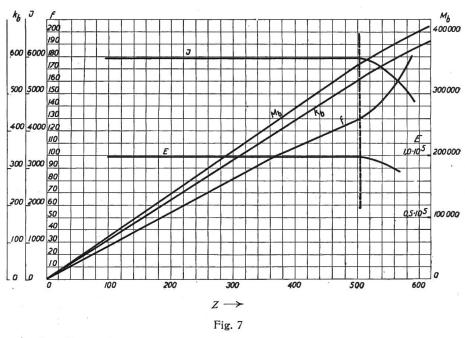

Tabelle III

|     |                            |                          |                                              |                                                     |                                                                      |                                                                                                | 7                       | 1                                   | abelle III                             |
|-----|----------------------------|--------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|----------------------------------------|
| No. | Zug am<br>Dynamo-<br>meter | Aus-<br>biegung<br>in cm | Bemerkungen                                  | Korrigierter Krafthebel- arm $b = \sqrt{c^2 - a^2}$ | Trägheits- moment für konstanten Querschnitt $J = \frac{P l^3}{3Ef}$ | Trägheits- moment mit Be- rücksichtigung der Verjüngung $J = \frac{P l^3}{3Ef} \frac{D_1}{dl}$ | Biegungs-<br>moment  P1 | Rand-spannung $k_{b} = \frac{M}{W}$ | $E = \frac{P l^3}{3fJ} \frac{D_1}{dl}$ |
|     | kg                         | cm                       |                                              | cm                                                  | cm <sup>4</sup>                                                      | cm <sup>4</sup>                                                                                | cmkg                    | kg/cm <sup>2</sup>                  | kg/cm <sup>2</sup>                     |
| 1   | 145                        | 72,5                     | Zeiger unbe-                                 | _                                                   |                                                                      | _                                                                                              | _ •                     | _                                   |                                        |
| 2   | 250                        | 123,0                    | Zeiger unbe-<br>wegl. Dynamo-<br>meter zeigt | -                                                   | _                                                                    | -                                                                                              | _                       | _                                   | -                                      |
| .3  | 0                          | 11,0                     | falsch                                       | · -                                                 | _                                                                    |                                                                                                |                         | _                                   | -                                      |
| 4   | 100                        | 12,0                     | Neues Dynamo-<br>meter<br>v. B. K. W.        | 700                                                 | 9540                                                                 | 13500                                                                                          | 70 000                  | 108                                 | 2,2 · 105                              |
| 5   | 150                        | 38,5                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,      | 699                                                 | 4430                                                                 | 6290                                                                                           | 104 900                 | 162                                 | 1,01 · 105                             |
| 6   | 200                        | 55,0                     | · ·                                          | 698                                                 | 4120                                                                 | 5850                                                                                           | 139 800                 | 216                                 | 0,97 · 105                             |
| 7   | 250                        | 68,0                     |                                              | 697                                                 | 4150                                                                 | 5890                                                                                           | 174 200                 | 270                                 | 0,97 · 105                             |
| 8   | 300                        | 81,0                     |                                              | 695                                                 | 4145                                                                 | 5880                                                                                           | 208 500                 | 323                                 | 0,97 · 105                             |
| 9   | 0                          | 5,0                      | Entlastet                                    | 700                                                 | _                                                                    | _                                                                                              | _                       |                                     | -                                      |
| 10  | 300                        | 80,5                     |                                              | 695                                                 | 4170                                                                 | 5920                                                                                           | 208 500                 | 323                                 | 0,98 · 105                             |
| 11  | 350                        | 95,0                     |                                              | 693                                                 | 4090                                                                 | 5800                                                                                           | 242 100                 | 376                                 | 0,96 · 105                             |
| 12  | 410                        | 108,5                    |                                              | 692                                                 | 4170                                                                 | 5920                                                                                           | 284 000                 | 440                                 | 0,98 • 105                             |
| 13  | 0                          | 7,0                      | Entlastet                                    | 700                                                 | _                                                                    | _                                                                                              | - 1                     |                                     | _                                      |
| 14  | 400                        | 104,0                    | 3                                            | 693                                                 | 4260                                                                 | 6050                                                                                           | 277 000                 | 430                                 | 1,00 · 105                             |
| 15  | 450                        | 115,0                    |                                              | 690                                                 | 4290                                                                 | 6090                                                                                           | 310 200                 | 482                                 | 1,00 · 105                             |
| 16  | 500                        | 128,5                    |                                              | 688                                                 | 4210                                                                 | 5960                                                                                           | 344 000                 | 534                                 | 0,99 · 105                             |
| 17  | 550                        | 150,0                    | Fängt an zu<br>fliessen                      | 684                                                 | 3920                                                                 | 5560                                                                                           | 376 000                 | 583                                 | 0,92 · 105                             |
| 18  | 590                        | -                        | Bruch an der<br>Einspannstelle               | 684                                                 |                                                                      | _                                                                                              | 401 000                 | 618                                 | -                                      |

Versuch No. 2.

Um einwandfreiere Versuchsresultate zu erhalten, kam bei Versuch No. 2 die gleiche Anordnung wie bei dem eben beschriebenen zur Anwendung. Wie aus Beobachtung No. 2 ersichtlich ist, machte diese Neueichung das Instrument nicht wieder gebrauchsfähig. Der Bruch der Stange und die daherige plötzliche Entlastung des Zugmessers hatten die Zeigerübersetzung desselben wahrscheinlich gestört. Deshalb können obige Faktoren auch nicht zur Korrektion der in Versuch No. 1 beobachteten Angaben verwendet werden, wie auch aus dem nach der Eichkurve korrigierten E ersichtlich ist. Um eine längere Unterbrechung der Versuche zu verhüten,

stellten uns die Bernischen Kraftwerke eines ihrer Dynamometer bereitwilligst zur Verfügung. Dasselbe besitzt eine gleichmässige Teilung von 0 bis 4000 kg. Entlastet zeigt es zirka 60 kg an, was an den in der Tabelle angegebenen Werten bereits in Abzug gebracht worden ist. Die Versuchssituation und die verschiedenen Mass-




angaben sind der Fig. 6 zu entnehmen.

Aus den berechneten Werten der Tabelle III ist ersichtlich, dass dieselben mit den theoretischen Grössen ziemlich genau übereinstimmen. Dies wird aber nur erzielt, wenn die Querschnittsverjüngung nicht vernachlässigt wird. Die Richtigkeit der aus Versuch No. 1 abgeleiteten Formel für die Durchbiegungen bei stetiger Querschnittsveränderung wird dadurch bestätigt. In der graphischen Darstellung der Ver-

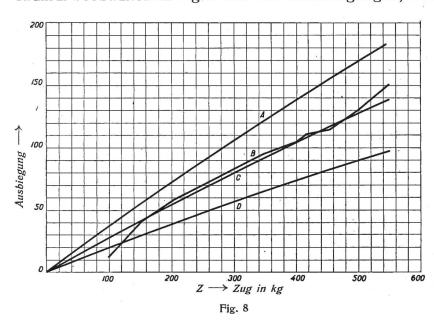
suchsergebnisse (Fig. 7) wird J durch eine horizontale Linie dargestellt, was dem konstanten Wert des Trägheitsmomentes eines Querschnittes entspricht. Die Ausbiegungen stellen sich als eine durch den Koordinaten-Nullpunkt gehende Gerade

dar, die im oberen Bereich eine geringe Abflachung aufweist, weil der Krafthebelarm infolge der Ausbiegungen veränderlich ist. Dasselbe ist von der Spannungs- und Momentlinie zu sagen. Das hat natürlich nur so lange seine Gültigkeit, als die Proporzionalitätsgrenze des Holzes nicht überschritten wird, was übrigens in den Kurven sehr schön zum Ausdruck kommt. Dem Einfluss der Flächenänderung auf die Durchbiegungen wurde im allgemeinen durch Ein-



J = Trägheitsmoment, cm<sup>4</sup>, E = Elastizitätsmodul, kg/cm<sup>2</sup>,  $M_b =$  Biegungsmoment, cmkg,

 $k_b = \text{Spannungen, kg/cm}^2$ ,


f = Ausbiegungen, cm, Z = Zug in kg, ----- Beginn des Fliessens.

setzen des mittleren Trägheitsmomentes in der Formel für konstanten Querschnitt Rechnung getragen.

Vergleichen wir die beiden Methoden miteinander, indem wir uns auf Beobachtung No. 14 stützen: Der mittlere Stangendurchmesser ist 15,75 cm, somit  $J_m = 3200 \text{ cm}^4$  und folglich  $f = \frac{400 \cdot 693^3}{3 \cdot 1,0 \cdot 10^5 \cdot 3200} = 138 \text{ cm}$ , also 34 cm oder 32,5%

| Beobachtungen |                                 |                 |                           |                           | Berechnungen    |                                                        |                                                                                                       |                                                                                         |                                                                                                          |                                                            |      |                                   |         |                                                      |                                 |
|---------------|---------------------------------|-----------------|---------------------------|---------------------------|-----------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|-----------------------------------|---------|------------------------------------------------------|---------------------------------|
| No.           | Zug<br>am Dy-<br>namo-<br>meter | Aus-<br>biegung | Bemer<br>ge               |                           | Stan-<br>genzug | Korrigierter Krafthebel- arm $b = \sqrt{c^2 - a^2}$ cm | moment $J_{t} = \frac{P/2 l^{3}}{3 E f} \left( \frac{D_{1}}{d_{1 l}} + \frac{D_{2}}{d_{2 l}} \right)$ | Vergrösserungsfaktor des Trägheitsmomentes einer einzelnen Stange $c = \frac{J_t}{J_m}$ | Abstand der neutralen Achse $x = \sqrt{\frac{2 J_{\rm t}}{\pi D_{\rm m}^2} - \frac{D_{\rm m}^2}{16}}$ cm | Abstand der äussersten Faserschicht $x + \frac{D_m}{2}$ cm |      | stands-<br>momentes<br>einer ein- | moment  | Spannung $k_{\rm b} = \frac{M}{W_{\rm t}}$ $kg/cm^2$ | Bemerkun-<br>gen                |
| 1             | 150                             | 4,5             | Entlaste<br>das Dy        | t zeigt                   | 100             | 700                                                    | 31 500                                                                                                | 6,7                                                                                     | 6,7                                                                                                      | 15,5                                                       | 2030 | 3,80                              | 70 000  | 34                                                   |                                 |
| 2             | 200                             | 17              | meter 10                  |                           | 200             | 700                                                    | 16 650                                                                                                | 3,5                                                                                     | 3,86                                                                                                     | 12,66                                                      | 1315 | 2,46                              | 140 000 | 106                                                  |                                 |
| 3             | 250                             | 26,8            |                           | *                         | 300             | 700                                                    | 15 700                                                                                                | 3,3                                                                                     | 3,59                                                                                                     | 12,39                                                      | 1270 | 2,37                              | 210 000 | 165                                                  |                                 |
| 4             | 300                             | 35              |                           |                           | 400             | 699                                                    | 16 100                                                                                                | 3,4                                                                                     | 3,72                                                                                                     | 12,52                                                      | 1285 | 2,4                               | 279 600 | 217                                                  | Proportionali-<br>tätsgrenze    |
| 5             | 350                             | 47              |                           |                           | 500             | 698                                                    | 14 850                                                                                                | 3,1                                                                                     | 3,34                                                                                                     | 12,14                                                      | 1220 | 2,18                              | 349 000 | 286                                                  | tatsgrenze                      |
| 6             | 400                             | 58,5            |                           | Verschie-                 | 600             | 698                                                    | 14 400                                                                                                | 3,06                                                                                    | 3,21                                                                                                     | 12,01                                                      | 1200 | 2,24                              | 419 000 | 349                                                  |                                 |
| 7             | 0                               | 1,5             | bung am<br>Kopiende<br>mm | bung am<br>Fussende<br>mm | 0               | 700                                                    | i - ,                                                                                                 | _                                                                                       |                                                                                                          | . –                                                        | _    | 7 a ==                            | -       | _                                                    | Entlastet                       |
| 8             | 400                             | 60,6            | 4,3                       | 15                        | 600             | 697                                                    | 13 850                                                                                                | 2,95                                                                                    | 3,03                                                                                                     | 11,83                                                      | 1170 | 2,19                              | 416 000 | 355                                                  |                                 |
| 9             | 450                             | 72,5            | 4,5                       | 17                        | 700             | 696                                                    | 13 550                                                                                                | 2,8                                                                                     | 2,83                                                                                                     | 11,63                                                      | 1165 | 2,18                              | 488 000 | 419                                                  | Diese Spannun<br>gen korrigiere |
| 0             | 500                             | 86,0            | 5,2                       | 20                        | 800             | 695                                                    | 12 900                                                                                                | 2,75                                                                                    | 2,68                                                                                                     | 11,48                                                      | 1125 | 2,1                               | 556 000 | 496                                                  | sich nach den<br>am Schlusse    |
| 1             | 550                             | 100,0           | 5,2                       | 25                        | 900             | 693                                                    | 12 400                                                                                                | 2,6                                                                                     | 2,49                                                                                                     | 11,29                                                      | 1100 | 2,05                              | 624 000 | 566                                                  | ermittelten<br>mittleren Ver    |
| 2             | 600                             | 119             | 5,2                       | 30                        | 1000            | 690                                                    | 11 400                                                                                                | 2,4                                                                                     | 2,02                                                                                                     | 10,82                                                      | 1050 | 1,96                              | 690 000 | 657                                                  | stärkungsfakto                  |
| 3             | 650                             | 133             | 5,6                       | 32                        | 1100            | 687                                                    | 11 100                                                                                                | 2,3                                                                                     | 1,87                                                                                                     | 10,67                                                      | 1040 | 1,94                              | 756 000 | 728                                                  |                                 |
| 4             | 675                             | 162             | V.K. V.F. 1<br>6,0 40     | lruekstange<br>gespalten  | 1150            | 681                                                    | 9 200                                                                                                 | 1,96                                                                                    | imag.                                                                                                    | -                                                          | _    | _                                 | 784 000 | _                                                    |                                 |
| 5             | 675                             | -               |                           | Bruch an<br>Einspannst.   | 1150            | 681                                                    | _                                                                                                     | ,                                                                                       | _                                                                                                        | _                                                          | _    | -                                 | 784 000 |                                                      |                                 |

mehr als in Wirklichkeit. Wäre nur der Durchmesser an der Einspannstelle berücksichtigt worden, so ergäbe sich f zu 73 cm oder 31 cm etwa 30% weniger als tatsächlich beobachtet. In Fig. 8 sind die Durchbiegungen, welche nach den drei Varianten



A= Berechnete Durchbiegungen mit dem mittleren Trägheitsmoment  $f=\frac{P\,l^3}{3EJ_{\text{Mittel}}}$  .

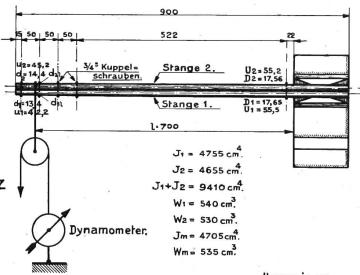
B = Beobachtete Ausbiegungen.

C= Berechnete Ausbiegungen mit Berücksichtigung der Querschnittverjüngung  $f=\frac{P\,l^3}{3\,E\,J_{\text{Fuss}}}\left(\frac{125\,d}{125\,d-l}\right)$ 

D= Berechnete Durchbiegungen mit dem Trägheitsmoment am Stangenfuss  $f=\frac{P\,l^3}{3\,E\,J_{\rm Fuss}}$ .

berechnet sind, graphisch dargestellt. Daraus geht hervor, dass die Ausbiegungen, nach der Formel für veränderlichen Querschnitt ermittelt, mit den tatsächlich beobachteten gut übereinstimmen, während die beiden andern Methoden Fehler von durchschnittlich  $\pm 30\%$  ergeben. Die Kenntnis der genauen Ausbiegungen spielt bei der Berechnung der einseitigen Züge in Linienrichtung eine grosse Rolle. Der übliche Wert von 480

kg/cm² Bruchbeanspruchung wird hier beträchtlich überschritten. Der bei 590 kg einseitigem Zuge erfolgte Bruch der Stange an der Einspannstelle lässt an dem Bruchquerschnitt die Zug- und Druckfasern deutlich erkennen.


Versuch No. 3.

Dieser wurde ausgeführt an einer Kuppel-

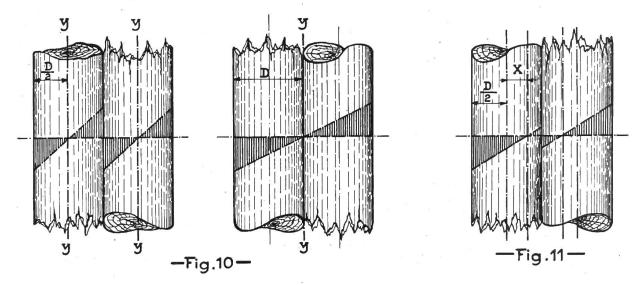
stange mit 5 Kuppelschrauben zu <sup>3</sup>/<sub>4</sub>" Durchmesser am Kopfende und einer sechsten, die 22 cm von der Einspannstelle entfernt war. Dimensionen und Situation sind in Fig. 9 eingetragen.

Das theoretische maximale Trägheitsmoment einer Kuppelstange beträgt  $10\frac{\pi D^4}{64}$  cm<sup>4</sup>, vorausgesetzt, dass die beiden Stangen den gleichen Durchmesser aufweisen. Das Minimum desselben ist  $2\frac{\pi D^4}{64}$  cm<sup>4</sup> und ist gleich der Summe der einzelnen Stangenträgheitsmomente.

In unserem Falle wird  $J_{tmin.} = 4755 + 4655 = 9410 \text{ cm}^4$  und das mittlere  $J_m = 4705 \text{ cm}^4$  für eine Stange. Wenn wir  $J_t$  aus den beobachteten Kräften und Ausbiegungen berechnen wollen, so ist die Querschnittsverjüngung



Masse in cm.


— Fig. 9 —

zu berücksichtigen. Für Stange 1 und 2 wird

$$J_{1} = \frac{P/2 \, l^{3}}{3 \, E \, f} \, \frac{D_{1}}{d_{1} l} \quad \text{und} \quad J_{2} = \frac{P/2 \, l^{3}}{3 \, E \, f} \, \frac{D_{2}}{d_{2} \, l}$$

$$J_{1} + J_{2} = J_{t} = \frac{P/2 \, l^{3}}{3 \, E \, f} \left[ \frac{D_{1}}{d_{1} \, l} + \frac{D_{2}}{d_{2} \, l} \right] = \frac{P/2 \, l^{3}}{3 \, E \, f} \, 2,48 \, .$$

Die entsprechenden Werte sind in der Tabelle eingetragen. Wir sehen, dass das Trägheitsmoment hier keine konstante Grösse darstellt, weil eben die Kupplung zu schwach ist und sich die beiden Stangen trotz der Einspannung gegeneinander verschieben. Von Beobachtung No. 10 an macht sich auch noch der Einfluss des



abnehmenden Elastizitätsmoduls geltend. Der Vergrösserungsfaktor des Trägheitsmomentes einer einzelnen Stange  $c=\frac{J_t}{J_m}$  variiert zwischen 6,7 und 1,96. Wenn die Zugkräfte zunehmen, wachsen auch die Schubkräfte in der Längsrichtung, und der obige Faktor c nimmt ab, weil die am Versuchsobjekt angeordneten Kuppel-



schrauben die Stangenverschiebungen gegeneinander nicht verhindern können. Gerade im Momente der stärkeren Belastungen wird nur eine etwas mehr als zweifache Vergrösserung des Trägheitsmomentes erreicht, d. h. das gleiche Resultat ergäbe sich auch für zwei nicht gekuppelte Stangen. Vergleichen wir die beiden Zugkräfte in Versuch 2 und 3, die den Bruch des Tragwerkes herbeiführen — die Dimensionen sind ungefähr gleich — so finden wir für die Kuppelstange wieder eine annähernd doppelte Bruchbelastung. Der Verstärkungsfaktor  $c_2$  ist  $\frac{1150}{590} = 1,95$ ; dabei ist zu berücksichtigen, dass der Durchmesser bei Kuppelstangen etwas kleiner ist als bei einfachen Stangen. Bei 1150 kg Zug bricht die Druckstange an der Einspannstelle.

Die Schraubenbolzen sind deformiert und derjenige in der Nähe des Bruchquerschnittes hat nebenstehende Form angenommen. Das Widerstandsmoment lässt sich aus  $J_t$  nicht ohne weiteres bestimmen, da wir die Lage der neutralen Achse nur für  $J_{min}$  und  $J_{max}$  kennen. Für diese extremen Fälle ergibt sich die Spannungsverteilung und die Lage der neutralen Faserschicht nach Fig. 10.

Für alle  $J_t$ , die zwischen diesen beiden Werten liegen, ist die Lage der neutralen Achse nach Fig. 11 zu bestimmen.

Es ist 
$$J = 2\left[\frac{\pi D_m^4}{64} + \frac{\pi D_m^2}{4}x^2\right] = \frac{\pi D_m^4}{32} + \frac{\pi D_m^2}{4}x^2$$
, woraus  $x = \sqrt{\frac{2J}{\pi D_m^2} - \frac{D_m^2}{16}}$ .

Der Abstand der äussersten Faserschicht von der neutralen Zone ist somit  $\frac{D_m}{2} + x$ , und das totale Widerstandsmoment ist dadurch bestimmt. Das mittlere W beträgt

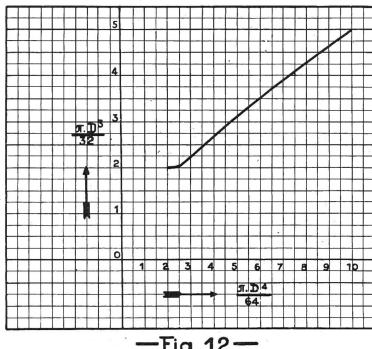



Fig.12

535 cm³ und der Vergrösserungsfaktor  $c_1 = \frac{W_t}{535}$ . Auch

hier zeigt sich keine wesentliche Verstärkung. Die berechneten Beanspruchungen der zwei bis drei letzten Beobachtungen sind grösser als in Wirklichkeit, weil infolge Ueberschreitens der Proportionalitätsgrenze J kleiner wird als die Rechnung angibt. Dies gilt natürlich sinngemäss auch für die andern Grössen. k<sub>b</sub> bestimmt sich nun

$$k_b = \frac{784\,000}{c_m \frac{1070}{2}} = \frac{1460}{c_m} \text{ kg/cm}^2.$$

Wir kommen auf die Berechnung des Faktors  $c_m$  am Schlusse der Untersuchung

Die Verhältniszahl der beiden Vergrösserungsfaktoren  $\frac{c}{c_1}$  ist in den Grenzen 2 bis 1 veränderlich, wie aus Tabelle IV ersichtlich ist. Man kann daher bei Kenntnis des einen Faktors nicht ohne weiteres auf den andern schliessen; dieser wäre vielmehr zuerst zu ermitteln. Um das zu vermeiden, haben wir die Koeffizienten von Trägheitsmoment und Widerstandsmoment bei verschiedenen, in Funktion vom Stangendurchmesser ausgedrückten Abständen der neutralen Achse berechnet. Die Werte sind unten eingetragen und in Fig. 12 graphisch dargestellt. Daraus können die zusammengehörenden Faktoren ohne weiteres bestimmt werden.

Taballa V

| No. | Abstand der neutralen Achse $X = f(D)$ | Trägheitsmoment $J = 2 \left( \frac{\pi D^4}{64} + \frac{\pi D^2}{4} x^2 \right)$ $= C \frac{\pi D^4}{64}$ | Widerstandsmoment $W = \frac{J}{\frac{D}{2} + x} = C_1 \frac{\pi D^3}{32}$ | Verhältniszahl  c  c  c  1 | Bemerkungen |
|-----|----------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|-------------|
| 1   | D/2                                    | $10  \frac{\pi D^4}{64}$                                                                                   | $5  \frac{\pi D^3}{32}$                                                    | 2                          | max.Werte   |
| 2   | D/3                                    | 5,56 "                                                                                                     | 3,33 "                                                                     | 1,67                       |             |
| 3   | D/4                                    | 4 "                                                                                                        | 2,67 "                                                                     | 1,50                       | - St. F., - |
| 4   | D/5                                    | 3,28 "                                                                                                     | 2,34 "                                                                     | 1,40                       |             |
| 5   | D/6                                    | 2,89 "                                                                                                     | 2,17 "                                                                     | 1,33                       |             |
| 6   | D/7                                    | 2,65 "                                                                                                     | 2,06 "                                                                     | 1,28                       |             |
| 7   | D/8                                    | 2,5 "                                                                                                      | 2,01 "                                                                     | 1,25                       |             |
| 8   | 0                                      | 2 "                                                                                                        | 2 "                                                                        | 1,0                        | min. Werte  |
| i i | · ·                                    |                                                                                                            |                                                                            | Fortsetzi                  | ing folgt.  |