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Die Koeffizienten A und B konnen aus den Endtemperaturen im Beharrungs-
zustand berechnet werden, und zwar ist A dann die Wandtemperatur fiir x =0,

und B = _leh
s

A= D=0, 2

1 1 1 s

('9 — 0)

—=—"4——4 - =0,6, also k= 1,67, und damit 4 = 131°C.
kR a a A
Dy =0y — (9, — 5,) = 353 °C
1
und damit B=31_"181 _ 45
0,2
i o_P—A 20131 _ 111
~ 9, 20 20
Der Temperaturverlauf nach 8 Stunden ist dann:
h—g= 131 + 1110 x —%Z’Ck(cosnk ) —n; a8
i
fir x=0=84°C fir x=s5, 9=280,5°C fiirx=%, 9 =142°C

Der stationare Zustand ist praktisch erreicht, wenn ng at > 7 fiir den kleinsten Wert

. 7
von ny ist, also nach 0126

= 54,5 Stunden.

Auch die Abkiihlung der Platte lasst sich mit den gleichen Formeln unter-
suchen, wobei aber nicht {ibersehen werden darf, dass bei Speicherdfen meist nur
die Warmeabgabe an der Seite der niedrigen Oberflachentemperaturen als Nutzwarme

fiir die Raumheizung zu betrachten ist.

Analytische Behandlung der eindimensionalen Warmestromung

in einer homogenen Platte.
Vom Generalsekretariat des S.E.V. und V. S. E. (Ingenieur H. F. Zangger).

Im Anschluss an vorstehende Arbeit werden
Gleichungen abgeleitet, die den Temperaturver-
lauf in Funktion des Ortes und der Zeit angeben
bei eindimensionaler Wirmestrémung in einer
homogenen Platte und Erwdrmung derselben
mit konstanter Leistung, wie auch bei Abkiihlung
von beliebigem Erwdrmungszustande aus nach
abgestellter Heizung.

Der Temperaturverlauf wird ausserdem fiir
drei Beispiele errechnet und graphisch dargestellf.

Parallélement avec le travail présenté par
M. ten Bosch, M. Zangger, développe dans l'article
suivant les équations quidonnent, pour une plaque
homogéne, la variation de la temperature d’'un
endroit & Pautre, et dans le méme point d’un ins-
tant ¢ l'antre, lorsque cette plaque est chauffée
par une source de puissance constante et aussi
pendant la période de refroidissement lorsque
la source de chaleur vient a étre supprimée a
uninstant quelconque,

La wvariation de la température est en plus
illustrée par trois exemples.

Das Generalsekretariat des S. E.V. und V. S. E. hat sich in den Jahren 1918
und 1919 eingehend mit der Frage der Warmespeicherung befasst und hat unter
anderem auch den zeitlichen und ortlichen Temperaturverlauf bei eindimensionaler
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Warmestromung in der Platte und zwar ebenfalls unter Anwendung der erstmals
von Fourier angegebenen Rechnungsmethoden untersucht. Wir sind dabei zu ganz
ahnlichen Ergebnissen gelangt und lassen einige charakteristische Beispiele folgen,
wobei zur Ergénzung der Arbeit von Herrn ten Bosch solche Falle behandelt
werden, bei denen die Heizung der Platte nicht durch eine Warmequelle mit kon-
stanter Temperatur, sondern durch eine Quelle mit konstanter Heizleistung erfolgt.
Diese Beispiele entsprechen also dem Fall der elektrischen Heizung der Platte.

1. Berechnung der Temperaturverteilung wdhrend der Erwdrmung der Platte mit
konstanter Leistung.

Wenn wir zwei gleich grosse homogene Platten von derselben Dicke s
betrachten, die an ihrer Beriihrungsflache ganz gleichmassig verteilt, einen elek-
trischen Heizwiderstand besitzen, so werden sich beide Platten zeitlich gleich und
ortlich symmetrisch in bezug auf das Heizelement erwarmen. Jede derselben nimmt
die Halfte der eingefiihrten Leistung auf und gibt sie in allmahlich steigendem
Masse an ihrer freiliegenden Oberflache an die Umgebung ab. Betrachten wir nun
im folgenden nur einen mittleren Ausschnitt einer der beiden Platten, so ist ersicht-
lich, dass in demselben der Warmestrom von der Wiarmequelle senkrecht in die
Platte eindringt, in derselben in parallelen Faden verlauft und auch senkrecht zur
Oberflache die Platte verlasst. Bei einer solchen Strémung sind die Isothermen zur
Plattenoberflache parallele Ebenen.

Die beschriebenen Platten besitzen zur Zeit f = 0
die Temperaturen 9, ihrer Umgebung. Von diesem
/ Zeitmoment an werden sie an ihren Flachen x =0
mit dem Ortlich und zeitlich konstanten, spezifischen
Heizeffekt p erwarmt. Zu bestimmen sei die Temperatur
jedes Punktes der Platte zu jeder beliebigen Zeit.

Der an der Eintrittsflache des Wiarmestromes
x = 0 ortlich und zeitlich konstante Heizeffekt p kann
nach der Definitionsgleichung der Wiarmeleitzahl 2 fol-

_
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folgendermassen geschrieben werden: p=— 4 ——
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=konstant (in unserem speziellen Falle).
Da 4 als Konstante angenommen wird, ist auch

)
in unserem Falle gx = — % = konstant, d. h. alle
Tangenten an die Kurven der Temperatur in Funktion
des Ortes haben bei Heizung mit konstanter Leistung

an der Warmeeintrittsstelle zu jeder Zeit gegeniiber der Richtung des Warme-
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stromes die konstante Neigung tg f = —2%
Wie aus Gleichung (6) des vorstehenden Aufsatzes ersichtlich isf, lasst sich

jede beliebige Temperaturverteilung in Funktion des Ortes und der Zeit durch den
Ausdrudk

= A+BX+k§:[Ck cos (i x) + Dy sin (n x)] e—27k! (1)

darstellen. Differenzieren wir diese Gleichung partiell nach dem Ort und setzen
wir x = 0, so ist dieser Ausdruck nach dem oben Gesagten gleich — g, und konstant
wahrend der ganzen Heizperiode; es ist also

0 i o
—ﬂ-— =B+ 2n.Dee 2%t = —-E:konstant.
aX X=0 k=1 /7»



204 _ BULLETIN No. 4 XIV. Jahrgang 1923

Diese Summe kann aber nur fiir alle Zeiten konstant sein, wenn das Summen-
glied null wird. Das ftrifft ein

1. wenn n, = 0 ist, oder 2. wenn D, = 0 ist.

Die erste Bedingung liefert uns fiir ¥, wie man sich durch Einsetzen in Glei-
chung (1) leicht iiberzeugen kann, den Fall, dass die Platte gar nicht geheizt wird
und daher fiir dauernd auf ihrer Ausgangstemperatur ¥, bleibt. Die zweite Bedin-
gung in Gleichung (1) eingesetzt ergibt fiir ¥ folgende Gleichung:

1‘)=A+Bx+k2_.‘j"]Ck cos (n, x) e 27! (2)

Zur Bestimmung der Konstanten A setzen wir t =co und x =0 und erhalten
fiir ¥ die maximale Temperatur der Warmeeintrittsebene
0t=oo, X=0 — A = ﬁimax

Die Konstante B erhalten wir, wenn wir in Gleichung (2) t =co und x ==
setzen, wobei ¢ gleich der maximalen Oberflichentemperatur 9, ... der Platte wird.

ﬁt:oo, xX=8 — 191' max+ BS = 193. max

(191' max 19& max)
S

B

Zur Bestimmung der Werte ;. und 9, .. dient uns die Definitionsgleichung
fiir die Konstante der Warmeleitung 4 und die Kontinuitatsbedingung fiir die Flache
x = s, welche aussagt, dass die in der Grenzebene x = s ankommende Warme-
menge an die Umgebung weitergegeben wird. Nehmen wir hierfiir den einfachen
Newtonschen Ansatz an,

_ (%)ms Ft = a (9.—0,) Ft (3)

wobei a die Wiarmeiibergangszahl bedeutet, so erhalten wir nach einigen Umfor-
mungen fiir die Konstanten A und B ‘

— L —__ P
A=Y, + PR B= -~
Gleichung (2) schreibt sich nun
9=, L+ Ps_ Pyt ¥ cos(nx)e2mt , (4)
a A A fe=t

Zur Bestimmung der Konstanten n. dienen uns die Kontinuitatsbedingungen
fiir die Fliche x = s, Gleichung (3) und Gleichung (4) auf dieselbe Flache ange-
wandt. Wir erhalten so nach einigen Umformungen und fiir den Zeitmoment
t = 0 als Bedingungsgleichung fiir n,

kz;”k C. sin (. s) = %kZICk cos (n s) (fiir =0 und x=s)

Diese Gleichung wird erfiillt, wenn die einzelnen-Glieder der Summen ein-
ander gleich sind, d. h. wenn )
A .
= clg (i 8) (5)

ist; eine Gleichung, die am besten, wie im vorstehenden Aufsatz gezeigt, graphisch
gelost wird. Man erhalt so durch den Schnitt der Kurve y= ctg (ms) mit der
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A ' ; : : ;
Geraden y = - die unendlich vielen Werte von n, mit denen die Summen-

glieder der Furierschen Reihen aufgebaut werden.

Die Konstanten A, endlich erhalten wir aus der Bedingung, dass zur Zeit
t = 0 die Temperatur in der ganzen Platte gleich ¥, sein muss. Diese Bedingung
liefert unendlich viele Gleichungen mit ebenso vielen Unbekannten. Praktisch wird
meistens die Beriicksichtigung der drei oder vier ersten Glieder geniigen.

2. Berechnung der Temperaturverteilung wdhrend der Abkiihlung der Platte vom
stationdren Zustande aus.

Wir stellen uns nun die Aufgabe, die Ortliche und zeitliche Temperaturver-
teilung in derselben Platte nach Erwarmung bis zum stationaren Zustande und Auf-
horen der Heizung bis zu ihrer vollstaindigen Abkiihlung auf die Umgebungstem-
paratur ¥, zu untersuchen. In diesem Falle ist fiir die Flache s =0

a9 .
pxzoz;lg;:O fiir alle .

' 29
Da / eine Konstante ist, ist auch 75 = 0, d. h. alle Tangenten an die Kurven

der Temperatur in Funktion des Ortes haben im' betrachteten Falle an der Flache
x = 0 die Richtung des Warmestromes.

Wenn wir nun analog wie vorhin vorgehen, so kénnen wir feststellen, dass
die Konstante B fiir die Abkiihlung der Platte gleich null sein muss und dass die
Konstante A = ¥, ist. Die Gleichung der Temperaturverteilung wahrend der Abkiih-
lung der Platte lautet also:

U = '190 + RE]CK cOS (nk X) e_" nﬁt (6)

Wir kénnen ferner auch feststellen, dass die Konstanten ny fiir die Abkiih-
lung der Platte dieselben sind, wie fiir die Erwarmung derselben.

Die Konstanten C. endlich erhalten wir aus der Bedingung, dass zur Zeit
t = 0 die Temperaturverteilung gleich denjenigen nach vollendeter Aufladung, also
gleich

Brmo=ty+I+Ls— L x (7)

ist. Die Durchfiihrung dieser Rechnung liefert, wie man sich leicht {iberzeugen
kann, fiir die Abkiihlung der Platte vom stationaren Zustande aus, dieselben Zahlen-
werte fiir die Konstanten C, wie fiir die Heizung der Platte; nur besitzen dieselben
das entgegengesetzte Vorzeichen.

3. Berechnung der Temperaturverteilung wdhrend der Abkiihlung der Platte von
einem beliebigen Erwdrmungszustande aus.

Wird endlich dieselbe homogene Platte nach Erwarmung mit konstanter Lei-
stung wahrend einer endlichen Zeit (also vor Erreichung des stationiren Zustandes)
nach Abschalten der Leistung sich selbst iiberlassen, so kann die Temperatur-
verteilung an jedem Orte, zu jeder Zeit in ganz analoger Weise bestimmt werden,
wie wir dies fiir den Fall der Abkiihlung vom stationaren Zustande aus, gezeigt
haben. Auch hier lasst sich der Temperaturverlauf durch die Gleichung (6) dar-
stellen. '

Durch sinngemasses Anwenden der ,,Randbedingungen® konnen wir feststellen,
dass die Integrationskonstanten n, auch hier dieselben sind, wie in den beiden
bereits besprochenen Fallen; dagegen erhalten wir in diesem Falle, entsprechend
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der andern Ausgangstemperaturverteilung, andere Werte fiir die Konstanten C,.
Die Berechnung dieser Konstanten muss also fiir jedes Beispiel gesondert durch-
gefithrt werden.

4, Zahlenbeispiele.
Wir untersuchen nun die Temperaturverteilung in einer 1 dm dicken Speck-

steinplatte wahrend der Heizung mit der spezifischen Leistung p = 17,4 %, aus-

gehend von der konstanten Umgebungstemperatur 9, = 10° C.
Der Rechnung legen wir folgende Zahlen zugrunde:

kg s w

Spezifisches Gewicht y=29 e Spez. Heizleistung p= 17’4W
- " W h . . w
Spezifische Wirme ¢ =029 ——= kg °C Warmeiibergangszahl « =0, 134 dm? °C
" R Wdm . 0
Warmeleitfahigkeit K= 029d T0G Umgebungstemperatur i, = 10° C
2
Warmeleitungskoeffizient a = L_ dm”
yc h

Bei Anwendung der vorstehend abgeleiteten Gleichungen muss man sich auf
die Beriicksichtigung einer endlichen Anzahl Glieder der unendlichen Reihen
beschranken. Wir werden im folgenden noch die durch diese Vernachlassigung
entstehenden Fehler untersuchen und erhalten bei Beriicksichtigung der drei ersten
Glieder der Fourierschen Reihen folgende Beziehung fiir die Temperatur

9 =200 — 60 x — 173 cos (0-633 x) e=°"135¢ — 135 cos (3-28 x) e—3"7'¢
—3,5¢c05(6-35 x) e -13-%¢ (8)

Diese Gleichung ist graphisch in Fig. 2 dargestellt.

Da wir nur drei Glieder der Furierschen Reihe beriicksichtigen, konnen wir
bei der Bestimmung der Konstanten €. auch nur die Uebereinstimmung des durch
die Formel dargestellten Temperaturverlaufes mit der Ausgangstemperatur v, in
drei Punkten fordern. Wir haben dies fiir die Gleichung (8) fiir die Punkte x = 0,
x =0,5s und x = s getan. In den iibrigen Punkten besteht also zur Zeit t =0
noch ein Unterschied zwischen unserer Annahme (die in Fig. 2 durch die gestri-
chelte Gerade a dargestellt ist) und der Formel (welcher die ausgezogene Kurve b
entspricht). Fiir spatere Zeitmomente besteht prinzipiell derselbe Unterschied immer
noch, praktisch verschwindet aber bis auf 1°? C maximaler Amplitude das dritte
Ghed der Fourierschen Reihe schon nach fiinf Minuten 25 Sekunden, das zweite
nach 42 Minuten und das erste nach 37 Stunden 10 Minuten, d. h. also die Berfick-
sichtigung der drei ersten Glieder der Furierschen Reihe geniigt in unserem Falle
praktisch vollkommen, wenn man nicht die Vorgédnge wéihrend der ersten Minuten
der Ladung genauer untersuchen will. Ist dies der Fall, so kann die Genauigkeit
durch Beriicksichtigung weiterer Glieder beliebig gesteigert werden. In unserem
Falle ist also nach 37 Stunden und 10 Minuten bis auf 1° C der stationare Zustand
erreicht.

Wir ersehen aus Fig. 2 ferner, wie bereits eingangs bemerkt, dass fiir die
Eintrittsebene x = 0 der Warme die Tangenten an die Temperaturkurven in Funk-
tion des Ortes entsprechend der in dieser Ebene konstanten durchtretenden Lei-
stung alle parallel verlaufen. Wir sehen auch, wie in weiter innen liegenden Teilen
diese Kurventangenten entsprechend der mit der Zeit wachsenden durchtretenden
Leistung immer steiler werden, um schliesslich im stationaren Zustande sich asymp-
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totisch der vom Ort und von der Zeit unabhangigen Neigung der Tangente an die
Kurven der Eintrittsebene x = 0 zu nahern, die durch die Gerade zur Zeit ft = o0
dargestellt ist.

) ' Jo¢
200 200
I N \\\\6\
180 \\Efw _ CACARN Y
B ? 160 R
160 K NS 3 R
\\ A ] \k\ | & .:&1\\ \‘\\
140 \\QQEZ‘D{‘ \§ 140 - N
S NI el
120 N \\SQQ\\\ 120 S B
\\\\ }a\ \Q\ \\ b T~
100 |_ N DR TSN TN 100 T ~
- \%4\ \\ ~L T~ <M ~
80 gy ~ & = -
L ] ~ f=7p Mt
60 [N e T 60 ~ T
\f\‘é’ — f::m e
- « \\\ 0 — e N B gy
[~ I — ' il
20 —— — 20 T
@ ._i 11 |t=oprads)
0 Fon Fo X, 0 T By X
02 04 06 08 Lo 02 04 06 08 Lo
S om S5dm
Fig. 2 Fig. 3
Temperaturverlauf bei Erwidrmung einer homogenen Platte Temperaturverlauf bei Abkiihlung einer homogenen Platte
mit konstanter Leistung bis zum stationdren Zustande. vom stationdren Zustandpeer:rusr. auf die Umgebungstem-

Schalten wir die elektrische Heizung nach Erreichung des stationaren Zustandes
ab, so lautet die Gleichung fiir die Temperaturverteilung in der Platte wahrend der
Abkiihlung

9 =10+ 173 cos (0-633 x) e~ 01385t - 135 cos (3-28 x) e—3' !¢
-+ 3,5cos (6-35 x) e—13-9¢ 9)

Dieser Temperaturverlauf ist aus Fig. 3 ersichtlich. Auch hier gilt mit Bezug auf
den ersten Zeitmoment der Abkiihlung das oben Gesagte, und auch hier kénnen
wir anhand der Neigung der Kurventangenten auf die an jedem Orte zu jeder Zeit
durchtretende Leistung schliessen.

Um noch die Verhaltnisse bei schlechter warmeleitendem Material und Abkiih-
lung vor Erreichung des stationaren Zustandes zu untersuchen, betrachten wir fol-
gendes Beispiel:

Eine Betonplatte von 1 dm Dicke werde wahrend 1Y, Stunden mit der spe-

zifischen Leistung p = 34,8(1—‘:7‘2—2 geheizt. Darauf werde die Stromzufuhr unterbro-
chen, die Platte kiihle sich auf die konstante Umgebungstemperatur 9, ab. Wir
legen dabei der Rechnung folgende Zahlen zugrunde:
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. . kg § 4 . W
Spezifisches Gewmht y = 1,85 dm® Spez. Heizleistung p=34,9 dm?

- . Wh ) . \\4
Spezifische Warme ¢ = 0,35 g°C Wiarmeiibergangszahl a = 0, 116 dm29C

) T S W dm 9 .
Warmeleitfahigkeit = 0,081 —5 5~ dmZ °C Umgebungstemperatur 9, = 10° C.
/1 2
Warmeleitzahl a=—= 0,126 o
oy h

Wir erhalten fiir die Heizung der Platte, wenn die Uebereinstimmung der
Gleichung fiir die Temperatur mit der Ausgangstemperatur in den vier Punkten
x=0, x=0,2s, x=0,6s und x =s gefordert wird, folgende Beziehung:

9 ="738-6— 428-6 x — 612-6 cos (0-975 x) 0120t — 57.9 cos (353 x) ¢~1-572!
—45.5cos (6+49 x) e=5' 3% — 12. 6 cos (9-57 x) e~'1"34t  (10)

Der Temperaturverlauf nach 1!/, Stunden ist durch

Jo die gestrichelte Kurve a der Fig. 4 dargestellt. Wir
220 ersehen aus seiner Kriimmung, dass der stationére
\ Zustand noch lange nicht erreicht ist; in der Tat
200 |\ betragt die maximale Temperatur der Heizflache
W\zdo V; max, Wie aus Gleichung (10) fiir x =0 und f = co
\\ ersichtlich, 738,6° C und die maximale Temperatur
i8g ah\ der warmeabgebenden Oberfliche ¥, no. (fiir x =5
\ und t=o0) 310° C, wahrend nach 1!/, Stunden
/60 -1 die erstgenannte Temperatur erst 221,4° C, die
f'{“ letztgenannte 28,0° C betragt.
140 |\ Der Temperaturverlauf wahrend der Abkiih-
- o Y lung ist, wiederum Uebereinstimmung der Gleichung
120 =S \N\ fiir die Temperatur mit der nach 1!/, Stunden
. \| Helzung erreichten Temperaturverteilung (Kurve a
0o [~ N in Fig. 4) fiir die Punkte x=0,.x=0,2s, x=0,6s
- ) und x = s vorausgesetzt, durch folgende Formel
80 ""‘\i N gegeben:
44 ARRY 9 . ) —0.120¢
- \\:\\\‘:\ ) =10+-95-6 cos (0-975 X) el'sm
" B SN ~+53-0cos (3-53 x) e
%0 e W] = ~+38-8 cos (6-49 x) g% 0!
L [EE = + 240 cos (9,57 x) =154 (11)
L — Ein Vergleich dieser Formel mit Formel (10)
0 Al X zeigt, wie bereits frither bemerkt, dass die Kon-
02 04 06 08 /P stanten n, in beiden Fallen dieselben sind, die
S dm Konstanten A, B und [C. vergl. Gleichung (12)]
Fig. 4 dagegen verschieden.
sempesea, bl Abuinang, e hone: Der Temperaturverlauf wahrend der Abkih-

standes auf die Umgebungstemperaturen.  Jung ist aus den Fig. 4 und 5 ersichtlich. Beide
zeigen, dass die Temperatur der innern Platten-

schichten bis etwa zu x = 0,35 s vom Moment der Ausschaltung der Leistung an fallt
und zwar, wie auch zu erwarten ist um so rascher, je naher die Ebene der friiheren
Warmeeintrittsebene x = 0 liegt. In den weiter aussen liegenden Ebenen der Platte
dagegen bleibt die Temperatur zunéchst trotz Ausschaltung konstant, oder steigt
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sogar und zwar um so mehr, je niher die betrachtete Ebene der Warmeabgabe-
stelle liegt, um nach einiger Zeit abzufallen und sich asymptotisch der Umgebungs-
temperatur ¥, zu nahern.

Die anfanglich trotz Beriicksichtigung von vier Gliedern der Fourierschen Reihe
recht grossen Abweichungen der Temperaturkurve in Funktion des Ortes (Kurve b
Bop von Fig. 4) von der ge-
220 gebenen Ausgangstem-

peraturverteilung (Kurve

1 . . .
e T a in Fig. 4) verschwin-
/80 den, wie die Rechnung
160 ‘\x_o zeigt, sehr rasch. So ist
I1¥ : bis auf 1° C maximale
1oAY Amplitude das vierte
r20 1] \{\/- Glied nach 16 Minuten
- \ 30 Sekunden, das dritte
i Glied nach 41 Minuten
&0 I 25 Sekunden, das zweite
60 11/ bangs Glied nach zwei Stunden
%0 ,’ Vi ~ : 32 Minuten und das erste
11/ w05y —— ] | Glied, und damit der
2011/}, % | —  unstationare Vorgang, in
0 : 38 Stunden 10 Minuten

/0 / 2 3 4 5 6 7 & 9 0 N 2 13 /4 /5 /6

verschwunden.

Wir bemerken zum
Schlusse noch, dass alle
diese Rechnungen auf
der Annahme beruhen,
dass sowohl das spezifische Gewicht, die spezifische Warme, wie auch die Warme-
leitfahigkeit von der Temperatur unabhangige Grossen sind. Diese Annahme ftrifft
fiir kleinere Temperaturintervalle annahernd zu. Die Vernachlassigung der Variationen
dieser Grossen kann aber fiir solche, mehr qualitative als quantitative Untersuchungen
im Interesse der Vereinfachung der Rechnung wohl gerechtfertigt werden. Dasselbe
ist zu sagen von der Annahme, dass die Warmeiibertragung an die Umgebung direkt
proportional der Temperaturdifferenz zwischen der Oberflache des Versuchskorpers
und derjenigen der Umgebung ist. Die Rechnung ist wohl noch mit einer den tat-
sachlichen Verhaltnissen besser Rechnung tragenden Annahme mdglich. Die dadurch
erreichte grossere Genauigkeit steht aber, wenigstens fiir Temperaturdifferenzen bis
in die Gegend von 100+ 200° C, in gar keinem zu verantwortenden Verhaltnis zum
grosseren Rechnungsaufwande.
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Fig. 5

Temperaturverlauf bei Ermirmung einer homogenen Platte und Abkiihlung derselben
auf die Umgebungstemperaturen vor Erreichung des stationdren Zustandes.

Zur Ausbildung von Elektrotechnikern in der Schweiz.
Von C. Hoenig, Baden.

Der Autor kniipft an die beiden Aufsditze iiber
dasselbe Thema im Bulletin No. 2 dieses Jahres
an und weist hauptsdchlich auf die Unzweck-
mdssigkeit einer Regelung durch Anpassung der
Lehrprogramme der Schweiz an die jeweiligen
momentanen Bediirfnisse der Industrie hin. Auch
er tritt der Tendenz der Héherlegung der Lehr-
programme wvon Gewerbeschulen und Techniken
entgegen.

L’auteur, complétant les deux articles parus
au bulletin No. 2 de cette annéde, démontre qu’il
est impossible et qu’il serait du reste absurde
de vouloir adapter chaque annde le programme
des écoles techniques aux besoins momentanés
de lindustrie.

Il s’oppose de son coté a la tendance de vou-
loir dlever le niveau des ¢tudes des écoles in-
dustrielles et technicums.

Im Bulletin No. 2 vom Februar dieses Jahres behandelt Herr Eugen Weber
die Frage einer zweckmaissigen Berufswahl durch junge Leute, den zu wéhlenden
Ausbildungsgang und die Aussichten der Absolventen technischer Schulen fiir eine
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