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Die Koeffizienten A und B können aus den Endtemperaturen im Beharrungszustand

berechnet werden, und zwar ist A dann die Wandtemperatur für w 0,

und B
dwt ~ l)wi

s

A ^ ^+A(^ _#2)
°2

4- — + — + 4- 0,6, also k 1,67, und damit A 131 °C.
K 0^2

0^ »9, - — (Jj - 02) 353 0 C
ai

und damit 7? =1110

und
20-131 111

0. 20 20

Der Temperaturverlauf nach 8 Stunden ist dann:

0<=« 131 + 1110 w — S Ck(cos /îkjr+ i^ sin nk e_nkaS
20j V ink /

für x 0 84 0 C für x s <9 280,5°C für x y,
<9 142 0 C

Der stationäre Zustand ist praktisch erreicht, wenn nlat > 7 für den kleinsten Wert
7

von nk ist, also nach
^ jyr 54,5 Stunden.

Auch die Abkühlung der Platte lässt sich mit den gleichen Formeln
untersuchen, wobei aber nicht übersehen werden darf, dass bei Speicheröfen meist nur
die Wärmeabgabe an der Seite der niedrigen Oberflächentemperaturen als Nutzwärme
für die Raumheizung zu betrachten ist.

Analytische Behandlung der eindimensionalen Wärmeströmung
in einer homogenen Platte.

Vom Oeneralsekretariat des S. E. V. und V. S. E. (Ingenieur H. F. Zangger).

Im Anschluss an vorstehende Arbeit werden
Gleichungen abgeleitet, die den Temperaturverlauf

in Funktion des Ortes und der Zeit angeben
bei eindimensionaler Wärmeströmung in einer
homogenen Platte und Erwärmung derselben
mit konstanter Leistung, wie auch bei Abkühlung
von beliebigem Erwärmungszustande aus nach
abgestellter Heizung.

Der Temperaturverlauf wird ausserdem für
drei Beispiele errechnet und graphisch dargestellt.

Parallèlement avec le travail présenté par
M. ten Bosch, M. Zangger, développe dans l'article
suivant les équations qui donnent,pour une plaque
homogène, la variation de la température d'un
endroit à l'autre, et dans le même point d'un
instant à l'autre, lorsque cette plaque est chauffée
par une source de puissance constante et aussi
pendant la période de refroidissement lorsque
la source de chaleur vient à être supprimée à
uninstant quelconque.

La variation de la température est en plus
illustrée par trois exemples.

Das Generalsekretariat des S. E.V. und V. S. E. hat sich in den Jahren 1918
und 1919 eingehend mit der Frage der Wärmespeicherung befasst und hat unter
anderem auch den zeitlichen und örtlichen Temperaturverlauf bei eindimensionaler
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Wärmeströmung in der Platte und zwar ebenfalls unter Anwendung der erstmals
von Fourier angegebenen Rechnungsmethoden untersucht. Wir sind dabei zu ganz
ähnlichen Ergebnissen gelangt und lassen einige charakteristische Beispiele folgen,
wobei zur Ergänzung der Arbeit von Herrn ten Bosch solche Fälle behandelt
werden, bei denen die Heizung der Platte nicht durch eine Wärmequelle mit
konstanter Temperatur, sondern durch eine Quelle mit konstanter Heizleistung erfolgt.
Diese Beispiele entsprechen also dem Fall der elektrischen Heizung der Platte.

1. Berechnung der Temperaturverteilung während der Erwärmung der Platte mit
konstanter Leistung.

Wenn wir zwei gleich grosse homogene Platten von derselben Dicke s
betrachten, die an ihrer Berührungsfläche ganz gleichmässig verteilt, einen
elektrischen Heizwiderstand besitzen, so werden sich beide Platten zeitlich gleich und
örtlich symmetrisch in bezug auf das Heizelement erwärmen. Jede derselben nimmt
die Hälfte der eingeführten Leistung auf und gibt sie in allmählich steigendem
Masse an ihrer freiliegenden Oberfläche an die Umgebung ab. Betrachten wir nun
im folgenden nur einen mittleren Ausschnitt einer der beiden Platten, so ist ersichtlich,

dass in demselben der Wärmestrom von der Wärmequelle senkrecht in die
Platte eindringt, in derselben in parallelen Fäden verläuft und auch senkrecht zur
Oberfläche die Platte verlässt. Bei einer solchen Strömung sind die Isothermen zur
Plattenoberfläche parallele Ebenen.

Die beschriebenen Platten besitzen zur Zeit t 0
die Temperaturen i)0 ihrer Umgebung. Von diesem
Zeitmoment an werden sie an ihren Flächen x 0
mit dem örtlich und zeitlich konstanten, spezifischen
Heizeffekt p erwärmt. Zu bestimmen sei die Temperatur
jedes Punktes der Platte zu jeder beliebigen Zeit.

Der an der Eintrittsfläche des Wärmestromes
x 0 örtlich und zeitlich konstante Heizeffekt p kann
nach der Definitionsgleichung der Wärmeleitzahl À fol-

folgendermassen geschrieben werden: p — Â

=konstant (in unserem speziellen Falle).
Da x als Konstante angenommen wird, ist auch

3 ö
in unserem Falle —— —-?-= konstant, d. h. alle

d x X

Tangenten an die Kurven der Temperatur in Funktion
des Ortes haben bei Heizung mit konstanter Leistung

an der Wärmeeintrittsstelle zu jeder Zeit gegenüber der Richtung des Wärme-
d 0

Stromes die konstante Neigung tg ß —j-^
•

Wie aus Gleichung (6) des vorstehenden Aufsatzes ersichtlich ist, lässt sich
jede beliebige Temperaturverteilung in Funktion des Ortes und der Zeit durch den
Ausdruck

CO

Ö A -I- B x -+- 2* [Ck cos (nk x) + Dk sin (nk x)] e~a "l * (1)
k—1

darstellen. Differenzieren wir diese Gleichung partiell nach dem Ort und setzen

wir x 0, so ist dieser Ausdruck nach dem oben Gesagten gleich — und konstant
während der ganzen Heizperiode; es ist also

/ S 0\ 00 D

-3— B + E nkDk e~a"k ' — ~ konstant.
\o x Jx 0 k=i X

Fig. 1
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Diese Summe kann aber nur für alle Zeiten konstant sein, wenn das Summenglied

null wird. Das trifft ein
1. wenn nk 0 ist, oder 2. wenn Dk 0 ist.

Die erste Bedingung liefert uns für 9, wie man sich durch Einsetzen in
Gleichung (1) leicht überzeugen kann, den Fall, dass die Platte gar nicht geheizt wird
und daher für dauernd auf ihrer Ausgangstemperatur 90 bleibt. Die zweite Bedingung

in Gleichung (1) eingesetzt ergibt für 9 folgende Gleichung:
CO

9 A -h Bx + 27 Ck cos (nkx) e~anl1 (2)
k—1

Zur Bestimmung der Konstanten A setzen wir t oo und x 0 und erhalten
für -9 die maximale Temperatur der Wärmeeintrittsebene

9t=-t x=o A 9] max

Die Konstante B erhalten wir, wenn wir in Gleichung (2) t oo und x — s
setzen, wobei 9 gleich der maximalen Oberflächentemperatur 9amax der Platte wird.

9t=oo, x~s 91
max l B s 9a max

ß
9\ max 9a max)

5

Zur Bestimmung der Werte 9imax und 9amax dient uns die Definitionsgleichung
für die Konstante der Wärmeleitung À und die Kontinuitätsbedingung für die Fläche
x s, welche aussagt, dass die in der Grenzebene x s ankommende Wärmemenge

an die Umgebung weitergegeben wird. Nehmen wir hierfür den einfachen
Newtonschen Ansatz an,

~A(^)x sFt a{d!L~do)Ft (3)

wobei a die Wärmeübergangszahl bedeutet, so erhalten wir nach einigen
Umformungen für die Konstanten A und B

a *»+T + T s: ß=-T
Gleichung (2) schreibt sich nun

9 90 + s — -y- x+ I Ck cos (nk x) er3 "I ' (4)
k=1

Zur Bestimmung der Konstanten nk dienen uns die Kontinuitätsbedingungen
für die Fläche x s, Gleichung (3) und Gleichung (4) auf dieselbe Fläche
angewandt. Wir erhalten so nach einigen Umformungen und für den Zeitmoment
t 0 als Bedingungsgleichung für nk

co. (2 ooI tik Ck sin (nk s) -j- Z Ck cos (nk s) (für t 0 und x s)
k=t A k=l

Diese Gleichung wird erfüllt, wenn die einzelnen Glieder der Summen
einander gleich sind, d. h. wenn

— nk ctg (nk s) (5)

ist; eine Gleichung, die am besten, wie im vorstehenden Aufsatz gezeigt, graphisch
gelöst wird. Man erhält so durch den Schnitt der Kurve y ctg (nk s) mit der
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Geraden y — nk die unendlich vielen Werte von nk mit denen die Summen-
a

glieder der Furierschen Reihen aufgebaut werden.
Die Konstanten Am endlich erhalten wir aus der Bedingung, dass zur Zeit

t — 0 die Temperatur in der ganzen Platte gleich #0 sein muss. Diese Bedingung
liefert unendlich viele Gleichungen mit ebenso vielen Unbekannten. Praktisch wird
meistens die Berücksichtigung der drei oder vier ersten Glieder genügen.

2. Berechnung der Temperaturverteilung während der Abkühlung der Platte vom
stationären Zustande aus.

Wir stellen uns nun die Aufgabe, die örtliche und zeitliche Temperaturverteilung

in derselben Platte nach Erwärmung bis zum stationären Zustande und
Aufhören der Heizung bis zu ihrer vollständigen Abkühlung auf die Umgebungstem-
paratur ü0 zu untersuchen. In diesem Falle ist für die Fläche s 0

„dtf
px 0 —— 0 für alle t.

O X
8 d

Da A eine Konstante ist, ist auch -jy 0, d. h. alle Tangenten an die Kurven

der Temperatur in Funktion des Ortes haben im betrachteten Falle an der Fläche
x 0 die Richtung des Wärmestromes.

Wenn wir nun analog wie vorhin vorgehen, so können wir feststellen, dass
die Konstante B für die Abkühlung der Platte gleich null sein muss und dass die
Konstante A ä0 ist. Die Gleichung der Temperaturverteilung während der Abkühlung

der Platte lautet also:
CO

D iJ0 -f 2' Ck cos (nk x) e~a "I ' (6)
k=*f

Wir können ferner auch feststellen, dass die Konstanten nk für die Abkühlung

der Platte dieselben sind, wie für die Erwärmung derselben.
Die Konstanten Ck endlich erhalten wir aus der Bedingung, dass zur Zeit

t 0 die Temperaturverteilung gleich denjenigen nach vollendeter Aufladung, also
gleich

0t=o ß0 + + — ~^[x 0)

ist. Die Durchführung dieser Rechnung liefert, wie man sich leicht überzeugen
kann, für die Abkühlung der Platte vom stationären Zustande aus, dieselben Zahlenwerte

für die Konstanten Ck wie für die Heizung der Platte ; nur besitzen dieselben
das entgegengesetzte Vorzeichen.

3. Berechnung der Temperaturverteilung während der Abkühlung der Platte von
einem beliebigen Erwärmungszustande aus.

Wird endlich dieselbe homogene Platte nach Erwärmung mit konstanter
Leistung während einer endlichen Zeit (also vor Erreichung des stationären Zustandes)
nach Abschalten der Leistung sich selbst überlassen, so kann die Temperaturverteilung

an jedem Orte, zu jeder Zeit in ganz analoger Weise bestimmt werden,
wie wir dies für den Fall der Abkühlung vom stationären Zustande aus, gezeigt
haben. Auch hier lässt sich der Temperaturverlauf durch die Gleichung (6)
darstellen.

Durch sinngemässes Anwenden der „Randbedingungen" können wir feststellen,
dass die Integrationskonstanten nk auch hier dieselben sind, wie in den beiden
bereits besprochenen Fällen; dagegen erhalten wir in diesem Falle, entsprechend
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der andern Ausgangstemperaturverteilung, andere Werte für die Konstanten Ck.
Die Berechnung dieser Konstanten muss also für jedes Beispiel gesondert
durchgeführt werden.

4. Zahlenbeispiele.

Wir untersuchen nun die Temperaturverteilung in einer 1 dm dicken Speck-
W

Steinplatte während der Heizung mit der spezifischen Leistung p— 17,4 —i—y,
ausgehend von der konstanten Umgebungstemperatur &0 10° C.

Der Rechnung legen wir folgende Zahlen zugrunde :

kg W
Spezifisches Gewicht y — 2,9 -^3 Spez. Heizleistung p \l,A -^

Wh W
Spezifische Wärme c 0,29 ^ Wärmeübergangszahl a 0,134 ^m2

W dm
Wärmeleitfähigkeit u 0,29

^m2 0 Umgebungstemperatur t)0 10° C

dm2
Wärmeleitungskoeffizient a— —— 0-345—•

Bei Anwendung der vorstehend abgeleiteten Gleichungen muss man sich auf
die Berücksichtigung einer endlichen Anzahl Glieder der unendlichen Reihen
beschränken. Wir werden im folgenden noch die durch diese Vernachlässigung
entstehenden Fehler untersuchen und erhalten bei Berücksichtigung der drei ersten
Glieder der Fourierschen Reihen folgende Beziehung für die Temperatur

0 200 — 60 x — 173 cos (0 • 633 x) e~° '1385 < - 13,5 cos (3 • 28 x) e~z 7W

- 3,5 cos (6-35 at) e"13'9' (8)

Diese Gleichung ist graphisch in Fig. 2 dargestellt.

Da wir nur drei Glieder der Furierschen Reihe berücksichtigen, können wir
bei der Bestimmung der Konstanten Ck auch nur die Uebereinstimmung des durch
die Formel dargestellten Temperaturverlaufes mit der Ausgangstemperatur ö0 in
drei Punkten fordern. Wir haben dies für die Gleichung (8) für die Punkte x 0,
x — 0,5 s und x s getan. In den übrigen Punkten besteht also zur Zeit t 0
noch ein Unterschied zwischen unserer Annahme (die in Fig. 2 durch die gestrichelte

Gerade a dargestellt ist) und der Formel (welcher die ausgezogene Kurve b
entspricht). Für spätere Zeitmomente besteht prinzipiell derselbe Unterschied immer
noch, praktisch verschwindet aber bis auf 1°C maximaler Amplitude das dritte
Glied der Fourierschen Reihe schon nach fünf Minuten 25 Sekunden, das zweite
nach 42 Minuten und das erste nach 37 Stunden 10 Minuten, d. h. also die
Berücksichtigung der drei ersten Glieder der Furierschen Reihe genügt in unserem Falle
praktisch vollkommen, wenn man nicht die Vorgänge während der ersten Minuten
der Ladung genauer untersuchen will. Ist dies der Fall, so kann die Genauigkeit
durch Berücksichtigung weiterer Glieder beliebig gesteigert werden. In unserem
Falle ist also nach 37 Stunden und 10 Minuten bis auf 1°C der stationäre Zustand
erreicht.

Wir ersehen aus Fig. 2 ferner, wie bereits eingangs bemerkt, dass für die
Eintrittsebene x 0 der Wärme die Tangenten an die Temperaturkurven in Funktion

des Ortes entsprechend der in dieser Ebene konstanten durchtretenden
Leistung alle parallel verlaufen. Wir sehen auch, wie in weiter innen liegenden Teilen
diese Kurventangenten entsprechend der mit der Zeit wachsenden durchtretenden
Leistung immer steiler werden, um schliesslich im stationären Zustande sich asymp-



XIVe Année 1923 BULLETIN No. 4 207

totisch der vom Ort und von der Zeit unabhängigen Neigung der Tangente an die
Kurven der Eintrittsebene x 0 zu nähern, die durch die Gerade zur Zeit t oo
dargestellt ist.

Fig. 2 Fig. 3

Temperaturverlauf bei Erwärmung einer homogenen Platte Temperaturverlauf bei Abkühlung einer homogenen Platte
mit konstanter Leistung bis zum stationären Zustande. vom stationären Zustande aus auf die Umgebungstem-

peratur.

Schalten wir die elektrische Heizung nach Erreichung des stationären Zustandes
ab, so lautet die Gleichung für die Temperaturverteilung in der Platte während der
Abkühlung

0 10 + 173 cos (0 • 633 *) <r0 '1385 ' + 13,5 cos (3 • 28 x) e~3 •71 <

+ 3,5 cos (6 • 35 w) e-13 '9 ' (9)

Dieser Temperaturverlauf ist aus Fig. 3 ersichtlich. Auch hier gilt mit Bezug auf
den ersten Zeitmoment der Abkühlung das oben Gesagte, und auch hier können
wir anhand der Neigung der Kurventangenten auf die an jedem Orte zu jeder Zeit
durchtretende Leistung schliessen.

Um noch die Verhältnisse bei schlechter wärmeleitendem Material und Abkühlung

vor Erreichung des stationären Zustandes zu untersuchen, betrachten wir
folgendes Beispiel:

Eine Betonplatte von 1 dm Dicke werde während 1V2 Stunden mit der spe-
W

zifischen Leistung p 34,8 geheizt. Darauf werde die Stromzufuhr unterbrochen,

die Platte kühle sich auf die konstante Umgebungstemperatur #0 ab- Wir
legen dabei der Rechnung folgende Zahlen zugrunde:
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kg
Spezifisches Gewicht y 1,85 ^3-

Spezifische Wärme

Wärmeleitfähigkeit

Wärmeleitzahl

c 0,35

À 0,081

Wh
kg °C

W dm
dm2 °C

Spez. Heizleistung p 34,9

Wärmeübergangszahl a =0,116

W
dm2

W
dm20C

Umgebungstemperatur &0 10° C

X dm2
a — 0,126 —7—

yc h

Wir erhalten für die Heizung der Platte, wenn die Uebereinstimmung der
Gleichung für die Temperatur mit der Ausgangstemperatur in den vier Punkten
x — 0, x 0,2 s, x 0,6 s und x s gefordert wird, folgende Beziehung :

d 738 • 6 - 428 6 x - 612 • 6 cos (0 • 975 x) e~° 120 ' - 57 • 9 cos (3 - 53 x) e~x 572 '

-45-5 cos (6 • 49 x) e~5'30t — 12 • 6 cos (9 • 57 x) e~u '54< (10)

Der Temperaturverlauf nach IV2 Stunden ist durch
die gestrichelte Kurve a der Fig. 4 dargestellt. Wir
ersehen aus seiner Krümmung, dass der stationäre
Zustand noch lange nicht erreicht ist; in der Tat
beträgt die maximale Temperatur der Heizfläche
0imax, wie aus Gleichung (10) für x 0 und t 00
ersichtlich, 738,6° C und die maximale Temperatur
der wärmeabgebenden Oberfläche damax (für x s
und t 00) 310° C, während nach 11/2 Stunden
die erstgenannte Temperatur erst 221,4° C, die
letztgenannte 28,0° C beträgt.

Der Temperaturverlauf während der Abkühlung

ist, wiederum Uebereinstimmung der Gleichung
für die Temperatur mit der nach 1V2 Stunden
Heizung erreichten Temperaturverteilung (Kurve a
in Fig. 4) für die Punkte x — 0,.x — 0,2 s, x 0,6 s
und x s vorausgesetzt, durch folgende Formel
gegeben :

d 10 + 95 • 6 cos (0 975 x) e~° 120 <

+ 53 0 cos (3 • 53 x) e~' •572 '

-38-8 cos (6 • 49 x) e

24-0 cos (9,57 x) e

,-5 • 30 t

-11 -54<

Temperaturverlauf bei Abkühlung einer homogenen

Platte vor Erreichung des stationären Zu-
standes auf die Umgebungstemperaturen.

schichten bis etwa zu x 0,35 s
und zwar, wie auch zu erwarten
Wärmeeintrittsebene x 0 liegt,
dagegen bleibt die Temperatur

OD

Ein Vergleich dieser Formel mit Formel (10)
zeigt, wie bereits früher bemerkt, dass die
Konstanten nk in beiden Fällen dieselben sind, die
Konstanten A, B und [Ch vergl. Gleichung (12)]
dagegen verschieden.

Der Temperaturverlauf während der Abkühlung

ist aus den Fig. 4 und 5 ersichtlich. Beide
zeigen, dass die Temperatur der innern Platten-
vom Moment der Ausschaltung der Leistung an fällt
ist um so rascher, je näher die Ebene der früheren
In den weiter aussen liegenden Ebenen der Platte

zunächst trotz Ausschaltung konstant, oder steigt
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Fig 5 Wir bemerken zum
Temperaturverlauf bei Ermärmung einer homogenen Platte und Abkühlung derselben Schlüsse nOCh, daSS alle

auf die Umgebungstemperaturen vor Erreichung des stationären Zustandes. diese Rechnungen auf
der Annahme beruhen,

dass sowohl das spezifische Gewicht, die spezifische Wärme, wie auch die
Wärmeleitfähigkeit von der Temperatur unabhängige Grössen sind. Diese Annahme trifft
für kleinere Temperaturintervalle annähernd zu. Die Vernachlässigung der Variationen
dieser Grössen kann aber für solche, mehr qualitative als quantitative Untersuchungen
im Interesse der Vereinfachung der Rechnung wohl gerechtfertigt werden. Dasselbe
ist zu sagen von der Annahme, dass die Wärmeübertragung an die Umgebung direkt
proportional der Temperaturdifferenz zwischen der Oberfläche des Versuchskörpers
und derjenigen der Umgebung ist. Die Rechnung ist wohl noch mit einer den
tatsächlichen Verhältnissen besser Rechnung tragenden Annahme möglich. Die dadurch
erreichte grössere Genauigkeit steht aber, wenigstens für Temperaturdifferenzen bis
in die Gegend von 100-^-200° C, in gar keinem zu verantwortenden Verhältnis zum
grösseren Rechnungsaufwande.

Zur Ausbildung von Elektrotechnikern in der Schweiz.
Von C. Hoenig, Baden.

sogar und zwar um so mehr, je näher die betrachtete Ebene der Wärmeabgabestelle

liegt, um nach einiger Zeit abzufallen und sich asymptotisch der Umgebungstemperatur

i?0 zu nähern.
Die anfänglich trotz Berücksichtigung von vier Gliedern der Fourierschen Reihe

recht grossen Abweichungen der Temperaturkurve in Funktion des Ortes (Kurve b

von Fig. 4) von der
gegebenen
Ausgangstemperaturverteilung (Kurve
a in Fig. 4) verschwinden,

wie die Rechnung
zeigt, sehr rasch. So ist
bis auf 10 C maximale
Amplitude das vierte
Glied nach 16 Minuten
30 Sekunden, das dritte
Glied nach 41 Minuten
25 Sekunden, das zweite
Glied nach zwei Stunden
32 Minuten und das erste
Glied, und damit der
unstationäre Vorgang, in
38 Stunden 10 Minuten
frûPPOhiiriiMrlûM

Der Autor knüpft an die beiden Aufsätze über
dasselbe Thema im Bulletin No. 2 dieses Jahres
an und weist hauptsächlich auf die Unzweck-
mässigkeit einer Regelung durch Anpassung der
Lehrprogramme der Schweiz an die jeweiligen
momentanen Bedürfnisse der Industrie hin. Auch
er tritt der Tendenz der Höherlegung der
Lehrprogramme von Gewerbeschulen und Techniken
entgegen.

L'auteur, complétant les deux articles parus
au bulletin No. 2 de cette année, de'montre qu'il
est impossible et qu'il serait du reste absurde
de vouloir adapter chaque année le programme
des écoles techniques aux besoins momentanés
de l'industrie.

Il s'oppose de son coté à la tendance de vouloir

élever le niveau des études des écoles
industrielles et technicums.

Im Bulletin No. 2 vom Februar dieses Jahres behandelt Herr Eugen Weber
die Frage einer zweckmässigen Berufswahl durch junge Leute, den zu wählenden
Ausbildungsgang und die Aussichten der Absolventen technischer Schulen für eine
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