Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins							
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke							
Band:	12 (1921)							
Heft:	3							
Artikel:	Der Spannungsabfall des Transformators : (Diagramme und Hilfswerte für die Berechnung)							
Autor:	Edler, Robert							
DOI:	https://doi.org/10.5169/seals-1060410							

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 08.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

vendus à l'étranger représentent une économie qui n'est pas à dédaigner. S'il peut vendre à l'étranger ses kWh au prix d'un kg de houille, le commerçant ne les emploiera probablement même pas au chauffage de ses appartements, parce qu'il pourra se chauffer à la houille en ne dépensant pour acheter celle-ci que le tiers ou la moitié de ce qu'il aura retiré de la vente des kWh.

Ce que le commerçant fait, la centrale d'électricité doit le faire aussi pour son compte et au profit de l'ensemble de la population suisse. Elle ne doit pas agir autrement qu'un commerçant avisé et doit tirer de son produit le meilleur parti possible. Loin de nous la pensée de critiquer l'emploi de l'électricité à la cuisine et au chauffage: il nous restera toujours en Suisse beaucoup d'énergie disponible que nous ne pourrons pas vendre au prix relativement fort de l'énergie appliquée à la commande des moteurs ou à l'éclairage.

Reprocher aux centrales d'électricité leurs efforts pour vendre de l'énergie à l'étranger n'est donc pas raisonnable. Plus elles en exporteront à un bon prix, mieux cela vaudra. Lorsqu'elles sont réduites à vendre l'énergie pour chauffer des chaudières, elles agissent comme les paysans de Galice qui, lorsque la pêche est abondante, engraissent leurs champs avec des sardines. Qu'on donne en principe la préférence à l'acheteur suisse, c'est bien, mais seulement à conditions à peu près égales; agir autrement serait aller à l'encontre des intérêts généraux.

La nature ne nous fournit malheureusement pas l'énergie électrique en plus grande quantité aux moments où nous en avons le plus besoin; il y a des instants où nous en avons plus qu'il n'en faut et d'autres où nos usines, faute d'eau, ne peuvent suffir à la demande. En conséquence le prix de vente varie suivant l'heure de la journée et suivant la saison. Un kWh par exemple qu'on offre pour être utilisé de nuit au moment de la fonte des neiges ne peut se vendre actuellement qu'à un prix dérisoire. Au contraire l'énergie qu'on tient à la disposition du client du 1^{er} janvier au 31 décembre pendant les heures normales de travail vaudra toujours plus qu'un kg de houille (aujourd'hui plus de 10 cts.). On peut en conclure que nous avons le plus grand intérêt à emmagasiner notre énergie d'été. Les kWh du mois de juin mis en réserve triplent de valeur. En dépensant de l'argent pour créer des réservoirs bien situés nous avons toutes les chances de faire un placement fructueux.

D'autre part si les centrales suisses peuvent trouver pour l'énergie qu'elles possèdent en excédent des débouchés importants à l'étranger à un prix avantageux, elles trouveront aussi des capitaux pour aménager de nouvelles chutes, qui permettront de produire davantage. Plus les centrales produiront d'énergie pour l'exportation, plus elles pourront aussi en offrir à très bon compte à la population suisse en dehors des heures de travail.

A ceux qui s'élèvent contre les permissions d'exportation d'énergie d'été les centrales suisses d'électricité peuvent donc dire en toute conscience: laissez-nous faire; il n'existe en temps de paix aucun antagonisme entre nos intérêts et les intérêts généraux. De nos exportations la population suisse ne peut tirer que profit; le courant que nous lui fournirons coûtera d'autant moins que nos exportations d'été seront plus importantes.

Der Spannungsabfall des Transformators. (Diagramme und Hilfswerte für die Berechnung.)

Von Prof. Ing. Robert Edler, Wien.

Die unmittelbare Messung des Spannungsabfalles ist nur bei Transformatoren kleinerer Leistung zu rechtfertigen. Bei grösseren und grossen Transformatoren wäre hiezu ein zu grosser Energieaufwand nötig, über den ja auch die Fabrik, welche den Transformator baut, oft nicht einmal verfügt, und überdies macht es oft unüber-

windliche Schwierigkeiten, die erforderlichen Belastungswiderstände und die Art der Belastung ($\cos \varphi$) bei dem Versuche herzustellen. Für die Prüfung der Garantieziffern sind daher nur jene indirekten Methoden für die Praxis brauchbar, welche beim Versuch nur kleine Energiemengen erfordern, vor allem der Leerlauf- und Kurzschlussversuch; derselbe ist in Verbindung mit den Diagrammen von Kapp und von Arnold jedem wissenschaftlich arbeitenden Elektro-Ingenieur geläufig. Der Zusammenhang zwischen diesen beiden Diagrammen wurde allerdings in der Literatur bisher nicht genügend klar dargestellt; ausserdem ist es erwünscht, den Einfluss der Belastungsart (cos φ) möglichst unmittelbar zum Ausdruck zu bringen, was gewöhnlich nach einer analytischen Methode geschieht, wie weiter unten kurz angegeben werden soll. Aus dieser rechnerischen Methode lässt sich aber auch ein einfaches zeichnerisches Verfahren ableiten, das jedem Fachmanne, der die graphischen Methoden in der Wechselstromtechnik bevorzugt, ein erwünschtes Hilfsmittel zur Bestimmung des Spannungsabfalles des Transformators gibt. Dieses neue Diagramm ermöglicht die Bestimmung des prozentualen Spannungsabfalles des Transformators für jede Belastungsart (cos φ) fast ohne jede Rechnung unmittelbar mit Zirkel und Dreieck; es lässt sich auch durch Wahl geeigneter Grössenverhältnisse mit einer für alle praktischen Zwecke ausreichenden Genauigkeit darstellen.

Es ist der Zweck der vorliegenden Abhandlung, den Zusammenhang der bekannten Diagramme von Kapp und von Arnold mit der erwähnten rechnerischen Methode und mit dem neuen Diagramm darzustellen. Bei allen Entwicklungen wird dabei in üblicher Weise vorausgesetzt, dass alle periodischen Funktionen (magnetischer Fluss Φ , elektromotorische Kraft \mathcal{E} , Klemmenspannung E, Stromstärke I) nach dem Gesetze der äquivalenten Sinusfunktion verlaufen, sowie dass alle Grössen auf das Uebersetzungsverhältnis 1:1 umgerechnet sind.

Der für die Oberspannungswicklung und für die Unterspannungswicklung gemeinschaftlich wirkende magnetische Fluss

$$\varphi = \Phi_{\rm m} \cdot \sin a = \Phi_{\rm m} \cdot \sin (\omega t) \tag{1}$$

ruft eine EMK hervor, deren Augenblickswert für n Windungen

$$e = -\frac{d\varphi}{dt} \cdot n \cdot 10^{-8} \text{ (Volt)}$$
(2)

ist; dabei ist $d\varphi$ die positive Zunahme des magnetischen Flusses, so wie auch dt die positive Zunahme der Zeit bedeutet; man erhält leicht:

$$\frac{d\varphi}{dt} = \omega \cdot \Phi_{\rm m} \cdot \cos \alpha \tag{3}$$

somit und

$$e = -\mathcal{E}_{m} \cos a \text{ (Volt)}$$

$$\mathcal{E} = \omega \cdot \Phi_{m} n \cdot 10^{-8} \text{ (Volt)}$$
(4)

In Fig. 1 sind diese Verhältnisse in bekannter Weise graphisch dargestellt; der Magnetisierungsstrom I_0 erzeugt den magnetischen Fluss φ , der mit I_0 phasen-

gleich ist; die in den Windungen der Lastseite des Transformators (Sekundärwindungen) geweckte *EMK* \mathcal{E} bleibt um ¹/₄-Periode hinter φ zurück. Der Belastungsstrom I_2 des Transformators bleibt endlich noch um den Winkel ψ_2 hinter der EMK \mathcal{E} zurück (Fig. 2). Die EMK \mathcal{E} liefert zunächst die sekundäre induktive Komponente

 $I_2 \cdot X_2 = I_2 \cdot \omega \cdot L_2$ normal zur Stromrichtung I_2 , sowie den Ohm'schen Spannungsverlust $I_2 \cdot R_2$ in der Sekundärwicklung (Lastseite des Transformators) parallel zur Stromrichtung I_2 , jedoch entgegenwirkend. Es bleibt dann noch die sekundäre Klemmenspannung E_2 übrig; der Phasenverschiebungs-winkel φ_2 zwischen E_2 und I_2 charakterisiert die Belastungsart des Transformators.

Um die resultierende Stromstärke I_0 für den magnetischen Fluss φ aufrecht zu erhalten, muss dem Transformator auf der Generatorseite die Stromstärke I_1 (Primärstrom) zugeführt werden (Fig. 3); ausserdem muss der auf der Lastseite entstehenden $EMK \mathcal{E}$ eine ebenso grosse, von aussen zugeführte EMK \mathcal{E}_1 auf der Primärseite entgegenwirken. Hiezu kommen noch die beiden Spannungskomponenten $I_1 \cdot R_1$ und $I_1 \cdot X_1 = I_1 \cdot \omega \cdot L_1$ auf der Primärseite. Die drei Komponenten \mathcal{E}_1 , $I_1 \cdot R_1$ und $I_1 \cdot X_1$ liefern zu-sammen die zuzuführende primäre Klemmenspannung E_1 ,

welche dem Primärstrome I₁ um den Phasenverschiebungs-

winkel φ_1 voraneilt (Fig. 3). Die Grösse des Spannungsabfalles könnte durch den Vergleich der Längen der beiden Vektoren E_1 und E_2 bestimmt werden.

Viel anschaulicher werden die Verhältnisse, wenn man die Zerlegung in die einzelnen Komponenten durch Drehung der Vektoren der Sekundärseite um 180^o

auf die *EMK* \mathcal{E}_1 überträgt (Fig. 4). Die beiden Komponenten $I_1 \cdot R_1$ und $I_2 \cdot R_2$ sind nahezu parallel, ebenso aber $I_1 \cdot X_1$ und $I_2 \cdot X_2$, jedoch auch die Resultierenden $I_1 \cdot Z_1$ und $I_2 \cdot Z_2$; man kann daher ohne merkbaren Fehler die beiden zusammengehörigen Komponenten jeweils algebraisch addieren. Besonders wichtig wird diese Erkenntnis

 $\alpha = 0$

180°

für die Summe $(I_1 \cdot Z_1 + I_2 \cdot Z_2)$. Aus Fig. 4 ist die Zulässigkeit dieser Vereinfachung schon erkennbar, obwohl die Grössen $I \cdot R$, $I \cdot X$, $I \cdot Z$ prozentual viel zu gross angenommen wurden; für gute Transformatoren bleiben diese Komponenten in viel niedrigeren Grenzen, daher wird die Vereinfachung nur um so eher zulässig. Lässt

Diagramm von Kapp (Fig. 6) den Halbmesser $\overline{O_1 P_1}$ des Kreises K_1 als neue Längeneinheit, dann ist $\overline{O_1 Q_1}$ angenähert ein Mass für den $\cos \varphi_2$, da die Richtungen

 E_2 und I_1 nahezu den Winkel φ_2 miteinander

einschliessen; die Abweichung ist durch den

Einfluss des Magnetisierungsstromes I_0 verursacht, bleibt jedoch sehr gering, denn für $I_0 = 0,05 \cdot I_1$ wird selbst für $I_0 \perp I_1$, also für induktionsfreien Betrieb, doch die Richtung I_1 mit der Richtung I_2 nur einen Winkel von etwa 3^o einschliessen; bei induktiver Belastung wird nach Fig. 3 der Winkel γ zwischen I_1 und I_2 noch kleiner.

Mit $\overline{O_1 P_1} = 1$ wird also mit grosser

Annäherung:

man dann den unteren Teil des Diagrammes Fig. 4 weg, dann erhält man Fig. 5. Die beiden Dreiecke für die Spannungskomponenten $I_1 \cdot R_1$ und $I_1 \cdot X_1$, sowie $I_2 \cdot R_2$ und $I_2 \cdot X_2$ lassen sich zu dem *charakteristischen Dreieck* $O_1 MO_2$ zusammensetzen; aus demselben ist der Einfluss der Widerstände R_1 und R_2 , sowie der Induktivitäten L_1 und L_2 , bezw. der induktiven Widerstände $X_1 = \omega \cdot L_1$ und $X_2 = \omega \cdot L_2$ erkennbar.

Zieht man (Fig. 6) durch O_1 eine Parallele zu E_2 und durch O_2 eine Parallele zu E_1 , und schlägt man um O_1 und O_2 mit dem Halbmesser $E_1 = \overline{O_1 P_1} = \overline{O_2 P_2}$ die beiden Kreise K_1 und K_2 , dann stellt der Abschnitt $\overline{P_1 P_2} = E_1 - E_2 = \Delta E$ den Spannungsabfall des Transformators dar. (Diagramm von Kapp)¹). In dem Diagramm Fig. 6

fällt bei grösseren Transformatoren die Strecke ΔE sehr klein aus im Vergleiche mit E_1 , so dass die Genauigkeit der Rechnung darunter sehr leidet; so wird z. B. für $E_1 = 100$ Volt (dargestellt durch $\overline{O_1 P_1} = 100$ mm) bei einem Spannungsabfall von 2% der Klemmenspannung E_1 die Strecke $\overline{P_1 P_2}$ nur 2 mm lang; ein Ablesungsfehler in der Länge $P_1 P_2$ von nur 0,2 mm bedeutet dann schon einen Fehler von 10% im Spannungsabfall.²) Wählt man in dem

$$\cos \varphi_2 = \frac{\overline{O_1 Q_1}}{\overline{O_1 P_1}} = \frac{\overline{O_1 Q_1}}{1} = O_1 Q_1 \quad (\text{im Masstabe } \overline{O_1 P_1} = 1).$$
(5)

Man braucht also, wie dies Fig. 7 zeigt, nur die Strecke $\overline{O_1 P}$ in 100 gleiche Teile zu teilen, um z. B. für $\cos \varphi_2 = 0.73$ sofort den Punkt Q_1 und daraus auch den

E.T.Z., 1895.
 ²) Vgl. z. B. Schreiber (Baden, Schweiz), Transformatoren, Seite 151, Fig. 87, Seite 186, Fig. 104, Seite 188, Fig. 106, Seite 189, Fig. 107.

Punkt P_1 zu finden, so dass dann leicht der Spannungsabfall $\Delta E = P_1 P_2$ ermittelt werden kann.

Die Diagramme Fig. 5 und 6 gelten natürlich nur für eine ganz bestimmte Stromstärke I_1 , weil ja die Grösse des charakteristischen Dreieckes $O_1 M O_2$ und

damit die gegenseitige Lage der beiden Kreismittelpunkte $O_1 O_2$ nur von der Stromstärke I_1 abhängig ist, für die halbe Stromstärke $I'_1 = \frac{I_1}{2}$ rücken die beiden Punkte O_1 und O_2 auf die halbe Entfernung zusammen, wie dies Fig. 8 zeigt; dadurch wird natürlich auch der Spannungsabfall $\Delta E'$ entsprechend kleiner als ΔE . Man kann dann aus den Fig. 6, 7, 8 den Spannungsabfall für jeden Wert von $\cos \varphi_2$, sowie für verschiedene Stromstärken I_1 ; $1,25 \cdot I_1$)

$$(0,25 \cdot I_1; 0,5 \cdot I_1; 0,75 \cdot I_1;)$$

konstruieren, um sodann die gefundenen Werte in einem Diagramm Fig. 9 zu vereinigen, aus dem der Ver-

lauf des Spannungsabfalles ΔE in Abhängigkeit von $\cos q_2$ und I_1 anschaulich erkennbar wird.

0,6

Fig. 7

Da nun beim Leerlaufversuch das Spannungsübersetzungsverhältnis $\frac{1}{u} = \frac{E_{20}}{E_{10}}$, beim Kurzschluss-

versuch das Stromübersetzungsverhältnis $\frac{1}{u_i} = \frac{I_2}{I_1}$ gemessen wird, so kann jederzeit die Umrechnung der Spannungen und Stromstärken durchgeführt werden, so dass es genügt, in den Diagrammen eine der beiden Stromstärken, z. B. I_1 , einzutragen.

Um nun den Zusammenhang zwischen dem Diagramm von Kapp (Fig. 6) und dem Diagramm von Arnold klar zu machen, verschieben wir in der Fig. 6 die Linie $\overline{O_2 P_2} = E_1$ parallel zu <u>ihrer</u> Lage von O_2 nach O_1 in die neue Lage $\overline{O_1 P_3} = E_1$ (Fig. 10); dann lässt sich auch das charakteristische Dreieck $O_1 M O_2$ ohne Aenderung

der Grössenverhältnisse in die neue Lage $P_3 N P_2$ bringen.

Wir zeichnen jetzt die Spannungen E_1 und E_2 , sowie das charakteristische Dreieck neuerlich auf, wobei nur die Diagrammpunkte $O_1 P_2 N P_3$ mit OANC bezeich-

net werden mögen (Fig. 11), und beschreiben über AC als Durchmesser einen Kreis K, auf dem sich leicht noch die Punkte P und B finden lassen; der Winkel PAN ist der Phasenverschiebungswinkel φ_2 . Der Ohm'sche Spannungsverlust e_R für beide Wicklungen, entsprechend dem äquivalenten Widerstand $R = R_1 + R'_2$ ($R_1 =$ Widerstand der Oberspannungswicklung. $R'_2 = u_i^2 \cdot R_2$ = reduzierter Widerstand der Unterspannungswicklung, bezogen auf das Stromübersetzungsverhältnis 1:1) ist durch

die Strecke $\overline{AN} = e_R$ im Diagramm Fig. 11 dargestellt; man findet ihn aus dem Kurzschlussversuch gemäss der Gleichung

$$\overline{AN} = e_R = I_1 \cdot R = \frac{P_k \text{ (Watt)}}{I_1 \text{ (Amp.)}}$$
(6)

wobei die Oberspannungsseite als Primärseite angenommen ist.

Die beim Kurzschlussversuch gemessene Spannung e_k entspricht dem Scheinwiderstande Z_k ; es ist also:

$$\overline{AC} = e_k = I_k \cdot Z_k \tag{7}$$

wobei als Kurzschlusstrom I_k (bei entsprechend verminderter Spannung beim Versuch) der normale Betriebsstrom zu wählen ist, also $I_k = I_1$. Der Scheinwiderstand Z_k ist dabei:

$$Z_k = \sqrt{R^2 + X^2} = \sqrt{R^2 + \omega^2 \cdot L^2} \tag{8}$$

und L ist die äquivalente Induktivität für die Primärseite und Sekundärseite zusammengenommen.

Die Aufzeichnung des Diagrammes Fig. 11 kann nun in folgender Weise vorgenommen werden: Man legt zuerst den Stromvektor I_1 in beliebiger Richtung durch O, trägt den Winkel φ_2 entsprechend der jeweiligen Belastungsart auf und macht $\overline{OA} = E_2$, und zwar zunächst unveränderlich für alle Belastungen zwischen Leerlauf und Vollbelastung. Auf der durch A parallel zu I_1 gelegten Richtung trägt man die Strecke $\overline{AN} = e_R = I_1 \cdot R$ auf (Gl. 6), während die Kurzschlusspannung $e_k = I_1 \cdot Z_k$ (Gl. 7) den Punkt C auf der in N normal zur Stromrichtung gelegten Linie liefert. Dadurch ist auch der Kreis K, sowie die Lage der Punkte B und Pbestimmt. Der Vektor \overline{OC} stellt die primäre Klemmenspannung E_1 dar, welche man dem Transformator zuführen muss, um bei dem gegebenen Belastungszustande (natürlich für das Uebersetzungsverhältnis 1:1) die verlangte Klemmenspannung $OA = E_2$ auf der Lastseite zu erhalten. Die Differenz $\overline{OC} - \overline{OA} = E_1 - E_2$ stellt demnach eigentlich die *erforderliche Spannungserhöhung auf der Primärseite* (Generatorseite) dar, welche nötig ist, um die *unveränderliche Klemmenspannung* $E_2 = \overline{OA}$ *auf der Lastseite* zu erzielen. Zur Beurteilung, ob die Garantieziffern erreicht werden, darf man aber mit hinreichender Genauigkeit die *prozentuale Spannungserhöhung* von E_1 bei ungeänderter Klemmenspannung E_2 bei ungeänderter Primärspannung E_1 . Uebrigens macht die nachträgliche Umrechnung auf den Spannungsabfall ΔE_1 für unveränderte Primärspannung E_1 gar keine Schwierigkeiten nach den Gleichungen

$$\frac{\Delta E}{E_2} = \frac{E_1 - E_2}{E_2} = \frac{\Delta E_1}{E_1}$$
(E₂ = konstant) (E₁ = konstant).

Es handelt sich also jetzt nur noch darum, einen möglichst einfachen und doch hinreichend genauen Weg zur *Berechnung der prozentualen Spannungserhöhung* von E_1 und damit auch des prozentualen Spannungsabfalles von E_2 anzugeben; das Verdienst, diese praktisch wertvolle Lösung gefunden zu haben, gebührt Arnold.¹)

Aus dem Diagramm Fig. 11 erhält man die relative Spannungserhöhung (bezogen auf die ungeänderte Sekundär-Klemmenspannung E_2):

$$\varepsilon = \frac{\overline{OC} - \overline{OA}}{\overline{OA}} = \frac{\overline{OC}}{\overline{OA}} - 1 \tag{9}$$

folglich mit $\overline{AP} = m$ und $\overline{PC} = n$:

$$\varepsilon + 1 = \frac{\overline{OC}}{\overline{OA}} = \frac{\sqrt{\overline{OP^2} + \overline{PC^2}}}{\overline{OA}}$$
$$\varepsilon + 1 = \sqrt{1 + 2 \cdot \frac{m}{\overline{OA}} + \frac{m^2}{\overline{OA^2}} + \frac{n^2}{\overline{OA^2}}} = \sqrt{1 + 2 \cdot \frac{m}{E_2} + \frac{m^2 + n^2}{E_2^2}}$$

Setzt man zur Abkürzung:

$$\frac{m}{E_2} = a \quad \text{und} \quad \frac{n}{E_2} = \beta \tag{10}$$

dann wird:

$$+1 = \sqrt{1 + (2 a + a^2 + \beta^2)} = \sqrt{1 + y}$$
(11)

Nach dem binomischen Lehrsatze ist:

ε

$$\sqrt{1 \pm y} = 1 \pm \frac{y}{2} - \frac{y^2}{8} \pm \frac{y^3}{16} - \pm$$
 (12)

somit wird mit Vernachlässigung von y^3 und der höheren Potenzen:

$$\sqrt{1+y} \cdot 1 + \frac{y}{2} - \frac{y^2}{8}$$
 (13)

und da: $y = (2 a + a^2 + \beta^2)$:

$$\varepsilon + 1 = \sqrt{1 + y} = 1 + a + \frac{\beta^2}{2} - \frac{a}{2} \cdot (a^2 + \beta^2) - \frac{1}{8} \cdot (a^2 + \beta^2)^2$$
(14)

Nimmt man nun an, dass die Diagrammgrössen m und n (Fig. 11) selbst 10% von $\overline{OA} = E_2$ erreichen, was sicher eher zu hoch gewählt ist, dann wird a = 0,1 und $\beta = 0,1$; somit ist

$$a \cdot (a^2 + \beta^2) = 0,001$$

und $\frac{1}{8} \cdot (a^2 + \beta^2)^2 = 0,00005$

schon sehr klein gegen a = 0,1 und $\beta = 0,1$. Man erhält daher mit sehr grosser Annäherung aus (Gl. 14):

$$\varepsilon + 1 = 1 + a + \frac{\beta^2}{2}$$

$$\varepsilon = a + \frac{\beta^2}{2}$$
(15)

1) Arnold, Wechselstromtechnik, II. Band (Transformatoren); Verlag Springer, Berlin, 1904; 1. Auflage, Seite 51. Nach (Gl. 10) ist

$$m = a \cdot E_2$$
 und $n = \beta \cdot E_2$;

setzt man nun

$$m = a \, \sqrt[n]{} \text{ von } E_2 \text{ und } n = b \, \sqrt[n]{} \text{ von } E_2 \tag{16}$$

dann wird:

1

$$a + \frac{\beta^2}{2} = \frac{a}{100} + \frac{b^2}{20\,000} \tag{17}$$

Bezeichnet man die prozentuale Spannungserhöhung mit v, dann wird

$$v = 100 \cdot \varepsilon \doteq a + \frac{b^2}{200} \tag{18}$$

Beim Entwurf des Arnold-Diagrammes geht man am zweckmässigsten in folgender Weise vor: Aus dem Kurzschlussversuche bestimmt man die beiden Grössen e_R und e_k (Gl. 6 und 7) und berechnet, da ja die konstant angenommene Spannung E_2 bekannt ist, das prozentuale Verhältnis v_R , bezw. v_k von e_R , bezw. e_k zu E_2 , also:

Dabei darf für E_2 die primäre Klemmenspannung bei Leerlauf E_{10} angenommen werden, da ja für das Uebersetzungsverhältnis 1:1 beide Spannungen bei Leerlauf (E_{10} und E_{20}) gleich gross sind und da überdies E_2 bei allen Belastungen konstant angenommen wurde. Die Werte v_R und v_k (in %) in der Fig. 12 entsprechen den Spannungsgrössen $\overline{AN} = e_R$ und $\overline{AC} = e_k$ der Fig. 11. Es ist aber durch die Einführung der prozentualen Spannungsverhältnisse v_R und v_k der ganz wesentliche Vorteil erreicht, dass man den Masstab für diese Grössen

kann, so dass man in der Genauigkeit nicht beschränkt ist, weil das prozenzuale Verhältnis v_R und v_k von der absoluten Grösse der Spannung E_2 ganz unabhängig ist.

Beispiel: Für
$$e_k = I_1 \cdot z_k = 0.05 \cdot E_2$$
 und für $e_R = I_1 \cdot R = 0.02 \cdot E_2$ wird:

$$v_k = 5$$
 und $v_R = 2$.

Wählt man z. B. für 1% die Länge 2 cm, dann wird im Diagramm Fig. 12 die Strecke $\overline{AC} = 10$ cm und die Strecke $\overline{AN} = 4$ cm. Es genügt dann vollständig, zuerst über \overline{AC} als Durchmesser den Kreis K zu konstruieren; hierauf wird mit dem Zirkel von A aus die Strecke \overline{AN} abgeschnitten, wodurch der Punkt N und die Stromrichtung festgelegt ist. Der Winkel φ_2 wird sodann entsprechend der Belastung aufgetragen, wobei sich die Richtung der Klemmenspannung E_2 und der Punkt P ergibt; man kann jetzt schon $\overline{AP} = a \%$ von E_2 und $\overline{PC} = b \%$ von E_2 ablesen (Fig. 12); dabei gilt natürlich wieder der für v_R und v_k gewählte Masstab 2 cm = 1 %. Mit den angegebenen Zahlenwerten wird für $\varphi_2 = 30^{\circ}$ (cos $\varphi_2 = 0,866$) die Länge $\overline{AP} = 8$ cm und $\overline{PC} = 6$ cm, daher a = 4 % und b = 3 %, somit nach (Gl. 18):

$$v = 100 \cdot \varepsilon = a + \frac{b^2}{200} = 4,045 \,\%$$
.

Die prozentuale Spannungserhöhung v beträgt also im vorliegenden Falle 4,045%; daher wird wegen (Gl. 9):

$$\frac{E_1}{E_2} = \frac{\overline{OC}}{\overline{OA}} = \varepsilon + 1 = 1,04045$$
, und $E_1 = 1,04045 \cdot E_2$.

Die Umrechnung auf den prozentualen Spannungsabfall v_1 wäre sodann in folgender einfacher Weise zu erledigen:

somit:

 $\frac{100 + v}{100} = \frac{100}{100 - v_1} \qquad v_1 = \frac{100 \cdot v}{100 + v} \text{ (proz. Spannungsabfall)} \qquad \text{also} \quad v_1 < v \,.$

In der Gleichung für die prozentuale Spannungserhöhung nach dem Arnold-Diagramm

$$v = 100 \cdot \varepsilon \cdot a + \frac{b^2}{200} \tag{18}$$

kommt der Einfluss der Belastungsart ($\cos \varphi_2$) nicht unmittelbar analytisch zum Ausdrucke, und das Diagramm Fig. 12 muss für jeden Wert von φ_2 von neuem konstruiert werden; übrigens muss auch für jeden Wert von I_1 das Diagramm geändert werden, da sich ja der Kreisdurchmesser \overline{AC} mit dem Strom I_1 ändert.

 $R_{e_{R}}$ N_{g} P_{g} P_{g}

diagramm Fig. 11 wiederholt (Punkte ANPCB auf dem Kreise K); die Verlängerung der Linie CP liefert nun den Punkt D auf der Stromrichtung AND; dadurch entsteht der Winkel $NCD = \varphi_2$.

Mit
$$PD = p$$
 und $ND = q$ wird:

$$q = (n+p) \cdot \sin \varphi_2 \dots$$

$$m = (e_R + q) \cdot \cos \varphi_2 \dots$$

$$e_s = (n+p) \cdot \cos \varphi_2 \dots$$
(20)

somit

und

$$m = e_R \cdot \cos \varphi_2 + e_s \cdot \sin \varphi_2 \tag{21}$$

Zu dieser Gleichung für m gelangt man auch bei Benützung der beiden Hilfslinien NS und NT, welche die beiden ähnlichen Dreiecke ASN und NTD bestimmen; es ist:

 $e_s \cdot \sin \varphi_2 = q \cdot \cos \varphi_2$

$$m = \overline{AS} + \overline{SP} = \overline{AS} + \overline{NT}$$

$$m = e_r \cdot \cos \varphi_2 + e_s \cdot \sin \varphi_2$$
(21)

Mit
$$e_R = \frac{P_k}{I_1}$$
 (6) und $e_k = I_k \cdot Z_k = I_1 \cdot Z_k$ (7) erhält man
 $e_s = \sqrt{e_k^2 - e_R^2}$ (22)

dabei sind e_R und e_k beim Kurzschlussversuch gemessen worden. Es ist also nur noch φ_2 als Charakteristik der Belastungsart in Rechnung zu ziehen. Aus dem vollständigen Arnold-Diagramm Fig. 11 folgt die *relative Spannungs*-

erhöhung :

$$\varepsilon = \frac{\overline{OC} - \overline{OA}}{\overline{OA}} = \frac{E_1}{E_2} - 1 \tag{23}$$

Da aber aus dem Dreiecke OPC (Fig. 11) der Zusammenhang

$$E_{1}^{2} = (E_{2} + m)^{2} + n^{2}$$

$$E_{1}^{2} - E_{2}^{2} = m^{2} + n^{2} + 2 \cdot m \cdot E_{2}$$
(24)

und aus (Gl. 23) die Beziehung

$$E_1 - E_2 = \varepsilon \cdot E_2 \tag{23 a}$$

abgeleitet werden kann, so ergibt sich mit $m = a \cdot E_2$ und $n = \beta \cdot E_2$ (Gl. 10):

$$(E_1 + E_2) \cdot \varepsilon \cdot E_2 = E_2^2 \cdot (a^2 + \beta^2 + 2a)$$
(25)

Aus (23 a) ist aber $E_1 = (\varepsilon + 1) \cdot E_2$, somit:

$$(\varepsilon \cdot E_2 + 2 \cdot E_2) \cdot \varepsilon = E_2 \cdot (a^2 + \beta^2 + 2a)$$
$$\varepsilon^2 = (a^2 + \beta^2 + 2a) - 2\varepsilon$$
$$\varepsilon = -1 \pm \sqrt{1 + (a^2 + \beta^2 + 2a)}$$
(26)

Nach dem binomischen Lehrsatze ist aber:

$$\sqrt{1+y} = 1 + \frac{y}{2} - \frac{y^2}{8} + \frac{y^3}{16} - + \dots$$
 (13)

daher wird mit:

$$y = (a^2 + \beta^2 + 2a) \tag{27}$$

$$\varepsilon \doteq -1 \pm \left[1 + \frac{a^2 + \beta^2 + 2a}{2} - \frac{(a^2 + \beta^2 + 2a)^2}{8} + - \dots\right]$$
 (28)

Da ε eine positive Grösse sein muss, weil ja $E_1 > E$ ist (vgl. 23), so ist nur das + Zeichen zu berücksichtigen und man erhält:

$$\varepsilon \doteq \frac{a^2 + \beta^2}{2} + a - \frac{(a^2 + \beta^2 + 2a)^2}{8} + \cdots$$
 (29)

Nach den früheren Erwägungen darf man aber a^2 , β^2 und um so mehr die höheren Potenzen von a und β als Summanden vernachlässigen, so dass man endlich findet:

$$\varepsilon \doteq a$$
 (30)

also nach (Gl. 10):

$$m = a \cdot E_2 \doteq \varepsilon \cdot E_2 \tag{31}$$

wobei auch

$$m = e_R \cdot \cos \varphi_2 + e_s \cdot \sin \varphi_2 = I \cdot R \cdot \cos \varphi_2 + I \cdot X \cdot \sin \varphi_2$$
(21)¹)

¹⁾ Vergl. hiezu: Hahnemann, E. T.Z. 1905, S. 700; Hunzinger, E. T.Z. 1912, S. 131; H. Engel, E. T.Z. 1912, S. 332. Die zugehörigen Diagramme sind mit dem Arnold-Diagramm verwandt, blieben aber ziemlich unbekannt.

für den prozentualen Spannungsunterschied erhält man:

$$v = 100 \cdot \varepsilon \doteq 100 \cdot a \doteq \frac{100 \cdot m}{E_2} \tag{32}$$

anderseits kann man setzen:

$$100 \cdot \frac{I \cdot R}{E_2} = v_R \qquad 100 \cdot \frac{I \cdot X}{E_2} = v_x \tag{33}$$

wobei v_R und v_x die prozentuale Ohm'sche und induktive Spannungskomponente bedeutet (bezogen auf E_2 als unveränderliche Grösse); somit wird, wenn man die (Gl. 21) mit $\frac{100}{E_2}$ multipliziert, aus (32) und (33):

$$v \doteq v_R \cdot \cos \varphi_2 + v_x \cdot \sin \varphi_2 \tag{34}$$

Da $\cos \varphi_2$ bekannt ist, denn dieser Wert charakterisiert ja die Belastungsart, so kann auch $\sin \varphi_2$ berechnet werden:

$$\sin \varphi_2 = \sqrt{1 - \cos^2 \varphi_2} \tag{35}$$

Die Funktionsform (Gl. 35) wird durch einen Kreis K_1 dargestellt (Fig. 14, Quadrant 1).

Aus Gleichung (22) folgt:

$$\frac{e_s}{e_k} = \sqrt{1 - \left(\frac{e_r}{e_k}\right)^2} \tag{36}$$

Die Funktionsform (Gl. 36) ist dieselbe wie in (Gl. 35); der Kreis K_2 in Fig. 14 (Quadrant 3)

zeigt dies deutlich, aus dem auch zusammengehörige Werte von $\frac{e_R}{e_k}$ und $\frac{e_s}{e_k}$ bestimmt werden können.

Für die Berechnung der prozentualen Spannungserhöhung stehen also die Gleichungen (31) (21) (32) zur Verfügung, aus denselben ergibt sich:

$$v \doteq 100 \cdot \frac{e_k}{E_2} \cdot \left[\frac{e_R}{e_k} \cdot \cos \varphi_2 + \frac{e_s}{e_k} \cdot \sin \varphi_2\right] = 100 \cdot \frac{e_k}{E_2} \cdot \frac{m}{e_k}$$
(37)

Dabei ist e_k die beim Kurzschlussversuch gemessene Spannung und E_2 die als unveränderlich angenommene Spannung auf der Lastseite des Transformators. Der Ausdruck $\frac{m}{e_k} = \frac{e_R}{e_k} \cdot \cos \varphi_2 + \frac{e_s}{e_k} \cdot \sin \varphi_2$ ist durch die beim Kurzschlussversuch gemessenen Werte e_R und e_k , sowie durch die Belastungsart ($\cos \varphi_2$) bestimmt; dabei sind auch noch die Gleichungen (35) (36) zu beachten, Bemerkenswert ist nun der Umstand, dass sich der Ausdruck $\frac{e_R}{e_k} \cdot \cos \varphi_2 + \frac{e_s}{e_k} \cdot \sin \varphi_2$ gemäss der Fig. 14 in einfachster Weise graphisch darstellen lässt, denn das Rechteck OacbO im 4. Quadranten und das Rechteck Of KhO im 2. Quadranten entspricht dem ersten und zweiten Teil des Binoms in der GI. (37); der Zusammenhang zwischen den Werte-

paaren $\frac{e_R}{e_k}$ und $\frac{e_s}{e_k}$, bezw. $\cos \varphi_2$ und $\sin \varphi_2$ ist durch die Linienzüge a d f und b g h

gegeben, wobei die Kreise K_1 und K_2 als graphische Darstellung der Funktionsformen Gl. (35) und (36) verwendet werden. Praktisch wertvoll ist dabei der Umstand, dass beide Kreise K_1 und K_2 denselben Halbmesser (= 1) besitzen, da ja:

$$\left(\frac{e_{\mathsf{R}}}{e_{k}}\right)^{2} + \left(\frac{e_{s}}{e_{k}}\right)^{2} = 1 \tag{36a}$$

$$\cos^2\varphi_2 + \sin^2\varphi_2 = 1 \tag{35a}$$

In dem neuen Diagramm Fig. 14 bilden also die Kreisbögen K_1 und K_2 Teile eines einzigen Kreises, dessen Halbmesser stets gleich einer beliebig gewählten Längeneinheit ist (am bequemsten 100 mm), und zwar ganz unabhängig von der jeweiligen Grösse des Belastungsstromes I, sowie unabhängig von der Belastungsart ($\cos \varphi_2$).¹)

Während also die Diagramme von Kapp und von Arnold die Aufzeichnung mehrerer Kreise erfordern, je nach der gegebenen Belastung, behält das neue Diagramm Fig. 14 stets dieselbe Lage und Grösse der Kreise K_1 und K_2 bei. Man

kann daher auch mit grossem Vorteile die Teilungen, welche überdies nach allen vier Richtungen hin $(O_1 x_1;$ Oy_1 ; Ox_2 ; Oy_2) gleich grosse Intervalle besitzen und daher zu Irrtümern kaum Anlass geben können, sowie die beiden Viertelkreise K_1 und K_2 auf Millimeterpapier vordrucken, d. h. also für alle Transformatoren stets ein Diagrammpapier derselben Form verwenden. Wählt man dabei als Halbmesser der Kreise K_1 und K_2 in Fig. 14 den Wert 100 mm, dann erfordert das Diagramm die Fläche 20 · 20 cm und kann daher samt allen nötigen Angaben für den Transformator

(Leistung, Spannung usw.) auf dem üblichen Aktenformat bequem untergebracht werden, was im Interesse einer geordneten Aufbewahrung im Archiv der Versuchsprotokolle nicht zu unterschätzen ist.

Es ist jetzt nur noch erforderlich, die beiden Rechtecke <u>O a c b O</u> und <u>O f K h O</u> in flächengleiche Rechtecke mit der Grundlinie <u>Ol</u> = 1 und <u>Op</u> = 1 zu verwandeln, weil dann die Summe der beiden Höhen H₁ und H₂ der neuen Rechtecke ein Mass für die Summe der beiden Rechteckflächen, zugleich aber auch ein Mass für das Binom $\left[\frac{e_{R}}{e_{k}} \cdot \cos \varphi_{2} + \frac{e_{s}}{e_{k}} \cdot \sin \varphi_{2}\right]$ in der Gl. (37) ist, so dass sich dann die pro-

1) Vgl. Edler, Helios 1918, No. 5 und 6 (Leipzig, Verlag Hachmeister & Thal).

zentuale Spannungserhöhung v nach der Gl. (37) in einfachster Weise berechnen lässt. Die Verwandlung der Rechtecke ist in Fig. 15 durchgeführt und ohne besondere Erklärung unmittelbar verständlich. Die einzelnen Konstruktionslinien sind in der Zahlenfolge 1 bis 10 zu ziehen. Man hat darauf noch die Summe der beiden Rechteckshöhen \overline{Om} und \overline{Oq} zu bilden und mit Hilfe der beiden parallelen Geraden ml (11) und qs (12) die Strecke ls auf dem Masstabe Ol = lA = 1,00 abzuschneiden, wodurch

der Zahlenwert des Binomes $\left[\frac{e_{R}}{e_{k}} \cdot \cos \varphi_{2} + \frac{e_{s}}{e_{k}} \cdot \sin \varphi_{2}\right]$ in der Gl. (38) graphisch

bestimmt ist.

Die ganze Aufgabe ist also, sobald die beiden Diagrammpunkte a und b bestimmt sind, zeichnerisch gelöst; der Punkt a folgt aber aus den Ergebnissen des Kurzschlussversuches, während der Punkt b durch die Belastungsart ($\cos \varphi_2$) bestimmt ist.

In dem *neuen Diagramm* Fig. 14 und 15 ist für einen bestimmten Transformator die Lage des Punktes *a nur von dem Verhältnis* $(e_R: e_k)$ *abhängig*, dagegen *von der Stromstärke I (Grösse* der Belastung) *unabhängig*. Der Einfluss der Grösse der Stromstärke äussert sich in einfachster Weise in der Gleichung (38) durch Aenderung des Wertes:

$$\frac{e_k}{E_2} = \frac{I \cdot Z_k}{E_2} \tag{38}$$

d. h. die prozentuale Spannungserhöhung v ändert sich proportional mit der Stromstärke I, solange φ_2 ungeändert bleibt. Bestimmt man also die prozentuale Spannungserhöhung v zunächst für den Strom I bei Normallast, dann lässt er sich für ungeändertes $\cos \varphi_2$ für 1/4-Last, 1/2-Last, 3/4-Last und 5/4-Last sofort angeben. Es ist daher bei Verwendung des neuen Diagrammes ganz überflüssig, für jede Stromstärke ein besonderes Diagramm zu zeichnen, während die Diagramme von Kapp und von Arnold für jede Stromstärke von neuem gezeichnet werden müssen, wenn man sich nicht durch Aenderung des Prozent-Masstabes hilft, was aber leicht zu Irrungen Anlass geben kann.

Der Einfluss der *Belastungsart* ($\cos \varphi_2$) äussert sich in dem neuen Diagramm Fig. 14 und 15 durch Aenderung der Lage des Punktes *b*.

Aus diesen Erwägungen geht hervor, dass die Bestimmung der prozentualen Spannungserhöhung überhaupt nur die *einmalige Aufzeichnung des neuen Diagrammes* erfordert (Fig. 14 und 15), um den Einfluss des Leistungsfaktors $\cos \varphi_2$ berücksichtigen zu können, während der Einfluss der Grösse der Belastung in dem Verhältnis $(e_k: E_2)$ Gl. (38) zum Ausdrucke kommt und durch Rechnungen einfachster Art berücksichtigt werden kann.

In Fig. 15 ist $(e_R : e_k) = 0.45$ und $\cos \varphi_2 = 0.73$ angenommen; dazu gehören die Werte $(e_s : e_k) = 0.893$ und $\sin \varphi_2 = 0.6835$, die man aus den Gleichungen (35) und (36) bestimmen kann, wenn man sich mit der Genauigkeit der Zeichnung Fig. 15 nicht zufrieden gibt. Mit diesen Werten erhält man:

$$\frac{m}{e_k} = \left[\frac{e_R}{e_k} \cdot \cos \varphi_2 + \frac{e_s}{e_k} \cdot \sin \varphi_2\right] = 0.45 \cdot 0.73 + 0.893 \cdot 0.6835 = 0.9389 \sim 0.94.$$

Die Zeichnung selbst ergibt bei nur einiger Sorgfalt (Fig. 15) für die Länge Is:

$$\frac{m}{e_k} \doteq 0.94$$
 (wie die Rechnung)

In Fig. 15 sind auch noch die Werte der Funktion $\left(\frac{m}{e_k}\right)$ für $\cos \varphi_2 = 0 \dots 0, 2 \dots$ $0, 3 \dots 0, 5 \dots 0, 73 \dots 0, 9 \dots 0, 95$ und 1,0 als Ordinaten über dem zugehörigen Werte von $\cos \varphi_2$ eingetragen. Die so entstandene Kurve für $\left(\frac{m}{e_k}\right)$ als Funktion des Leistungsfaktors $\cos \varphi_2$ hat ein deutlich erkennbares Maximum etwa bei $\cos \varphi_2 = 0,45$ (für $e_R: e_k = 0,45$); das Maximum selbst hat den Wert 1,000, wie Fig. 15 zeigt. Es ist nun von Interesse, diesen Maximalwert der Funktion $(m: e_k)$ ganz allgemein zu bestimmen.

Setzt man zur Abkürzung:

$$\frac{e_{\mathsf{R}}}{e_{\mathsf{k}}} = A \quad \text{und} \ \frac{e_s}{e_{\mathsf{k}}} = B \tag{39}$$

wobei die Konstanten A und B durch die Gleichung

$$A^2 + B^2 = 1 \tag{36b}$$

verknüpft sind, dann wird die Bedingung für den Maximalwert der Funktion $\left(\frac{m}{e_k}\right)$, wobei $\varphi_2 = \varphi_m$ für das Maximum:

$$\frac{d (A \cdot \cos \varphi_2 + B \cdot \sin \varphi_2)}{d \varphi_2} = 0$$

$$-A \cdot \sin \varphi_m + B \cdot \cos \varphi_m = 0$$

$$tg \varphi_m = \frac{B}{A}$$
(40)

somit:

$$\frac{1}{\cos^2 \varphi_m} = 1 + tg^2 \varphi_m = \frac{A^2 + B^2}{A^2} = \frac{1}{A^2}$$

$$\cos \varphi_m = A \qquad \sin \varphi_m = B \qquad (41)$$

Für den Winkel φ_m wird daher der Höchstwert der Funktion selbst:

$$\left(\frac{m}{e_k}\right)_{max} = A \cdot \cos \varphi_m + B \cdot \sin \varphi_m = A^2 + B^2 = 1$$
(42)

d. h. für jedes beliebige Verhältnis $e_{\mathbb{R}}: e_{\mathbb{k}} = A$ gibt es stets einen Winkel φ_m , also auch einen $\cos \varphi_m = A$, für welchen die prozentuale Spannungserhöhung den Höchstwert

$$v_{max} = 100 \cdot \frac{e_k}{E_2} \cdot \left(\frac{m}{e_k}\right)_{max} = 100 \cdot \frac{e_k}{E_2}$$
(43)

erreicht. Diesem ungünstigen Werte wird man im Betrieb nach Möglichkeit auszuweichen suchen, d. h. man soll womöglich

 $\cos \varphi_2 \gtrless \left(\frac{e_{\mathsf{R}}}{e_k}\right) \tag{44}$

wählen; sind die Betriebsverhältnisse, d. h. also, ist $\cos \varphi_2$ gegeben, dann ist der Transformator so zu wählen, oder bei einem neuen Entwurf so zu bemessen, dass Gleichung (44) erfüllt wird.

In Fig. 16 sind diese Verhältnisse klar zu überblicken; man sieht, dass für die gewöhnlich vorkommenden Werte $\cos \varphi_2 = 0.7$ bis 1.0 die Verringerung des Wertes $\left(\frac{e_{\rm R}}{e_k}\right)$ günstig wirkt; es soll also sein:

Für
$$\cos \varphi_2 = 1, 0 \dots \left(\frac{e_r}{e_k}\right) \gtrless 0,900$$

0,9 0,615
0,8 0,455
0,7 0,315

wenn der Wert $(m : e_k)$ und damit auch die prozentuale Spannungserhöhung dem Höchstwert v_{max} (Gl. 43) nur bis auf 90% nahekommen darf. Nur für $\cos q_2 = 0,7$ wird diese Forderung in der Regel Schwierigkeiten machen, für $\cos q_2 > 0,7$ lässt

sich gewöhnlich leicht erfüllen, ja sogar überbieten. Fig. 16 gibt also ein gutes Bild dafür, wie sich die Spannungserhöhung des Transformators mit dem $\cos \varphi_2$ ändert, und wie sich die Grösse des Widerstandes R und der davon abhängigen Spannungskomponente e_R äussert; man gewinnt also einen Einblick hinsichtlich der Verteilung des Widerstandes R und der Induktivität $X = \omega \cdot L$ im Transformator. Besonders deutlich ist auch die Erkenntnis, die aus Fig. 16 folgt, dass man bei gegebenem Verhältnis $(e_{R}:e_{k}) < 0,7$ stets bei $\cos q_2 = 1,000$ die geringste prozentuale Span-

nungserhöhung zu erwarten hat (Schnittpunkt der Geraden $\cos \varphi_2 = 1$ mit dem Kreisbogen $\cos \varphi_2 = 0$).

Wie sich diese Verhältnisse für den Sonderfall $(e_{R}:e_{k}) = 0.45$ stellen, war schon aus Fig. 15 zu ersehen; dort liegt der Höchstwert (Punkt M) bei

$$\cos \varphi_m = A = (e_{\rm R} : e_k) = 0.45;$$

grössere Werte für $\cos \varphi_2$ verbessern die Verhältnisse ganz wesentlich, besonders zwischen 0,8 und 1,0, wo die Kurve *MPC* sehr steil abfällt. Das Bestreben, den $\cos \varphi_2$ mit allen Mitteln recht nahe an den Wert 1,00 heranzubringen, ist also auch hier durchaus begründet.

Die Werte der Fig. 16 sind in der Tabelle I zusammengestellt; die Berechnung kann dann nach der Gleichung (37) erfolgen.

Beispiele.

I. Drehstrom-Transformator. 500 kVA, Frequenz f = 50; Spannungen bei Leerlauf: $E_{01} = 19300$ Volt $E_{02} = 5110$ Volt verkettet;

Stromstärke bei Vollbelastung:

$$I_1 = 15,5$$
 Amp. $I_2 = 57,6$ Amp. bei $\cos \varphi_2 = 0,8$.
Schaltung: Stern-Stern.

Werte für $\left(\frac{e_{R}}{e_{k}} \cdot \cos g_{2} + \frac{e_{s}}{e_{k}} \cdot \sin g_{2}\right)$ Tabelle 1														
cos g	0 ₂ =	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95	1,00	
$\frac{e_R}{e_K} =$	0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8	1,000 0,995 0,980 0,954 0,917 0,866 0,800 0,714 0,600	0,995 1,000 0,995 0,980 0,952 0,911 0,856 0,780 0,677	0,980 0,995 1,000 0,995 0,979 0,949 0,904 0,840 0,748	0,954 0,980 0,995 1,000 0,995 0,976 0,943 0,891 0,812	0,917 0,952 0,979 0,995 1,000 0,994 0,974 0,935 0,870	0,866 0,911 0,949 0,976 0,994 1,000 0,993 0,969 0,920	0,800 0,856 0,904 0,943 0,974 0,993 1,000 0,991 0,960	0,714 0,780 0,840 0,891 0,935 0,969 0,991 1,000 0,988	0,600 0,677 0,748 0,812 0,870 0,920 0,960 0,988 1,000	0,436 0,524 0,607 0,686 0,760 0,828 0,889 0,942 0,982	0,312 0,406 0,496 0,583 0,666 0,745 0,820 0,888 0,947	0 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0,800	
	0,9	0,436	0,524	0,607	0,686	0,760	0,828	0,889	0,942	0,982	1,000	0,991	0,900	
	0,95 1,00	0,312	0,406 0,100	0,496	0,583	0,666	0,745	0,820	0,888	0,947	0,991 0,900	0,950	1,000	

Messwerte:

Wattverbrauch bei Leerlauf: 2300 W bei normaler Spannung (19300/5110 Volt); Wattverbrauch bei Kurzschluss:

6200 W bei normaler Stromstärke (15,5/57,6 A)

Leerlaufstrom $I_{02} = 2,62$ A; Kurzschlusspannung $e_{k_1} = 465$ V; Kurzschlussstrom $I_{k_1} = 15,5$ A; $I_{k_2} = 57,6$ A.

Alle Spannungswerte sind zwischen zwei Klemmen gemessen, d. h. als ver-kettete Spannungen anzusehen. Wir rechnen alle Werte für eine Phase um; die Leistungen sind also durch 3, die Spannungen gemäss der Schaltungsweise "Stern-Stern" durch 1/3 zu dividieren, während die Stromstärken ungeändert bleiben.

Für die Konstruktion des Diagrammes sind also folgende Werte massgebend:

$$N_{02} = \frac{2\,300}{3} = 767 \text{ W}; \qquad E_{01}^* = \frac{19\,300}{\sqrt{3}} = 11\,140 \text{ V}; \quad E_{02}^* = \frac{5\,110}{\sqrt{3}} = 2\,950 \text{ V};$$

$$N_{k_1} = \frac{6\,200}{3} = 2067 \text{ W}; \quad e_{k_1}^* = \frac{465}{\sqrt{3}} = 268,3 \text{ V}; \quad I_1^* = I_{k_1} = 15,5 \text{ A};$$

 $I_2^* = I_{k_2} = 57,6 \text{ A}.$

Man findet zunächst (pro Phase):

$$e_{\rm R} = \frac{N_{k_1}}{I_1} = \frac{2\,067\,\,{\rm W}}{15,5\,\,{\rm A}} = 133,3\,\,{\rm V}$$
$$\left(\frac{e_{\rm R}}{e_k}\right)^2 = \left(\frac{133,3}{268,3}\right)^2 = 0,247\,\,({\rm vgl.\ Fig.\ 17})$$
$$\left(\frac{e_s}{e_k}\right)^2 = 0,753\,\,\frac{e_s}{e_k} = 0,868\,.$$

Für $\cos \varphi_2 = 0.8$ wird $\sin \varphi_2 = 0.6$ (vgl. Fig. 17); daher ist:

$$m = \frac{e_{\rm R}}{e_{\rm k}} \cdot \cos \varphi_2 + \frac{e_{\rm s}}{e_{\rm k}} \cdot \sin \varphi_2 = 0,497 \cdot 0,8 + 0,868 \cdot 0,6 = 0,9184;$$

somit wird für $\cos \varphi_2 = 0.8$:

$$v = 100 \cdot \frac{e_k}{E_2} \cdot m = 100 \cdot \frac{e_k}{E_{01}} \cdot m - 100 \cdot \frac{268,3}{11\,140} \cdot 0,9184 = 2,213\%.$$
Für $\cos \varphi_2 = 1,00$ erhält man:
 $v \cdot 100 \cdot \frac{268,3}{11\,140} \cdot 0,497 = 1,197\%.$
Beispiel I.
 $v \cdot 100 \cdot \frac{268,3}{11\,140} \cdot 0,497 = 1,197\%.$
Das zugehörige Diagramm ist in Fig. 17
dargestellt.
II. Drehstrom-Transformator. 114 kVA,
Frequenz $f = 50;$ $E_{01} = 10\,500\,V;$
 $E_{02} = 202\,V;$ $I_1 = 6,43\,A;$ $I_2 = 364,3\,A$
bei $\cos \varphi_2 = 1,0.$
Schaltung: Dreieck-Stern.
Leerlaufleistung: 966 Watt bei 10\,500
202 Volt; $I_{02} = 17,4$ Amp.
Kurzschlussleistung: 2075 Watt bei
 $6,43/364,3$ Amp.; Kurzschlusspannung
 $e_{k1} = 298$ Volt.

Gemäss der Schaltung $\Delta_i^{\prime} \lambda$ erhält man für eine Phase:

$$E_{01} = 10\ 500\ V; \qquad E_{02}^* = \frac{E_{02}}{\sqrt{3}} = \frac{202}{\sqrt{3}} = 116,6\ V;$$
$$N_{02} = \frac{966}{3} = 322\ W; \qquad N_{k_1} = \frac{2075}{3} \div 692\ W;$$
$$e_{k_1} = 298\ V; \qquad I_{1,4} = \frac{6,43}{\sqrt{3}} = 3,71\ A; \qquad I_2 = 364,3\ A.$$

Daher wird (pro Phase):

$$e_{\rm R} = \frac{N_{k1}}{I_{1\Delta}} = \frac{692}{3,71} = 186,6 \text{ V}$$
$$\frac{e_{\rm R}}{e_{k}} = \frac{186,6}{298} = 0,626 \qquad \left(\frac{e_{\rm R}}{e_{k}}\right)^{2} = 0,392$$

$$\frac{e_s}{e_k} = \sqrt{1 - 0.392} = 0.780;$$
 (Vgl. auch Fig. 18).

Für $\cos \varphi_2 = 1,0$ wird $\sin \varphi_2 = 0$, daher:

$$m = \frac{e_{\mathsf{R}}}{e_k} \cdot 1 + \frac{e_s}{e_k} \cdot 0 = 0,626$$

und

$$v = 100 \cdot \frac{e_k}{E_{01}} \cdot m = 100 \cdot \frac{298}{10\,500} \cdot 0,626 = 1,78\%$$

$$E_{02}^* = \frac{118,8}{\sqrt{3}} = 68,6 \text{ V}; \ N_{k_1} = \frac{126}{3} = 42 \text{ W}; \ e_{k_1}^* = \frac{22,8}{\sqrt{3}} = 13,16 \text{ V};$$

$$I_1^* = I_{k_1} = 4,64 \text{ A}; \qquad I_2^* = I_{k_2} = 25,1 \text{ A}.$$

Man erhält somit:

$$\frac{e_{\rm R}}{e_{\rm k}} = \frac{N_{k1}}{I_1^* \cdot e_{\rm k}} = \frac{42}{4,64 \cdot 13,16} = 0,689$$
$$\frac{e_{\rm s}}{e_{\rm k}} = \sqrt{1 - 0,474} = 0,725 \quad (\rm Vgl.\ Fig.\ 19);$$

daher wird: Für $\cos \varphi_2 = 0.8$:

v

$$m = 0,689 \cdot 0,8 + 0,725 \cdot 0,6 = 0,9862$$
$$= 100 \cdot \frac{e_{k_1}^{*}}{E_{01}^{*}} \cdot m = 100 \cdot \frac{13,16}{375} \cdot 0,9862 = 3,46\%$$

Für $\cos \varphi_2 = 1,0$:

$$m = 0,689;$$
 $v = 100 \cdot \frac{13,16}{375} \cdot 0,689 = 2,42\%$

Das zugehörige Diagramm zeigt Fig. 19.

 Es wird also:

$$\frac{e_{\rm R}}{e_{\rm k}} = \frac{N_{\rm k1}}{I_{\rm k1} \cdot e_{\rm k}} = \frac{36}{3.5 \cdot 13.3} = 0,773$$
$$\frac{e_{\rm s}}{e_{\rm k}} = \sqrt{1 - 0.773^2} = 0.635 \text{ (vgl. Fig. 20);}$$

daher für $\cos \varphi_2 = 1$:

$$m = 0,773 \qquad v = 100 \cdot \frac{e_{k_1}}{E_{01}} \cdot m = 100 \cdot \frac{13,3}{320} \cdot 0,773 = 3,21\%$$

und für $\cos \varphi_2 = 0,8$:
 $m = 0,773 \cdot 0,8 + 0,635 \cdot 0,6 = 0,9994$

$$v = 4.15 \cdot 0.9994 = 4.15\%$$

Das Diagramm ist in Fig. 20 dargestellt.

Aus den Diagrammen Fig. 17 : 20 kann man entnehmen, dass die Werte für m hinreichend genau aus der Zeichnung abgelesen werden können, und zwar für beliebige Werte des Leistungsfaktors $\cos \varphi$; die Berechnung der prozentualen Spannungserhöhung $v = 100 \cdot \frac{e_k}{E_{01}} \cdot m$ macht dann keinerlei Schwierigkeiten; dabei ist $E_{01} = E_2 =$ konstant (für das Uebersetzungsverhältnis 1:1).

Zusammenfassung.

Aus dem Spannungsdiagramm des Transformators wird das bekannte Diagramm von Kapp zur Bestimmung des Spannungsabfalles abgeleitet, und sodann der Zusammenhang desselben mit dem Diagramm von Arnold erklärt; die Wichtigkeit dieses Diagrammes wird durch die grosse Genauigkeit begründet. Aus den analytischen Beziehungen die dem Arnold-Diagramm zugrundeliegen, wird ein neues einfaches Diagramm entwickelt, das die Bestimmung der prozentualen Spannungserhöhung (und daher auch des prozentualen Spannungsabfalles) auf graphischem Wege fast ohne jede Rechnung ermöglicht.