Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 11 (1920)

Heft: 3

Artikel: Erzeugung einer Gleichspannung vom vielfachen Betrage einer

Wechselspannung ohne Transformator

Autor: Greinacher, H.

DOI: https://doi.org/10.5169/seals-1061789

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZ. ELEKTROTECHNISCHER VEREIN

BULLETIN

ASSOCIATION SUISSE DES ÉLECTRICIENS

Erscheint monatlich mit den Jahres-Beilagen "Statistik der Starkstromanlagen der Schweiz" sowie "Jahresheft" und wird unter Mitwirkung einer vom Vorstand des S. E. V. ernannten Redaktionskommission herausgegeben.

Alle den Inhalt des "Bulletin" betreffenden Zuschriften

sind zu richten an das

Generalsekretariat

des Schweiz. Elektrotechnischen Vereins, Neumühlequai 12, Zürich 1 - Telephon: Hottingen 37.08

Alle Zuschriften betreffend Abonnement, Expedition und Inserate sind zu richten an den Verlag:

Fachschriften-Verlag & Buchdruckerei A.-G., Hirschengraben 80/82 Zürich 1 Telephon Hottingen 36,40

Abonnementspreis für Nichtmitglieder inklusive Jahresheft: Ausland Fr. 25 Schweiz Fr. 15.-Einzelne Nummern vom Verlage Fr. 1.50 plus Porto. Publié sous la direction d'une Commission de Rédaction nommée par le Comité de l'A.S.E.

Ce bulletin paraît mensuellement et comporte comme annexes annuelles la "Statistique des installations électriques à fort courant de la Suisse", ainsi que l'"Annuaire".

Prière d'adresser toutes les communications concernant la matière du "Bulletin" au

Secrétariat général

de l'Association Suisse des Electriciens Neumühlequai 12, Zurich 1 - Telephon: Hottingen 37.08

Toutes les correspondances concernant les abonnements, l'expédition et les annonces, doivent être adressées à l'éditeur : Fachschriften-Verlag & Buchdruckerei S. A.

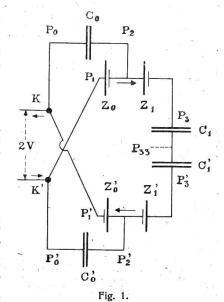
Hirschengraben 80/82 Zurich 1 Téléphone Hottingen 36.40

Prix de l'abonnement annuel (gratuit pour les membres de l'A.S.E.), y compris l'Annuaire Fr. 15.— pour la Suisse, Fr. 25.— pour l'étranger. L'éditeur fournit des numéros isolés à Fr. 1.50, port en plus.

XI. Jahrgang XI° Année

Bulletin No. 3

Erzeugung einer Gleichspannung vom vielfachen Betrage einer Wechselspannung ohne Transformator.


Von Prof. Dr. H. Greinacher, Zürich.

Eine Anordnung, die Wechselstrom in konstanten Gleichstrom umwandelt, ist früher 1) schon beschrieben worden. Die dort erwähnte Schaltung liefert eine Gleichspannung vom

doppelten Betrage der benützten Wechselstromscheitelspannung. Es war nun die Frage naheliegend, ob es nicht möglich wäre, statt einer Verdopplung der Spannung, wie sie schon länger bekannt ist,2) allgemein eine Vervielfachung zu bekommen. In neuester Zeit ist es mir nun gelungen, unter alleiniger Verwendung von Kondensatoren und Ventilzellen eine Verdreifachung und schliesslich eine theoretisch wenigstens beliebige Vervielfachung der Wechselspannung zu erzielen. Experimentell ausprobiert habe ich die Schaltung zur Vervierfachung und Verfünffachung der Wechselspannung.

Die Verdreifachung der Wechselspannung.

Die Schaltung ist in Fig. 1 wiedergegeben C_0 C_0' C_1 C_1' , sind Kondensatoren, Z_0 Z_0 Z_1 Z_1 Gleichrichter. Diese bestehen z. B. aus einer einzigen Graetz'schen Ventilzelle oder aus mehreren solchen hintereinandergeschalteten Zellen. KK' bedeuten die Klemmen, an welchen die Wechselspannung vom Scheitelwert 2 V Volt liege, P_3 P_3 die Punkte,

¹⁾ Verhandlg. d. Deutsch. Physikal. Gesellsch., 16. Jahrgang, S. 320, 1914; Physikal. Zeitschr. 17. Jahrgang, S. 343, 1916; Bulletin des S. E. V. 9. Jahrgang, S. 85, 1918.

²⁾ P. Villard. Journ. de Phys. (3) 10. 28. 1901; Les rayons cathodiques, 2^{me} édit., Paris 1908, p. 8, erwähnt zwei solche Schaltungen, die jedoch keine Konstanz der Spannung liefern.

an denen die Gleichspannung vom Betrage 6V Volt abgenommen werden kann. Bei der praktischen Ausführung kann z. B. Z_1' weggelassen werden, ebenso C_1' . In der Figur sind zwei hintereinandergeschaltete Kondensatoren C_1 C_1' nur darum eingezeichnet, um die nun folgende Betrachtung der Funktionsweise möglichst einfach zu gestalten.

Funktionsweise.

Wir nehmen an, dass vor Einschaltung des Wechselstroms alle Punkte des Schemas das Potential 0 haben. Da wir ferner einem Punkte ein beliebiges Potential zuteilen können, nehmen wir ferner an, der Mittelpunkt der an KK' liegenden Wechselstromquelle sei dauernd auf dem Potential 0. Dann wird es aus Symmetriegründen auch der Punkt P_{33} sein. Nach Einschalten der Stromquelle schwankt das Potential von K zwischen -V und +V und das von K' gleichzeitig zwischen +V und -V. Die Punkte P_0 und P_1 (P_0 und P_1) haben also stets gleiches und entgegengesetztes Potential. Die Spannung, die sich an den verschiedenen Punkten P einstellt, lässt sich nun leicht angeben.

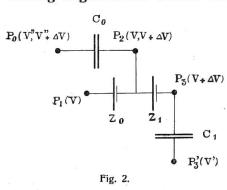
Wir betrachten die Punkte P_0 P_2 P_3 und setzen der Einfachheit halber voraus, dass alle Kondensatoren gleiche Kapazität besitzen. Befindet sich K auf -V (und K' auf +V), so nehmen P_2 und P_3 , da die Ventile ein steigendes Potential ausgleichen, das Potential +V an, während gleichzeitig P_0 auf -V sich befindet. P_0 steigt nun von -V auf +V, während K' von +V auf -V sinkt. Das Ventil Z_0 schliesst sich also und die Potentialerhöhung von P_0 (2 V) teilt sich (durch elektrische Induktion) zur Hälfte (da $C_0 = C_1$) P_2 und P_3 mit. Z_1 ist während dieses Vorganges geöffnet. Man hat also gleichzeitig P_0 (+V), P_2 (+V+V) und P_3 (+V+V). Nimmt nun P_0 wieder ab, so sinkt auch P_2 . Das Ventil Z_1 schliesst sich und P_3 bleibt auf 2 V Volt. Während P_0 , wie zu Anfang, wieder -V Volt hat, ist P_2 auf +V Volt (Z_0 geöffnet!) und P_3 auf (+2V Volt). Nun steigt P_0 wieder um 2 V Volt, Z_0 schliesst sich und P_2 wächst mit, während zunächst Z_1 noch geschlossen bleibt. P_2 würde ebensoviel steigen wie P_0 , falls Z_1 geschlossen bliebe. Sobald aber P_2 auf 2 V Volt gestiegen ist, öffnet sich Z_1 wieder und der Anstieg von 2 V auf 3 V Volt wird wieder nur zur Hälfte effektuiert. D. h. es hat P_0 das Potential (+V) Volt,

 P_2 und P_3 dagegen $(V+V+\frac{1}{2}V)$ Volt.

Die zusammengehörigen Werte für P_0 P_2 P_3 nach je einer halben Periode sind also, wie man ohne weiteres einsieht, folgende:

Potential nach		P_0	P_2	P_3
0 Perioden .		-v	+V	+V
1/2 Periode .	•	+V	V+V	V+V
1 Periode .		-V	$oldsymbol{v}$	V + V
$1^{1}/_{2}$ Perioden .		+V	$V + V + \frac{1}{2} V$	$V + V + \frac{1}{2} V$
2 Perioden .		-V	$oldsymbol{V}$	$V + V + \frac{1}{2}V$
$2^{1/2}$ Perioden .		+V	$V + V + \frac{1}{2} V + \frac{1}{4} V$	$V + V + \frac{1}{2} V + \frac{1}{4} V$
3 Perioden .	•,	-V	\boldsymbol{V}	$V + V + \frac{1}{2} V + \frac{1}{4} V$
$3^{1}/_{2}$ Perioden .	٠.	+V	$V + V + \frac{1}{2} V + \frac{1}{4} V + \frac{1}{8} V$	$V + V + \frac{1}{2} V + \frac{1}{4} V + \frac{1}{8} V$
usw.				

Die Potentialwerte an P_3 nähern sich einem konstanten Endwert, der theoretisch nach unendlich vielen, praktisch schon nach wenigen Perioden erreicht wird, und der den Wert hat


$$V + V(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots) = 3 V$$

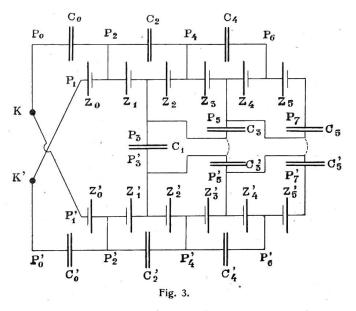
An P_2 stellt sich ebenfalls ein stationärer Zustand her, indem hier das Potential zwischen V und $3\ V$ schwankt. Derselbe stationäre Zustand wird, wie leicht einzusehen ist, für jedes beliebige Verhältnis C_1/C_0 erreicht. Die Anlaufdauer nimmt aber mit demselben zu. Für die Punkte $P_0'\ P_2'\ P_3'$ gilt dasselbe wie für $P_0\ P_2\ P_3$. Nur muss das Vorzeichen aller Potentiale vertauscht werden. Das Resultat der Schaltung ist also bei Benützung einer

Wechselspannung vom Scheitelwert 2V Volt eine oszillierende Gleichspannung mit den Spitzenwerten 2V und 6V Volt zwischen P_2 und P_2 und eine konstante Gleichspannung vom Betrage 6V Volt zwischen P_3 und P_3 .

Prinzip.

Das bei der Schaltung verwendete Prinzip geht noch deutlicher aus Fig. 2 hervor. Nehmen wir an, eine Spannung V, die wir der Einfachheit halber zunächst als konstant annehmen wollen, sei in Gleichspannung vom Betrage $(V+\varDelta V)$ zu verwandeln, wobei $\varDelta V$ beliebig angenommen werden kann. Wir legen V an den Punkt P_1 und eine periodisch

schwankende Spannung, z. B. eine Wechselspannung an P_0 , wobei die Oszillationsweite den Wert ΔV habe. Das Potential an P_0 schwanke also zwischen dem beliebigen Werte V'' und dem höheren Werte $(V''+\Delta V)$. Der Punkt P_2 lädt sich durch das Ventil Z_0 stets mindestens auf das Potential V auf, also auch im Moment, wo P_0 sein tiefstes Potential V'' annimmt. Wenn nun die Spannung an P_0 steigt, schliesst sich Z_0 , da auch die Spannung an P_2 steigt. P_2 und P_3 erreichen bei geöffnetem Ventil Z_1 ein gemeinschaftliches höheres Potential. Es folgt nun weiterhin genau dieselbe Betrachtung wie im letzten Paragraphen. Das Resultat ist, dass P_3 sich auf ein kon-

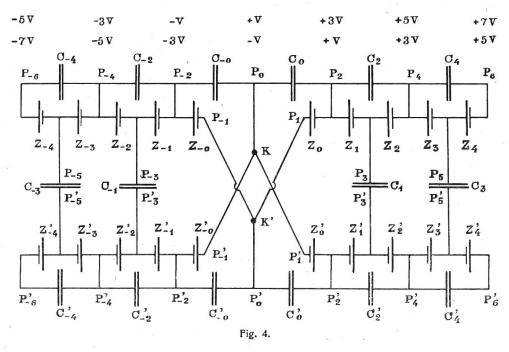

stantes Potential $(V+\Delta V)$ auflädt und sich an P_2 ein zwischen V und $(V+\Delta V)$ schwankendes Potential einstellt. Voraussetzung ist, dass man auch die freie Belegung P_3 des Kondensators C_1 auf einem konstanten Potential V (etwa dem der Erde) hält.

Es ist nun ohne weiteres ersichtlich, dass die Spannung V nicht konstant zu sein braucht. Sie kann selbst oszillieren. Nehmen wir an, V sei der Spitzenwert, so ist die Bedingung für richtiges Funktionieren der Anordnung nur die, dass V stets im selben Moment

erreicht wird, wo P_0 sein tiefstes Potential hat. Werden P_0 und P_3 direkt mit ein und derselben Wechselstromquelle verbunden, so ist dies ohne weiteres der Fall.

Weitere Vervielfachung.

Nach dem oben dargelegten Prinzip ergab sich nun die Möglichkeit, eine Spannung V um jeden beliebigen Betrag n. ΔV zu erhöhen. Nach dem Schaltprinzip Fig. 2 erhält man aus einer konstanten Spannung V und einer um ΔV oszillierenden Spannung eine weitere konstante Spannung $(V + \Delta V)$ und eine zweite oszillierende Spannung $(V, V + \Delta V)$. Diese beiden Spannungen kann man nun wiederum kombinieren, indem man P_3 die Rolle von P_1 und


 P_2 die Rolle von P_0 übernehmen lässt. Man muss dann zwei neue Punkte P_4 und P_5 erhalten. Ersterer mit der oszillierenden Spannung $(V+\varDelta V,\ V+2\varDelta V)$ und letzterer mit der konstanten Spannung $V+2\varDelta V$.

Die Schaltung Fig. 1 muss für jede weitere Spannungsvermehrung ΔV um ein Schaltungselement, wie es Fig. 2 darstellt, vermehrt werden. Es sei hier gleich das allgemeine Schema mitgeteilt (Fig. 3). Die Zusammensetzung aus den Schaltungen der Fig. 1 und 2 ist ohne weiteres ersichtlich, und damit auch die Funktionsweise. ΔV ist hier gleich 2 V. Die einander zugewandten Belege der Kondensatoren C_3 C_3 und C_5 C_5 können auch direkt

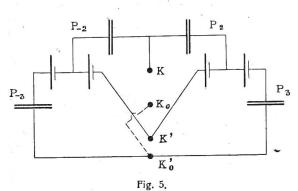
miteinander verbunden werden, bezw. es genügt, ähnlich wie bei C_1 , nur je ein Kondensator C_3 bezw. C_5 . Die skizzierte Schaltungsweise hat aber den Vorzug, dass die Kondensatoren alle nur auf die Spannung 2 V beansprucht werden, mit Ausnahme von C_1 , welcher aber ebenfalls durch drei hintereinander geschaltete Kondensatoren ersetzt werden kann.

Geradzahlige Vervielfachung.

Es sieht nun zunächst so aus, als ob die Schaltung nur ungeradzahlige Vielfache der Spannung ergäbe. Man erkennt aber, dass z. B. zwischen P_0 und P_4 eine konstante Potential-differenz von $4\,V$ Volt herrscht. Hier haben wir also eine Verdopplung.

Wenn wir nun weiter das Schaltungsschema auf der linken Seite von KK' wiederholen, so müssen auch höhere geradzahlige Vielfache herauskommen. Die vollständige Schaltung, die sämtliche Vielfache ergibt, ist somit die in Fig. 4 angegebene, wobei die ungeradzahligen Kondensatoren in einfacher Zahl verwendet sind. Wir haben die

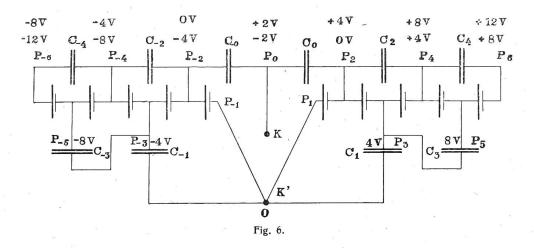
2 fache Spannung an
$$P_2$$
 P_{-2} $(P_2' P_{-2}')$ 4 , , P_4 P_{-4} 6 , , P_6 P_{-6}


Die Verdopplungsschaltung ist, wie ersichtlich, die bereits bekannte und erscheint hier als singulärer Fall eines allgemeinen Schaltungsprinzips.

Zeichnet man das Schema in diesem ausgedehnten Masse, so kann natürlich z. B. die vierfache Spannung an verschiedenen Punkten abgenommen werden, so an $P_4\,P_{-4}$, $P_2\,P_{-6}$, $P_6\,P_{-2}$. Aber in der technischen Ausführung wird man alle zur Erreichung einer bestimmten Vervielfachung nicht nötigen Schaltungselemente weglassen. Auch so erscheint der Aufwand bei der geraden Vervielfachung unnötig gross zu sein, indem zur Erreichung einer Spannung $2\,n\,V$ Volt nicht nur die Punkte $P_{2n}\,P_{-2n}$ sondern auch $P_{2n}'\,P_{-2n}'$ vorhanden sein müssen. Man kann aber die untere Hälfte des Schaltungsschemas nicht ohne weiteres weglassen. Würde man P_3' mit P_{-3}' , P_5' mit P_{-5}' usw. verbinden, so würden diese Punkte nicht auf dem Potential 0 bleiben. Man käme nicht über eine Verdopplung der Spannung hinaus. Erst durch das Zusammenwirken von oben und unten in der Schaltung (Symmetrie zwischen oben und unten) wird das Potential auf 0 gehalten.

Man kann nun aber künstlich das Potential von $P_3'P_5'\dots P_{-3}'P_{-5}'$ auf null bringen, am einfachsten dadurch, indem man diese Punkte mit der Mitte K_0 der Wechsel-

stromquelle KK' verbindet. Da nun aber nicht immer ein mittlerer Anzapfpunkt vorhanden ist, (s. Fig. 5) z. B. ein Transformator mit Anzapfung in der Mitte, so kann man KK' über einen grossen Wechselstromwiderstand schliessen, an dessen Mitte die Punkte $P_3', P_5' \ldots P_{-3}', P_{-5}' \ldots$ angeschlossen werden.


Die Schaltung zur Erzeugung geradzahliger Vielfache lässt sich noch weiter vereinfachen. Bei den bisherigen Schemas scheinen die geradzahligen Kondensatoren die indu-

zierende Rolle, die ungeradzahligen die Rolle der Sammler zu spielen. Diese Betrachtung ist aber ganz willkürlich, da wir davon ausgegangen sind, es habe die Mitte der Wechselstromquelle das Potential null. Die Rolle der Kondensatoren erscheint sofort vertauscht, sobald wir beispielsweise das Potential der Klemme K gleich null setzen. In Fig. 6 sei nun die vereinfachte Schaltung für geradzahlige Vervielfachung mitgeteilt, die man am besten übersieht, wenn man das Potential der Klemme K' als null annimmt. Man erkennt, dass das prinzipielle Schaltungselement der Fig. 2 unmittelbar angewandt ist.

Es ist einerseits P_0 mit K, anderseits P_1 mit P_3 unter sich (V = V') und mit K' verbunden.

Die Schaltung übertrifft die frühere (Fig. 4) an Wirksamkeit der Vervielfachung. Dort hat man an den Punkten P_n P_{-n} die n-fache, hier die 2(n-1)-fache Spannung. Ein praktischer Nachteil dieser Schaltung liegt aber darin, dass hier alle Kondensatoren mit Ausnahme von C_0 C_{-0} auf die doppelte Spannung beansprucht werden müssen. Man kann sich allerdings so helfen, dass man stets zwei hintereinandergeschaltete Kondensatoren verwendet. Allerdings ist damit noch nicht sichergestellt, dass die beiden Kondensatoren auch wirklich derselben Spannung ausgesetzt sind.

Es liegt aber im Wesen der mitgeteilten Schaltungen, dass im übrigen alle Kondensatoren ohne weiteres auf gleiche Spannung beansprucht werden, sodass man auch mit Kondensatoren kleiner Belastungsfähigkeit zu hohen Spannungen gelangen kann.

Da es nicht Zweck dieser Arbeit ist, alle Schaltungsmöglichkeiten zu erschöpfen, möge es genügen, auf das Prinzip und seine wichtigsten Ausführungen hinzuweisen. Doch sei noch in Ergänzung zum Gesagten erwähnt, dass man nach demselben Verfahren auch Gleichspannung ohne Zuhilfenahme von Wechselspannung transformieren kann. Die nötige oszillierende Spannung kann man z. B. so erzeugen, dass man einen Gleichstrom periodisch unterbricht oder kommutiert (Einschaltung eines Unterbrechers oder rotierenden Kommutators). Die Unterbrechungszahl kann beliebig sein, wie ja auch die Periodenzahl des Wechselstroms keine Rolle spielt.

Praktische Ausführung.

Zunächst wurde die Schaltung zur Verdreifachung der Wechselspannung (Fig. 1) hergestellt. Als Graetsche Ventilzellen dienten, wie früher (l. c.), kleine Reagensgläschen mit Na HCO $_3$ -Lösung und Elektroden aus Eisen- und Aluminiumdraht. Als Kondensatoren wurden Papierkondensatoren (Telephonkondensatoren) verwendet. Da die Ventile Z grössere Spannungen abzudrosseln hatten, bestanden sie sämtlich aus einer Anzahl, z. B. in unserem Falle 8, hintereinander geschalteten Zellen. Alle Versuche wurden mit Wechselstrom von der Frequenz 50 ausgeführt.

Es wurde mit einem Braun'schen Elektrometer die Spannung gemessen, wenn man einmal aus C_0 C_0 ' Z_0 die Verdopplungsschaltung und einmal nach Fig. 1 die Dreifachschaltung herstellte. Es ergab sich im einen Fall eine Spannung von 470 Volt, im anderen 670 Volt. Der Quotient ist also 1,43, währenddem er theoretisch 1,5 sein sollte. In Wirklichkeit muss der Wert infolge der Spannungsverluste in den nicht vollkommen idealen Ventilen (hier Z_1 und Z_1) etwas kleiner ausfallen. Aus dem gleichen Grunde nimmt auch die Spannung an P_3 P_3 nach Ausschalten des Wechselstroms langsam ab. Es wurde ferner unter Weglassung von Z_1 Z_1 ' C_1 ' geprüft, ob an P_2 P_2 eine gegenüber der Verdopplung erhöhte Spannung vorhanden war. Am Braunschen Elektrometer war dies, wie zu erwarten, nicht zu erkennen. Denn, da das Potential an P_2 P_2 zwischen 2 V und 6 V schwankt, musste sich ein mittleres Potential von der Grössenordnung 4 V ergeben, also ungefähr dasselbe, was man auch bei der Verdopplung erhält. Dagegen musste der Unterschied aus der Funken-Schlagweite erkennbar sein. Man erhielt in der Tat zwischen Al-Kugeln eine Schlagweite von 0,5 mm bei der Verdopplungsschaltung und von 0,9 mm bei Verbindung mit P_2 P_2 . Im zweiten Fall erhielt man entsprechend der bei jeder Periode nur kurz auftretenden Spitzenspannung von 6 V Volt viel weniger intensive Funken als im ersten. Die Werte können übrigens keinen Anspruch auf besondere Genauigkeit machen. Sie bestätigen aber ebenfalls die Richtigkeit der theoretischen Ueberlegungen.

Nun wurden einige Vierfachschaltungen geprüft. Es wurde die Schaltung der Fig. 5 bis zur Vervierfachung (Punkte P_4 P_{-4}) ergänzt. Der Punkt K_0 ' wurde mit dem Mittelpunkt des Transformators K K' (Anzapfung in der Mitte) verbunden. Die gemessenen Werte waren:

an
$$P_4 P_{-4}$$
 $V_4 = 950$ Volt
,, $P_3 P_{-3}$ $V_3 = 730$,,
,, $P_2 P_{-2}$ $V_2 = 570$,,

Hieraus folgt $V_4/V_2 = 1,67$ (theoret. 2,0) und $V_3/V_2 = 1,28$ (theoret. 1,5). Die schlechte Spannungsausbeute ist hier auf die Verwendung von weniger guten Kondensatoren und dann auf die Verluste in den in reichlicher Zahl verwendeten Ventilzellen zurückzuführen.

Die Schaltung wurde darauf in der Weise modifiziert, dass man die Anzapfung am Transformator nicht benützte, dafür aber die Klemmen K K' über zwei gleiche Kondensatoren (von 2 μ F) schloss und den Verbindungspunkt der beiden Kondensatoren mit K_0 verband. Die Messungen ergaben:

An
$$P_4$$
 P_{-4} $V_4 = 585$ Volt $V_4/V_2 = 1,60$
,, P_3 P_{-3} $V_3 = 490$,, $V_3/V_2 = 1,34$
,, P_2 P_{-2} $V_2 = 365$,,

Die Spannungsausbeute ist bei dieser Schaltung also nahezu dieselbe wie bei der vorigen. Dass der schlechte Wirkungsgrad durch Verluste hervorgerufen wird und bei idealen Ventilen den theoretischen erreichen würde, lässt sich auf folgende Weise zeigen: Man hebt die in Fig. 5 punktiert gezeichnete Verbindung ($K_0 - K_0$) auf. Dann wird P_3 , von Verlusten in Z_1 abgesehen, dasselbe Potential annehmen wie P_2 und P_{-3} dasselbe wie P_{-2} . An P_3 , P_{-3} hätte man also eine Spannungsverdopplung. Sobald man nun K_0 mit K_0 ' verbindet, erhalten wir nach früherem bei *derselben Zahl* der verwendeten Ventilzellen eine Verdreifachung. Ist also der Wirkungsgrad der Ventilzellen in beiden Fällen derselbe, so

muss auch das Verhältnis der an P_3 P_{-3} gemessenen Spannungen im einen wie im anderen Fall genau 1,5 sein. Die Messung ergab, wenn K_0 verbunden war an P_3 , P_{-3} eine Spannung V_3 von 740 Volt, wenn K_0 nicht verbunden war, an P_3 , P_{-3} eine Spannung V_2 von 500 Volt. Das Verhältnis beider Werte V_3/V_2 ist gleich 1,48. Ebenso ergab sich bei der Vierfachschaltung, für die das gleiche gilt,

wenn K_0 verbunden war P_4 P_{-4} : V_4 = 950 Volt; P_3 P_{-3} : V_3 = 730 Volt wenn K_0 nicht verbunden war P_4 P_{-4} : V_4' = 470 Volt; P_3 P_{-3} : V_3' = 475 Volt Hieraus ergibt sich:

$$V_4/V_4' = 2,02$$
 (theoret. 2,0) und $V_3/V_3' = 1,54$ theoret. 1,5).

Die Uebereinstimmung ist also eine sehr gute.

Jetzt wurde die Vierfachschaltung nach dem Schema der Fig. 6 hergestellt. Man erhielt folgende Werte:

Wechselspannung an KK'	Gleichspannu	Verhältnis		
in Volt (effekt.)	P_2 , P_{-2} in Volt	P_3 , P_{-3} in Volt	P_3 , P_{-3}/P_2 , P_{-2}	
105	240	390	1 , 63	
210	490	905	1,85	
	560	1040	1,86	
	790	1500	1,90	

Der theoretische Wert (2,0) wird also bis auf 5 % erreicht. Die gute Spannungsausbeute ist hier der passend gewählten Zahl von Ventilzellen nebst der Verwendung einwandfreier Kondensatoren zuzuschreiben. Mit steigender Wechselspannung wächst übrigens, wie die Tabelle zeigt, die Ausbeute. Dies wird indessen nur so lange zutreffen, als die Ventilzellen nicht auf Spannung überansprucht werden.

Die Schaltung Fig. 6 wurde in der Weise ergänzt, dass man C_1 bezw. C_{-1} aus je zwei hintereinander geschalteten Kondensatoren C_1 C_1' und C_{-1} C_{-1}' wählte. Sämtliche Kondensatoren des Schemas waren dann auf gleiche Spannung beansprucht. Man kann die gleichmässige Verteilung der Spannungsdifferenz auf die beiden Kondensatoren C_1 C_1' und C_{-1} dadurch noch sicherstellen, dass man den Verbindungspunkt des einen und des andern Paares je über ein Ventil mit der Klemme K verbindet. Die beiden Ventile müssen in entgegengesetztem Sinne geschaltet sein, sodass sich die Mitte von C_1 C_1' auf +2 V und die von C_{-1} C_{-1}' auf -2 V Volt auflädt.

Die Schaltung ergab:

Wechselspannung an KK'	Gleichspann	Verhältnis P_3 , P_{-3}/P_2 , P_{-2}	
in Volt (effekt.)	P_2, P_{-2} P_3, P_{-3}		
210	490	890	1,82

Die Spannung verteilte sich, wie festgestellt wurde, praktisch gleichmässig auf die einzelnen Kondensatoren.

Ueberdies wurde noch die Fünffachschaltung hergestellt. Hier war es von Interesse, die beiden in Fig. 3 angedeuteten Abarten zu untersuchen. Bezeichnen wir die ausgezogene Schaltung mit I, die punktierte mit II, so war bei:

Schaltung I die Spannung an
$$P_5$$
 P_5 ' 730 Volt , II , , , , P_5 P_5 ' 745 , , , P_5 P_5 ' 560 ,

Es bestätigte sich also, dass beide Schaltungen zu demselben Resultate führen. Immerhin erscheint die Spannungsausbeute bei Schaltung II um ein Geringes erhöht.

Ferner entspricht es dem Wesen der Schaltung, dass Funkenentladungen bei Schaltung I weniger intensiv sind (geringere Spannungsdifferenz an den Kondensatoren). Dass die tatsächlich erzielte Spannungsvervielfachung bei einer gegebenen Anzahl von Ventilzellen von der verwendeten Wechselspannung abhängt, zeigten auch die Messungen an der Fünffachschaltung (Ausführung II), wie folgt:

Wechselspannung P_1 P_1' in Volt (effekt.)	Gleichspannung in Volt			Verhältnis	
	$P_2 P_{-2}$	$P_3 P_{-3}$	$P_5 P_{-5}$	V_3/V_2	V_5/V_2
105	210	250	325	1,19	1,55
210	480	615	940	1,28	1,96
315	660	875	1300	1,32	1,97

Man erkennt wiederum, dass bei 105 Volt die Spannungsausbeute noch schlecht ist, sich aber bereits von 210 Volt an nicht mehr wesentlich steigert. Der relativ schlechte Wirkungsgrad von 1,97 anstatt 2,5 ist wie oben z. T. auf Rechnung von Verluste aufweisenden Kondensatoren zu setzen.

Es ist bemerkenswert, dass die Spannung von 940 Volt (bei der Vierfachschaltung 905 Volt) durch direkten Anschluss an ein Lichtnetz von 210 Volt gewonnen wurde. Es gelang ohne weiteres, mittelst der erzielten Spannung eine Reihe von passend evakuierten Entladungsröhren zum Leuchten zu bringen. An der Glimmlichtoszillographenröhre war auch direkt zu erkennen, dass die Schaltung Gleichstrom lieferte.

Neue Glasisolatoren für Bahnzwecke und Leitungsbau.

Bearbeitet vom Generalsekretariat.

Glasisolatoren sind schon seit einigen Jahren vielfach bei uns praktisch versucht worden und werden in Amerika und Frankreich, wie es scheint dort mit gutem Erfolg, verwendet. Nach verschiedenen früheren Berichten aus Amerika wurden neben Porzellanauch Glasisolatoren bis 50 000 V und mehr für den Freileitungsbau verwendet, die, nach diesen Berichten zu schliessen, sich bewährt haben. Als Hauptanwendungsgebiet für Glasisolatoren galten damals Spannungen bis 25 000 Volt.

Seit einiger Zeit sind an der Rhätischen Bahn eine grössere Anzahl Diabolo- und Tragbockisolatoren (Fig. 1), bis jetzt mit gutem Erfolg im Betrieb. Probestücke von Fahrdrahtisolatoren (Fig. 5) sind bei der Emmenthalbahn, Gornergratbahn und Jungfraubahn, sowie neuerdings bei der Seilbahn Rigiviertel in Zürich montiert.

Die neben vielen guten bis jetzt gemachten weniger günstigen Erfahrungen scheinen grösstenteils davon herzurühren, dass Glasisolatoren infolge von innern, durch die Fabrikation bedingten Materialspannungen, bei starker mechanischer Beanspruchung oder unter dem Einfluss von raschen Temperaturschwankungen eher gesprungen sind, als z. B. solche aus Porzellan. Durch geeignete Auswahl der Glassorte und durch zweckmässige und sorgfältige Fabrikations- und Abkühlungsverfahren sollten diese nachteiligen Eigenschaften wesentlich verbessert werden können.

In neuerer Zeit bringt nun auch eine Schweizer-Firma, Bigler, Spichiger & Cie. A.-G. in Biglen (Bern), eine Reihe neuer Formen von Glasisolatoren auf den Markt und es sind solche bei oben erwähnten Bahnen schon im Betrieb. Die Glasisolatoren, die als Fahrdraht und Tragbockisolatoren für Bahnzwecke, sowie als Freileitungs- und Innenraum-Stützisolatoren gebaut werden, sind der Form nach keine Neukonstruktionen; sie entsprechen in ihrer Bauart den Formen, die im Verlaufe vieljähriger Erfahrungen entstanden und sich in der Praxis bewährt haben.