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Eine neue Methode zur Herleitung der Transformatoren-
Kreisdiagramme (Heyland- und Osanna-Kreise).

Von Dr. /. Goldstein, Dipl. Ing., Zürich.

Einleitung.
Das Transformatorenproblem ist reichlich abgegrast, und wenn ich in dieser Abhandlung

auf das Thema nochmals zurückkomme, so geschieht dies aus dem Grunde, weil ich
zur Ueberzeugung gelangte, dass diese so grundlegenden Dinge, mit denen der
Elektrotechniker vertraut sein muss (man denke nur an das Heyland'sche Diagramm bei Asynchronmotoren),

in den vorhandenen Abhandlungen in einer unbefriedigenden Art hergeleitet werden.
Die folgende Abhandlung stellt einen Auszug aus einer im Jahre 1916 durchgeführten

analytischen Lösung des Transformatorenproblems dar. Ich habe in diesem Auszug die
Herleitung der Diagramme wesentlich vereinfacht. Einige Gesichtspunkte, die von Prof.
Dr. K. Kuhlmann vertreten werden, kamen dabei zur Geltung. Es liegt mir im folgenden
besonders daran, die Streuung nicht durch besondere Ansätze der Herleitung der Diagramme
vorauszuschicken, wie dies meistens getan wird, sondern umgekehrt zu zeigen, dass das
Transformatorenproblem naturgemäss auf das Streuungsproblem führt. Ich mache den
Versuch, die Kreisdiagramme des allgemeinen Transformators aus den Differentialgleichungen
für magnetisch gekoppelte Systeme zu gewinnen. Die Lösungen der Differentialgleichungen
sind bereits von der Physik her bekannt.1) Es muss aber gesagt werden, dass die Physik,
die für die Elektrotechnik wichtigen Gesichtspunkte nie klar hervorgehoben hat. (So wurde
die Verschiedenheit der Belastung im sekundären Stromkreis und das daraus resultierende
Verhalten des Transformators keiner eingehenden Untersuchung unterzogen. Die magnetische
Streuung, die mit dem Problem doch ganz verwachsen ist, wurde von der Physik kaum
erwähnt. Für die Physik war die Aufgabe mit der Auflösung der Differentialgleichungen
erledigt. Anders verhält sich die Sache für den Techniker, der neben der physikalischen

') Drude-König. Physik des Aethers, S 395, und Christiansen-Müller, Theoretische Physik S. 393*



2 BULLETIN No. 1 XI. Jahrgang 1920

Aufklärung sich mit dem Wirkungsgrade, der Phasenverschiebung und den Streuungsverhältnissen

befassen muss. So kam es auch, dass die Elektrotechniker, ohne auf die Resultate
aus der Physik zurückzugreifen, die Aufgabe gewissermassen neu und auf eine eigenartige
Weise gelöst haben. Die Resultate, zu denen Heyland ') durch Aufstellung der Spannungsdiagramme

und Osanna2), ausgehend vom Amperwindungsdiagramm, gelangten, sind für
die Theorie der Transformatoren und Induktionsmotoren grundlegend geworden. Die Methoden,
derer sie sich bedienen, sind keineswegs einfach und für den in die spezifische Art solcher
Betrachtungen nicht Eingeweihten schwer verständlich. Nachdem man jetzt in der Zurück-
führung auf physikalische Grundgesetze in der Elektrotechnik immer grösseren Wert bei-
misst, war es für mich ein Bedürfnis, die Kreisdiagramme des allgemeinen Transformators
ihrer Quelle — dem Faraday-Maxwellschen Induktionsgesetz — etwas näher zu bringen.
Es hat sich ergeben, dass man von vorneherein die Streuinduktivität gar nicht einzuführen
braucht, sondern lediglich mit den Induktionskoeffizienten rechnen kann. Der von Heyland
eingeführte Streuungskoeffizient ergibt sich aus der Rechnung, ein Umstand, der die
Bedeutung der Streuung ins richtige Licht bringt.

Integration der Differentialgleichungen des Problems.

Bekanntlich lauten die Differentialgleichungen für ein magnetisch gekoppeltes System
wie folgt:

n dt\ „„ dû
e> =/,/?, + U dt+M dt

0 e2 -+- 4 R2 + MdA^MdA
dt dt

(1)

Dabei bedeuten : e! e2 die primäre bezw. sekundäre Klemmenspannung und i\ 4 den

primären bezw. sekundären Strom.
Alle elektrischen Grössen des Transformators sind durch die fünf Konstanten : primären
und sekundären Widerstand Rx und R2 primäre und sekundäre Selbstinduktivität L1 und Z2

und die gegenseitige Induktivität M bestimmt, wenn die Belastung jeweilen gegeben ist.
Bezeichnen wir mit Ra, La und Ca die Konstanten der Belastung, so gilt folgende

Beziehung:

• d i / dk 1 dt\
e2 - '2 Ra + La

dt a dt

Setzen wir diesen Wert für e2 in das obige Gleichungssystem ein, so erhalten wir das
Gleichungssystem des belasteten Transformators

di< din

(ta)

0 4 (Ri + Ra) + (l, + 4, - -Ja
Dieses System lässt sich in bekannter Weise auf eine einzige Differentialgleichung zweiter
Ordnung zurückführen. Diese lautet:

d2 4 R, L\ + (Ra + R2) U di\ Rt (Ra + R2)

dt2 M—UL'n. dt M—UL'n, h

_
(4*2 -4 Ra) et _ u de}
M — LXL\ M—UL'n, dt

(2)

') E.T.Z. 1894, S. 561.

2) Zeitschrift für Elektrotechnik, Wien 1899, S. 223.
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wobei Z/2 Z2 + La —
oACa

ist.

Für die aufgedrückte Klemmenspannung setzen wir eine Sinusfunktion voraus; man kann
aber die Rechnung für jede Kurvenform durchführen, indem man von der Fourier'schen
Reihenentwicklung Gebrauch macht. Wir setzen also zunächst voraus:

d G

Ci sin (m t) und folglich — m Et cos (w t)

Es lässt sich leicht ein partikuläres Integral der inhomogenen Differentialgleichung (2) finden.
Nun kann man aber zeigen, dass durch das partikuläre Integral der stationäre Zustand des
Transformators vollständig charakterisiert ist. Das allgemeine Integral der Differentialgleichung

(2) besitzt nur noch additive Glieder, die mit der Zeit t abklingen und infolgedessen

nur für Ausgleichsvorgänge in Betracht kommen können.

Wir gewinnen das partikuläre Integral der Gleichung (2) durch den Ansatz :

/, A sin (w t) + B cos (w t)

Bildet man nach diesem Ansatz — und ^ und setzt die gewonnenen Werte in die
dt dt

Differentialgleichung (2) ein, so erhält man durch Vergleichung der Koeffizienten von sin (to t)
und cos (co t) folgende zwei Gleichungen für A und B :

A (t„2 (M — U L\) + /?, (/?„ + /?,)} -£<«{/?, L', + (Rn + RA Z,} (R„ + RA Ey

A m {/?! L\ + (Ra + /?,) U) + B {co2 (M - U L'A + Ri (Ra + 7?2)} L\ to E,

Es wird:
JA AO AB

und B wo

D - (to2 (,M2 - U L'A + 7?! (Ra + /?a)}2 + <o2 {(/?„ + /?2) Z, -4

A A — E1 {/?, [(/?„ + RA2 + L'A co2] + (R„ + RA2 <o2 M2}

AB— — E{ m {Z, [(/?„ + RA2 + Z'22 -o2l — Z'2 (o2 W2}

Es erweist sich als zweckmässig, folgende Abkürzungen einzuführen :

M2 ci'2
«2 /?i + (/?„ + RA A R

Rc L'y

(3)(Ra + Rl)2 + L' 2 W2

Z, -- Zo' K2 Z /?„ + /?, /?y

Mittels dieser Abkürzungen lassen sich zl A und A B wie folgt schreiben :

A A A (R'2 + Z'2 a,2) (/?! + R' u') A R (R'2 + co2 L'A)
A B — Ei w (R'2 + Z'.2 to2) (Z, - Z'2 K2) - A « Z (/?'2 + o)2 L'A)

Es gelingt auch die Grössen R und Z in den Ausdruck für D einzuführen.

Nach einer kleinen Umformung erhalten wir:

/) (/?'* + ciA L'A) {(Rt + R' A)2 + w2 (Li — L\ k2)2} (R'2 + <o2 Z'22) (/?* 4- w2 Z2)

Es lassen sich jetzt A und B auf die folgende einfache Form bringen :

Ei R n Ex oo L
A

R' + oAL2 ' B -- R2 + co2 Z2



4 BULLETIN No. i XL Jahrgang 1920

Das partikuläre Integral der Differentialgleichung (2) lässt sich nun folgendermassen schreiben :

Ey / R sin (a>t) co Leos (cot) \
]/R2 + w2 Z2 V]//?2 + Z2 }/R2 + o)2 Z2 /

Setzen wir nun : cos œ>

]//?2 + «212

co L
so wird: s//7 w,

l//?2 + m2 z2

H m L
und h -

1 s/o (wf- epi), wo £g </, - (4)
]//?2 + o)2 Z2

Hierdurch ist der belastete Transformator auf eine Drosselspule mit dem Ohmschen Widerstand

/?=/?!+(/?„ + /?,) K2

und mit einer Induktivität

Z Z^ I Z2 I Zfl
O,2 C„

zurückgeführt, wobei

2
W2 «2

« ; : TS 'St.

(Ra + Ri)2 + Z2 z„ —
1 \2x

M2
0)' c„

Wir sind jetzt in der Lage, die zweite Differentialgleichung des Systems (1a) zu integrieren.

Setzen wir aus der Gleichung (4) den Wert für ^ ein, so ergibt sich folgende

Differentialgleichung für den sekundären Strom:

di\ R' M Ey co „
dt + U, " + F. cos (1' '-^ - 0 ' (5)

Das partikuläre Integral dieser Differentialgleichung erhält man wie früher durch den Ansatz :

/2 Ai sin (co t) -\- B\ cos (10 f)

Für Ay und By ergeben sich folgende Werte:

(U2 M L\ cos (ft -|- 00 M R' sin q, Zj
Ay -
By

w2 Z'22 -+- R'2 |//?2 + (ö2Z2

w2 M Z'2 s//7 r/,, — o) M R' cos qi, Ey

of zy+R'2

(6)

Setzen wir jetzt : — --Â 2
cos xi>

1/R'2 + o>L',2

/?' /?'
so wird : s//7 w und tg w —

iR'2-A- <u2ZV
7 « Ri

0) 1^1

Bei Beachtung der Substitution u erhalten wir für /a folgenden Wert :

|//?'2+«2 ZV
7t E\' — sin (00 t — (jpi — yi). (7)

]/R2 + «2 z2
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Es erübrigt noch, die Bedeutung der einzelnen Grössen hervorzuheben. Der Winkel ip ist
die Phasenverschiebung des sekundären Stromes gegen den primären, n ist das Verhältnis
beider Ströme. Aus (4) und (6) ergibt sich nämlich

K ^r (7a)
J y

Alle elektrischen Grössen des Transformators sind nun durch die Konstanten Rt, R2,
Lx, L<i, M und durch die Belastung Ra, La und Ca bestimmt, und wir wären hiernach in
der Lage das Diagramm der Transformatorenvektoren für einen bestimmten Wert £j zu
konstruieren.

Bevor wir aber zu den Kreisdiagrammen übergehen, muss noch nachgewiesen werden,
dass die gewonnenen partikulären Integrale wirklich den stationären Zustand charakterisieren.
Das allgemeine Integral der Gleichung (2) erhält man bekanntlich aus dem partikulären
Integral, wie folgt:

/'I t ,«J t
i\ -+- Ci e Co e

wo fa und /12 als Wurzeln der „charakteristischen Gleichung" der Differentialgleichung (2)
folgende Werte haben :

l11>2
1 & L'i + 4_ n / 1 //?, L'2 4- R' L \2 /?, R'
2 UL'.-M2 - y 4 { U L'n_ -M2 ~ U L',_ - M2

Der Zähler des Radikanden kann auf die Form (/?, Z'.2 — R' Lx)2 -\- 4 R, R' M2 gebracht
werden; dieser Ausdruck ist immer positiv.

Ist L't ^ Li, was einer ohmschen, induktiven und einer kapazitiven Belastung mit
1 M2 M2

der Nebenbedingung 2 ^ La entspricht, so ist —— <4 1, da schon — wegen
w Ca — a F ' L L', ' ' L U

der magnetischen Kopplung 1 ist.
In diesem Falle ist der Radikand positiv und /i±, fi2 negativ. Der Ausdruck

Cj e"11-\- C2 e/1** stellt eine aperiodisch mit der Zeit abklingende Funktion dar und kommt
für den stationären Zustand nicht in Frage.

M2
Ist L'i <4 Lo_, was einer mehr kapazitiven Belastung entspricht, so kann -—— 4> 1

Li L 2

werden. Die Werte jut und sind konjugiert komplex. Der Ausgleichstrom Ci e"11

+ Ci e"21 ist, wie man leicht sehen kann, eine oszillatorisch abklingende Funktion. Eine
analoge Betrachtung der Gleichung (5) ergibt, dass das additive Glied für den Sekundärstrom

jedenfalls eine mit der Zeit abklingende Funktion ist.
Wir wenden uns nun der Aufgabe zu, aus den gewonnenen Gleichungen für den

stationären Zustand die Kreisdiagramme abzuleiten.

Das Heylandsche Kreisdiagramm.
Die Gleichungen (4) und (7) führen auf die Heylandschen Stromkreise, wenn man

die Gleichungen für die Maximalwerte betrachtet.
Das im vorigen Abschnitt gewonnene Gleichungssystem [Gleichungen (3) und (4)],

welches wir der Uebersicht wegen noch einmal hier zusammenstellen, lautete :

EiJiL Li u L'i |//?2 -)- w2 L2

R Ri + K2 (Ra -f- Ri) w L
tg^ -R

L'i Li~\-La 2 r* ».2 EI II)

(Ra + Ri) + « L\2



6 BULLETIN No. 1 XL Jahrgang 192Ö

Dieses System von Gleichungen umschreibt den Betriebszustand des Transformators
vollständig. Von den Eisenverlusten wird, wie in allen theoretischen Ableitungen, zunächst
ja abgesehen ; sie werden hinterher als Korrekturen in die Diagramme eingeführt. Es muss
möglich sein, aus dem obigen Gleichungssystem eine Gleichung für Jl zu gewinnen, wo
Ji allein als Funktion von auftritt. Der Ohmsche Widerstand Ra wird im Betriebszustand

als veränderlich angenommen, alle anderen Grössen sind konstant. Zur speziellen
Voraussetzung für das Heyland-Diagramm gehört noch die Annahme Ri 0.

In der Tat gelingt die Umformung der Gleichung

j, —
!/«' + »•£'

durch folgende einfache Rechnung. Es ist ersichtlich, dass:

,8)

ist, wo R noch als Funktion von q>Y auszudrücken wäre. Diesem Zwecke dienen die
Gleichungen (3)

R Ri —J- K2 (Ra —J— R2) und L — Lx — x2 L1^

Der Wert für u2 liefert die Gleichung:

Li —L R — Ri
L'i R> -J- Ra

Hieraus folgt :

L Li -+- L\ n
R'

„ - R
L'2

Ra ~\~ R2 Ra I Ra

Diesen Wert für L setzen wir in die Gleichung

o) L
ig<R

R
ein und erhalten :

1

__ }_( -I "IJlI \ (q)
R o}\g<fl^ Ra + Ri) L\ R, l- Lx (Ra + /?„)

1

Die Gleichung (8) ergibt, wenn für ^ der Ausdruck (9) eingesetzt wird, folgende Relation :

R

T _ E1 (*„ _L_ L'l \ Ra + Rt ,1n,
1

«
COS f { g ^ + Ra + R,

'
(Ra + R2) L{ + Ri L\ • }

Hier ist Ji noch eine Funktion von (ji und R2, die anderen noch auftretenden Grössen

Ei, <0, Ri und L\ werden ja als Konstante den Diagrammen zugrunde gelegt. In L\ sind
die sekundäre Induktivität, die Kapazität und Induktivität der Belastung La und Ca enthalten

1

gemäss der Gleichung L\ — + La Wie wir sehen werden, erhalten wir das
to C-a

Kreisdiagramm auch wenn im Belastungskreise Induktivität und Kapazität vorhanden sind ;

es muss nur für jeden Belastungszustand L'a konstant sein, während der ohmsche Widerstand R2

variabel ist. Es gelingt in Gleichung (10) (Ra R^) durch y>i vermittelst der Gleichung

tg (fi — auszudrücken.
R

Setzen wir hier für L und R die Werte aus Gleichung (3) ein, so ergibt sich folgende
Relation :

(<0 Li - tg (Pi Ri) (Ra + R,)2 - tg 'Pi CO2 M2 (Ra + R„) - oß L\ (M2 - L, L\) - tg <px R1 oß L\2 0. (11
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In dieser Gleichung lässt sich (/?„ + 7?2) durch <jpt ausdrücken. Setzen wir den so
substituierten Wert für (7?a + 7?2) in die Gleichung (10) ein und machen wir noch die Voraussetzung

dass /?! 0 sei, so ergibt sich folgende Gleichung für den Heylandschen K,reis :

T •
J1 - - s/nyv

U) Li

Ei cos (fi h

,gf^± ]/V v (ff1 -£ »2 ^ l'> «•)
'

Wir wollen diese für die weiteren Betrachtungen sehr wichtige Gleichung auf eine bequeme
Form bringen. Dazu bezeichnen wir den oft wiederkehrenden und für die magnetische
Streuung des Transformators sehr wichtigen Ausdruck Li L\ — M2 mit X2. Die obige
Gleichung vereinfacht sich dann zu:

Ji =~-
Ei

eu Li
sin (pt -

Ei cosif, fi"'1')

und eine weitere Umrechnung ergibt:

Ji A E
o) Li 2 (ji

:i M2 \ /„,/,, M2 \2
VLrti)sm',i±\lE V'tïz, Js,;

V OJ71

sin * (fi Ei2 ^ l2 (12)

• Achse
Es lässt sich leicht zeigen, dass diese Gleichung
einen Kreis in Polarkoordinaten darstellt, und zwar
hat derselbe die in nebenstehender Figur
angegebene Lage.

Die Gleichung eines Kreises in dieser Lage in
kartesischen Koordinaten lautet nämlich:

x2 + (y — b)2 r2

Führen wir Polarkoordinaten ein, so ist : x q cos<pi
und y=ç sin <px und wir erhalten für die Gleichung
des Kreises:

ç b sin epi + fb2 sin2 <pi — (b2 — r2)

Unsere Gleichung (12) hat dieselbe Form. Der
Koeffizient von sin2 <p unter der Wurzel ist dem

Quadrate des Koeffizienten von sin cp gleich. In der Tat besteht folgende Identität:

\ t J

\<Z
X-Achse j/

Fig. 1.

Ei
-+

Ei M2 Ei

wLi 2 (ü Li {Li L'.i — M2) b} i>2 _ M2)
*

Die Gleichung (12) charakterisiert jeden Betriebszustand des „allgemeinen Transformators".
Die Zweideutigkeit der Funktion J entspricht dem bekannten Verhalten eines Transformators,
indem zu einem bestimmten Wert <p, zwei Betriebszustände gehören. Das positive
Vorzeichen in der Formel (12) gilt für den überlasteten Transformator. Hervorzuheben ist
noch, dass die Formel (12) auch auf das Verhalten von Induktionsmotoren Anwendung
finden kann, indem die abgegebene mechanische Leistung durch eine äquivalente elektrische
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Belastung des ruhenden Transformators ersetzt wird. Es waren auch die asynchronen
Drehstrommotoren, die Heyland ') und später Osanna2) auf die Kreisdiagramme geführt haben.

Der Durchmesser des Heyland'sehen greises lässt sich aus der Gleichung (12) leicht
bestimmen. Wir berechnen die Werte «7t für y, 90° und erhalten, wenn wir den
Ausdruck unter der Wurzel entwickeln:

Ei Ei M2 Ei Mz
— T7T T r,.i2 X"u) Li 2 Li o) X 2 Li oo A

Das positive Vorzeichen entspricht dem Zustande des ideellen Leerlaufes, das negative
Vorzeichen demjenigen des ideellen Kurzschlusses.

Für den ideellen Leerlauf haben wir:

<^io— y (13)
M Li

und für den ideellen Kurzschluss:

J.u —L + - (14)
(o Li (o Li k

Der Durchmesser des Kreises wird hiernach:

û (15>

Die Gleichung (12) lässt auch den Wert für die minimale Phasenverschiebung <ji, resp.
für cos ((fi mln), der für den praktischen Betrieb von Motoren und Transformatoren von
grosser Bedeutung ist, berechnen. Diesen Zustand charakterisiert der Punkt, wo J, den
Kreis tangiert. Für diesen Punkt muss der Ausdruck unter der Wurzel in Gleichung (12)
null werden. Wir erhalten für sin ((plmin) folgende wichtige Beziehung:

(M2 \2 I '
m Z'9 _ Li

0)2 ^ L 2 ~ 0

Hieraus ergibt sich :

M2
COS ^ " 2 Z, — M2 (,6)

Wir haben bis jetzt immer mit Induktivitätskoeffizienten gerechnet. Es zeigt sich aber nun
als sehr nützlich, die Streuungskoeffizienten in unsere Formeln einzuführen. Bekanntlich
lassen sich die totalen Streuungskoeffizienten eines Zweispulensystems o und r auf folgende
Weise durch Induktionskoeffizienten ausdrücken :

M2 D L» — M2
0= 1

L\ Zg L\ />2

Li Z2 .1 U Z2 - M2
U"d X 1 ZTiM M2

wobei zwischen o und t folgende Relation besteht:

r

(17)

(18)
1 +

Hätten wir in der Belastung nur Ohmschen Widerstand vorausgesetzt und La 0 C„ 0

gesetzt, so wäre unser L'z Li geworden und die Formeln (15) und (16) Hessen sich auf
die bekannten, für die Diagramme der Induktionsmotoren sehr wichtigen Relationen zurückführen.

Es wird nämlich in diesem Falle der Durchmesser des Heylandschen Kreises:

») E.T.Z. 1894, S. 561.
2) Zeitschrift für Elektrotechnik 1899, S. 223.
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D
Ex 1 J10

cù L.\ x x
(19)

wo Jt0 den Magnetisierungsstrom im Leerlauf bedeutet. Für cos (cfimin) erhalten wir dann
folgenden Ausdruck :

cos
M2 1 1

2 Lt U - M2 2 Z, Z2 — 2 M2 1+2 r
H /+

(20)

Es erweist sich als sehr zweckmässig auch im allgemeineren Belastungsfall, wo weder La noch

Ca gleich null sind, den in unseren Formeln auftretenden Ausdruck
U L'j - M2

M2 alsStreuungs-

?-'• O

koeffizienten zu deuten. Wir schreiben also:

Z, Z'2 — M2

(17a)

o'

M

Lx L\ - M2

U L

wobei wieder

0'
T

,C 8a) und L' 2 L.2 + La
1 —f— X co Lsa

Diese Betrachtung zeigt deutlich, dass die
Kapazität im sekundären Stromkreis die Streuung

kompensieren kann, le nachdem t' 0 ist,
X-Achse <

lassen sich drei Fälle unterscheiden :

1. Z, L'2 + EI2 Streuung
2. Li Z/2 M2 kompensierte Streuung.
3. Li Z/.3 <[ M2 überkompensierte Streuung.

Die allgemeineren Formeln für cos (g>i„lin) und D
lauten :

Fig. 2.

COS {(J>l min
^ | 2

j10D

(20a)

(19a)

Wie aus der letzten Formel hervorgeht, ist der Durchmesser des Heylandschen Kreises für
den Transformator mit kompensierter Streuung unendlich, d. h. der Kreis wird zur Geraden.
Für den Transformator mit überkompensierter Streuung ist der Durchmesser negativ, der
Mittelpunkt des Kreises liegt unterhalb der jr-Axe (siehe Fig. 1). Alle Kreise gehen durch

den Punkt J0
co Li

Graphisch dargestellt ergibt sich, wie Fig. 2 zeigt, eine Kreisschar, wobei jedem Kreis
eine bestimmte Streuung entspricht.1)

') Auf Grund der Heylandschen Formel findet man diese Ableitungen in der Abhandlung
„Magnetische Streuung" von Kuhlmann, Bulletin des S. E. V. 1915, S. 114 ff.
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Das Kreisdiagramm von Osanna.

Das Diagramm von Osanna ist bekanntlich genauer als dasjenige von Heyland.
Osanna1) berücksichtigt in seiner Ableitung auch die primären Kupferveriuste. Die

Gleichungen (10) und (11)

7
E, o,L' 2 \ Ra + R,+ (,0)

und (to Li — tg fi R) (Ra + R2Y- tg fi oE El* (R + R) + o,3 L'% Y - tg '-f, R w* L'Y 0, (11)

die wir aus den allgemeinen Differentialgleichungen des Problems gewonnen haben, führten
im Spezialfall R, 0 zum Heylandschen Diagramm. Machen wir diese Vernachlässigung

ft 0 nicht, so erhalten wir das Diagramm von Osanna.
In der Tat, eliminieren wir von Ra-\-R2 aus (10) mittels der Gleichung (11)

_ tg o>2 El2 ± itg2 <h (u4 El* - 4 (o,3 //, X2 - tg tf, Ri tY L'Y) (w L, - tg <p, /?,)
'

2 (w Lt — tg (p, Ri)

so erhalten wir folgende Gleichung:

E, cos <fi tg2 qp, w2 M2 7 tg tf i h + 2 w Z/2 (« /, — Ag r/, /?,)
' ~ w tg if i Y Li El2 ± Li u + 2 R L\ (w 2, - c/, /?,) ' 1 j

wo V& Y El* — 4 (m3 jL'2 A2 — 4g (pi Ri w2 L'Y) (m Li — tg if, Ri) ist.

Die Gleichung (21) stellt den Osanna-Rreis dar. Derselbe hat die in Figur 3 angegebene
Lage. Das erkennen wir, wenn wir den Nenner der Gleichung (21) rational machen. Durch
eine etwas mühsame Rechnung lässt sich der Ausdruck (21) auf folgende Form bringen:

Ei cos cfj tg if, m2 (2 L, L'., — M2) + 2 R w L', + u

w 2 (Ri2 L', + (Ü2 L,X2)
~ ~ (2 a)

Die Gleichung des in Fig. 3 abgebildeten Kreises in Polarkoordinaten lautet:

ç — a cos (f,-{-b sin tf,^r ]/(<3 cos qp, -f- b sin tf,)2 — (a2 + b2 — r2)

Auf diese Form lässt sich auch die Gleichung (21a) durch eine Umformung bringen. Wir
erhalten so folgende Gleichung:

_ RR, L\ E, m (2 L, L', — El2)
' Ri2 L\ + m2 L, X2

COS + 2 (Ri2 L'2 + ft,2 L, X2)
S'"

i | /? EiR, L\ E, ai (2 L, L\ — El2) V R + ,Y L, L',_ X2 T2It / cos ifi, + ,T S/n u, — —, r;r '
Ri2 L\ + u>2 Li X2 91 '

2 (R2 L\ + «2 Li X2)
S'" 9' ~~

(Ri2 L',_ + uß L, X2)2
E' (2t b)

Wir erhalten somit für die Koordinaten des Mittelpunktes des Osannä-Kreises folgende Werte:

E, R, L'o E,m(2 L, - El2)
b tttïttt—;—(22)R\ L'2 —J— «2 L, X2 2 (R2 L''2 "I- tu2 L, X2)

Den Radius des Osanna-Kreises finden wir leicht aus der Beziehung:

„2 1 ut ^ _ R\ L\ -\- o)2 L, L\ \2
p2R+b ^

(Ri2 iß + ç)2 L, >2)2
E'

') Zeitschrift für Elektrotechnik, 1899, S. 223.
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Setzen wir die obigen Werte für a und b ein, so ergibt sich der Durchmesser D zu :

Ex o) M2
D

Ri2 L',_ -| w2 Lt l2
(23)

Die Gleichung (21b) liefert für den Spezialfall /?, 0 die Gleichung des Heyland'schen
Kreises. In der Tat ist :

/?, ü

Um +1/£(2h v, - t-f'f
2 ü> X- \ 2 '2 "*4 o/ u r sin " f/i

-\ *-2
2 \ 2 I / »

0) k L |

wie wir bereits in Gleichung (12) gefunden haben.

Wir können auch aus den allgemeinen Formeln (22) und (23) für die Koordinaten
des Mittelpunktes und den Durchmesser die entsprechenden Formeln für das Heyland'sche

Diagramm finden, indem wir den Grenzübergang R, 0
machen.y - Ac/}se

x-Achse

Frg...3.

Es werden:

lim a 0
R, 0

lim D
R, 0

Ei (2 L, L\ — M2)
Inn b
RX Q £ O) L{ k

Ei M2 J,o

O) LILI2 T' '

Formeln, die mit unseren früheren Ergebnissen
übereinstimmen. Es erübrigt noch, den Streuungskoeffizienten
in die Formel für den Durchmesser einzuführen. Dies
gelingt durch folgende Rechnung:

n E<m2
WH»'* V£* '

D
Ei „> AI2 Ei M2 o)2 L,2 L\ Ei M2

Ri2 L 2 + Li X2 ~
(O Li Li L', Ri2 L', + o,2 Li X2 W Li L, L', R2

Beachtet man jetzt, dass nach (17a)

X2
o'

M2

uu, "4,-''-üTi8t'

L,

so schreibt sich der Durchmesser des Osanna-Rreises

A>
Ei

(» Li
(1 - 0')-

6'
R?

w2Lf

und derjenige des Heyland ' sehen-Kreises (/?, 0)

Ei 1 - 6'
Dh

m Li 0'

(24)

(25)
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Das Verhältnis beider Durchmesser ist dann durch folgende Potenzreihe gegeben:

jf~ - r> 2
1 — a + a2 — a3+a4 — wo a ~ ist.

L>h
| Al ") Z-I ö^ Cö2 L2 o '

Die Abweichungen zwischen den Grössen in beiden Diagrammen ist desto grösser, je grösser
der primäre Widerstand und je kleiner die primäre Induktivität und die Streuung sind.

Mit dieser Abhandlung glaube ich nochmals dargetan zu haben, dass die Streuung
aufs innigste mit dem Transformatoren- resp. Induktionsmotorenproblem verwachsen ist.
Wenn man auch von vorneherein nur mit Induktionskoeffizienten rechnet, die Rechnung
selbst führt auf die Streuinduktivität.

Zur Frage der Erhöhung der Detailtarife.
Von Dr. /f. Sachs, Baden.

An der letzten Generalversammlung des V. S. E. in Montreux hat Herr Ing. N. Cagianut
vom Generalsekretariat in einem ausführlichen Referat1) auf die durch die allgemeine Teuerung
hervorgerufene prekäre Lage der Schweizerischen Elektrizitätswerke hingewiesen und zur
Wiederherstellung des finanziellen Gleichgewichtes die Erhöhung sowohl der in der Regel nur
kurzfristig vereinbarten Detailtarife als der meist durch langfristige Tarifverträge zwischen
den Werken und den Grossabnehmern festgesetzten Grosstarife, die ohne erst ad hoc zu
schaffende gesetzliche Massnahmen, vorzeitig nicht gekündigt werden können, empfohlen.
Es besteht kein Zweifel, dass, ebenso wie die menschliche Arbeitsleistung heute eine wesentlich
höhere Bewertung erfahren hat, auch für die maschinelle Arbeitsleistung ein höherer Preis
gefordert werden kann und muss; fraglich ist nur, ob die zu erzielenden Mehreinnahmen
der Werke, denn hierum handelt es sich ja nur, nicht durch eine, ich möchte sagen
volkswirtschaftlich edlere Massnahme als durch das lapidare Mittel der Erhöhung der Detailtarife
erzielt werden können.

Die Gestehungskosten der elektrischen Arbeitseinheit der kWh nehmen bekanntlich
mit der Zahl der total erzeugten kWh zuerst rapid ab, um erst mit dem idealen Fall des
konstant vollbelasteten Werkes asymptotisch einem Grenzwert zuzustreben. Viel naheliegender
wäre es also, noch mehr als dies bisher bei manchen Werken der Fall war, durch Erhöhung
des Ausnutzungsfaktors der Werke, d. h. durch Erhöhung der Produktion, den finanziellen
Ausgleich zu schaffen oder, mit andern Worten, einem alten kaufmännischen Erfahrungssatz

folgend, seinen Nutzen nicht am Stück sondern im Umsatz zu suchen und zu finden.
Die Mittel und Wege hierzu sind ja längst bekannt, und es ist nicht einzusehen, warum wir
heute eine rückläufige Entwicklung durchmachen sollen.

An der im Juli 1917 in Langenthal abgehaltenen Diskussionsversammlung hat Herr
Prof. Dr. Wyssiing in ausserordentlich übersichtlicher Weise auf die Vorteile der elektrischen
Küche hingewiesen und diese vom hauswirtschaftlichen Standpunkt gegenüber der Gasküche
dann als rentabel bezeichnet, wenn der Preis pro m3 Gas das 1,5 2,7 fache des kWh-
Preises beträgt. Infolge des stetig parallel mit den Kohlenpreisen anwachsenden Gaspreises
wurde dieses Aequivalenzverhältnis in vielen Schweizer Städten, wenn auch nicht überall
gleichzeitig, erreicht und die elektrische Küche fand in vielen Haushaltungen Eingang,
teilweise allerdings infolge des hohen Anschaffungspreises der Kochherde und - Platten vorerst
noch als Notküche. Die Bemühungen des Generalsekretariates, dem elektrischen Nacht-
Backbetrieb Freunde zuzuführen, waren vielfach von Erfolg begleitet und vielversprechend
sind die Anfänge für die Verwendung der elektrischen Speicheröfen für Raumheizung und
Warmwasserbereitung. Wenn daher heute, wo die Gaspreiskurve ihr Maximum jeden-

') Bulletin 1919, Seite 303 ff.
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