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Abstract

The spatial scale of intraspecific genetic connectivity and population structure are important aspects of conservation genetics. However,

for many species these properties are unknown. Here we used genomic data to assess the genetic structure of the small Apollo
butterfly (Parnassius phoebus Fabricius, 1793; Lepidoptera: Papilionidae) across three nearby valleys in the Central Swiss Alps.
One of the valleys is currently used for hydropower production with future plans to raise the existing dam wall further. We found no

significant genetic structure, suggesting a currently high connectivity of this species in our studied region.
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Introduction

The maintenance of genetic diversity is a key target
of current conservation efforts because such diversity
is thought to enable species to cope with changing
environments (DeWoody et al. 2021). Among the

factors that can reduce genetic diversity are habitat

fragmentation and global climate change (Pauls et al.

2013; Schlaepfer et al. 2018). Alpine environments may
especially be threatened by climate change (Engler et
al. 2011), the latter often promoting the subdivision of
locally adapted species (Jordan et al. 2016). The scale at

which intraspecific gene flow occurs is thus an important
property of a species with significant implications for
conservation and management. However, the spatial
scale of genetic connectivity is often unknown as its
assessment either requires large-scale mark-recapture
studies or genomic data (Gagnaire et al. 2015).

Here, we assessed the potential for intraspecific gene
flow in an alpine butterfly - the small Apollo (Parnassius
phoebus Fabricius, 1793; Lepidoptera: Papilionidae).

The species occurs locally in alpine environments from
Alaska over Russia to the Alps (Todisco et al. 2012).
Many of its allopatric populations have been described

as distinct subspecies whose taxonomic status has though
remained elusive (Weiss and Rigout 2005). For example,
there is an ongoing debate if P. phoebus from the Alps
should be named P. sacerdos (International Commission

on Zoological Nomenclature 2017) or not (Bâlint
2021), where P. sacerdos and Eurasian P. phoebus are

polyphyletic based on mitochondrial haplotypes (Todisco
et al. 2012). Given the unresolved taxonomy, we use
P. phoebus here, which is consistent with the current Swiss
red list for butterflies (Wermeille et al. 2014). P. phoebus
subspecies differ often phenotypically from each other but

intraspecific phenotypic variation also occurs at smaller
scales. Indeed, a former study on alpine melanism,
highlighted the adaptive value of increased melanism
with increased elevation and latitude in P. phoebus
(Guppy 1986). Males that were darker on their hindwings
spent a greater proportion of time in flight at low air

temperatures and showed increased movement (Guppy
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1986). Importantly, the global diversity within P. phoebus
is young, i.e., evolved over the last ~125'000 years, where

geographically distant populations within a continent

diverged as recently as 10'000-50'000 years ago (Todisco
et al. 2012). Like for other species ofthis genus, P. phoebus
is thought to have moderate dispersal capabilities, being
able to fly from some hundred metres to few kilometres

(Guppy 1986; Brammer and Fred 1999). However, natural
barriers has been shown to limit intraspecific gene flow in
other Parnassius species (Keyghobadi et al. 1999), but to
which degree this is true for P. phoebus is not known.

Parnassius phoebus is a univoltine species and

in the Alps can be found in humid, often flooded
habitats with mostly extensive stands of Saxifraga
aizoides, the primary larval food plant of this species

(Lepidopterologen Arbeitsgruppe 1987). Habitats include

relatively flat headwaters and riparian zones of small
and large watercourses, often with alluvial plains in the

subalpine and alpine and occasionally the montane zones.
In the Bernese Alps, the species can be found from 1400

to 2300 m elevation, occurring both on limestone and

silicate rock substrates. Imagoes feed on nectar from a

range of plants, including thistles, Origanum and various

cushion-forming plants, such as Saxifraga. Eggs are

generally not directly laid on the host plant, but either on
dried plants in its vicinity or directly on the soil substrate

(Lepidopterologen Arbeitsgruppe 1987).
We used nuclear genomic data to assess the potential

for gene flow among individuals collected from three

nearby valleys in the Central Swiss Alps (Fig. 1).

We focused on this region because the Trift valley
experienced significant past and future anthropogenic
alterations as a consequence of artificial damming for
hydropower production (Haeberli et al. 2016; Guillén-
Ludena et al. 2018). This, together with the impact of
climate change could thus render P. phoebus locally
vulnerable, especially if current intraspecific gene flow
would be limited (Condamine and Sperling 2018).

Methods

Sampling

We collected a total of 18 butterflies during summers
2015-2020. Sampling was conducted in three valleys
in the Central Swiss Alps (Susten (N=6), Trift (N=8),
Wenden (N=4), Fig. 1, Suppl. material 1: Table SI). We

captured all individuals with hand nets and killed them

with an overdose of ethyl acetate. Full bodies were dried
for further genetic analyses.

Genetic data processing

We genotyped all individuals using single-end
restriction-site associated DNA (RAD) sequencing
with the restriction enzyme Pstl. For all individuals

we extracted the DNA from thorax tissue using the

Qiagen DNeasy Blood and Tissue kit (Qiagen, Zug,
Switzerland) following the manufacturer's protocol.
Library preparation and sequencing on one Illumina
HiSeq 4000 lane was outsourced to Floragenex
(Portland, OR, USA). All genomic data is archived on
NCBI (BioProject ID: PRJNA814465).

We filtered all obtained genomic data following
(Lucek et al. 2020), i.e., we only retained reads with an

intact Pstl restriction site, followed by de-multiplexing
and barcode-trimming with process_radtags from
Stacks 1.48 (Catchen et al. 2013). Using the FASTX
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), we
then removed reads containing bases with a Phred

quality score <10 or more than 5% of base pairs with
quality <30. This approach yielded -18.5 million high
quality reads in total for our analysis. Given the lack
of a Phoebus reference genome, we generated a de

novo assembly of RAD-tags using all filtered reads for
all individuals with ustacks 1.48 (Catchen et al. 2013)
with the following settings: minimum stack size of
50 reads, a maximum of three base pairs of difference
for stacks to be merged, excluding loci with unusually
high coverage to avoid repetitive regions. The initial
de novo assembly consisted of 11'004 contigs. To

further identify and remove exogenous contigs from the

assembly, we compared the assembly against the NCBI
GenBank nucleotide collection with the blastn function
from BLAST+ 2.7.1 (Camacho et al. 2009). A total of 40

or 0.4% of all contigs were of exogenous origin and we
removed them from the initial assembly.

In a next step, we mapped the reads of each individual
against our reference assembly with minimap2 2.2 (Li
2018) and genotyped all specimens with BCFtools 1.10.2

(Danecek and McCarthy 2017). We filtered the genotypes
with VCFtools 0.1.16 (Danecek et al. 2011) to remove
indels, to include only bi-allelic polymorphic sites with
a minimal depth of six and a minimal genotype quality
of 20, employing a minor allele frequency filter of 0.03

and allowing up to 50% of missing data per site. Due to

high rates ofmissing data, two specimens were filtered out

(Suppl. material 1 : Table SI). The overall filtering resulted
in 5157 SNP sites available for our downstream analyses.

Genetic analyses

To test for an individual based genetic structure, we
first employed a phylogenomic analysis comprising all
retained specimens. We used RAXML 8.2.11 (Stamatakis
2014) implementing a generalised time-reversible
(GTR) model with optimised substitution rates and a

gamma model of rate heterogeneity. We further applied
an ascertainment bias correction to account for the fact
that we only used polymorphic SNP positions with the

ASC GTRGAMMA function implemented in RAXML.
Significance was assessed using 1000 bootstrap replicates
followed by a thorough maximum likelihood search.

alpineentomology.pensoft.net
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Figure 1. Overview of our sampled sites. A. Map depicting the sampling locations of all collected individuals from the central

Swiss Alps with the inset depicting the sampling site in Switzerland (see Table S1 for details). Circle colour indicates the different

valleys. For each individual the respective sample ID is given (see Table SI). Map source: Federal Office of Topography swisstopo;

B. Example ofParnassius phoebus (individual K13); C-E. Habitat pictures for Wenden, Trift and Susten, respectively.

We next inferred population structure with
Admixture 1.3.0, which implements a likelihood
approach to estimate ancestry (Alexander et al. 2009).
We ran ADMIXTURE by varying the number of
assumed populations, i.e., K, from 1 to 5 and performed
a cross-validation test to determine the optimal value
of K. In a second step we used a principal component
(PC) analysis as implemented in GenoDive 3.0.5

(Meirmans 2020) to visualize the genetic relationship
among individuals.

Finally, we estimated the overall level of pairwise
genetic differentiation (FSJ) among individuals from
the three valleys (Susten, Trift, Wenden; see Suppl.
material 1: Table SI) using GenoDive, with 1000

bootstrap iterations to estimate significance. Because

genetic differentiation would only occur at few loci
that experience direct or indirect selection in the case

of recent divergence (Seehausen et al. 2014), we also

performed locus-by-locus FSI in Genodive analyses
between Trift individuals and individuals from Susten

and Wenden combined.

Results

The bootstrap approach employed in our RAXML analysis
foundno significantnode splits (/. e. >95% bootstrap support),
suggesting the absence ofa detectable differentiation among
individuals. Similarly, no clustering occurred related to the
three different valleys (Fig. 2a). The best number of genetic
clusters as inferred by Admixture was likewise one (K=l),
where the subsequent model assuming two genetic cluster
showed no clustering by valleys (Fig. 2c). The two leading
PC axes accounted for 9.3 and 8.4% of the total variation
respectively and only here some individuals from the Trift
valley seemed to be differentiated from the other individuals
along PCI (Fig. 2b).

The level of pairwise genetic differentiation among
valleys was generally low and non-significant (Susten

vs. Trift: FSJ 0.005, p 0.195; Susten vs. Wenden:

FSJ 0.017, p 0.143; Trift vs. Wenden: FSJ 0.021,

p 0.177). This was similarly true when individuals
from Susten and Wenden were pooled (FST 0.006,

p 0.059; Fig. 3). The locus-by-locus analysis for the

alpineentomology.pensoft.net
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Figure 2. Summary of the individual based genetic analyses. A. Unrooted phylogram based on a RAxML analysis. None of the

nodes were statistically significant (all with <95% bootstrap support); B. Scores of a principal component (PC) analysis for the two
leading axes. C - Individual based assignments as inferred by Admixture. One genetic cluster (K=l) was the best supported number

as inferred by the cross validation (CV) error. For A, B colours depict valleys. For each individual the respective sample ID is given
(see Fig. 1, Suppl. material 1: Table SI).

same comparison identified only 11 SNPs with an FST

> 0.20 (Fig. 3), however, none of the associated contigs
could be mapped to a known gene by BLAST.

Discussion

Using genomic data, we found a lack of genetic structure

among individuals of the small Apollo Parnassius

phoebus that could be attributed to the three valleys
in close proximity, i.e., being 4-8 km apart, which we
sampled in the central Swiss Alps (Figs 1,2). Our results
thus suggest a high connectivity of this species in our
studied region. Consequently, the valleys, mountain
ridges, glaciers or other potentially unsuitable habitat
structures in our studied region (Fig. 1) do not present
strong barriers to gene flow. This finding contrasts with

observations in other Parnassius species where such

geographic structures resulted in fine-scale population
structure (Brommer and Fred 1999; Keyghobadi et
al. 1999). While the absence of significant genetic
differentiation, as estimated by Fsv may also highlight
the statistical limitations given the sample size of our
study, the individual-based analyses that we applied
would allow to detect potential fine-scale structure
(Rieder et al. 2019).

P. phoebus is an evolutionary young species that has

moreover recolonized the studied area only after the last

glaciation period (Todisco et al. 2012). Consequently, even

if local adaptation would have occurred, the respective
populations may not necessarily have had enough time to
accumulate genetic differentiation beyond few genomic
regions that experience selection (Nosil 2012; Seehausen

et al. 2014). Indeed, our locus-based analysis identified

K22 Wenden
Susten
Trift
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Figure 3. Histogram of the genetic differentiation (FST) between

individuals from the Trift valley and the two other valleys
combined, calculated for each locus separately. The blue line

indicated the global FST 0.0057.

very few sites ofaccentuated differentiation (Fig. 3). Such

genomic differentiation at only few target loci may be

consistent with a potential very early stage of divergence-
with-gene-flow, where further differentiation depends

on the evolution of barriers to gene flow (Nosil 2012).
However, the interpretation of such genomic regions has

to be done with care, as they can also emerge through
non-adaptive processes including genetic drift (Ravinet
et al. 2017). Lastly, both the lack of significant genomic
differentiation and the limited number of loci that
showed accentuated differentiation could reflect a limited
resolution given the restricted number of polymorphic
SNPs available for our analyses and the absence of a

reference genome.
A high connectivity despite potential natural barriers

may suggest that P. phoebus could be less affected by
future anthropogenic modifications in the studied area

(Haeberli et al. 2016; Guillén-Ludena et al. 2018).
However, such modifications will act combined with the

effects of climate change, which is thought to be a main
threat for species of the genus Parnassius (Condamine
and Sperling 2018). Although P. phoebus can likely track
its climatic niche by shifting its range up the mountains
until they can go no higher, the species also depends

on the availability of host plants, which can be equally
affected by both factors (Condamine and Sperling
2018). Therefore, from a conservation perspective, it
would be advisable to broaden the geographic scope of
our study to identify the scale of potential population
structure in P. phoebus across the Alps, ideally with
denser genomic data. In addition, future anthropogenic
habitat modifications, as it is planned for the Trift valley
(Ehrbar et al. 2018), should be accompanied by a genetic
monitoring for both P. phoebus and its host plant.
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Data type: pdf
Explanation note: Summary of all individuals included

in our study, including their sample ID, the collection
date, the valley where they were collected with their
respective coordinates. Individuals highlighted in bold
were excluded from the genomic analyses due to their
amount of missing data.

Copyright notice: This dataset is made available under
the Open Database License (http://opendatacommons.
org/licenses/odbl/1.0/). The Open Database License

(ODbL) is a license agreement intended to allow users

to freely share, modify, and use this Dataset while
maintaining this same freedom for others, provided
that the original source and author(s) are credited.

Link: https://doi.Org/10.3897/alpento.6.80405.suppll

alpineentomology.pensoft.net


	Lack of genetic structure suggests high connectivity of Parnassius phoebus between nearby valleys in the Alps

