Cone flies, Strobilomyia spp. (Diptera : Anthomyiidae), attacking larch cones in China, with description of a new species

Autor(en): Roques, Alain / Sun, Jiang-Hua / Zhang, Xu-Dong

Objekttyp: Article

Band (Jahr): 69 (1996)

Heft 3-4

PDF erstellt am: 04.10.2023

Persistenter Link: https://doi.org/10.5169/seals-402642

Nutzungsbedingungen

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch
Cone flies, *Strobilomyia* spp. (Diptera: Anthomyiidae), attacking larch cones in China, with description of a new species

Alain Roques, **Jiang-Hua Sun**, **Xu-Dong Zhang**, **Yong-Zhi Pan**, **Yong-bo Xu** & **André Delplanque**

1 INRA, Station de Zoologie forestière, Centre de recherches d'Orléans, F-45160 Ardon, France
2 Northeast Forestry University (NFU), Harbin, China
3 Da Xingganling Forestry Bureau, Jagedaqi, China
4 Southwest Forestry College, Kunming, China
5 Jagedaqi Seed Orchard, Jagedaqi 16500, China

A survey of larch cone flies, *Strobilomyia* spp., was carried out in Yunnan and Heilongjiang provinces of China during 1993, using cone collections and visual trappings. A new species of cone fly, *S. lijiangensis* sp.n., is described from the LiJiang area, Yunnan, where it severely damaged cones of Himalayan larch, *Larix potaninii Batalin var. mastersiana LAW*. Unidentified female specimens of a cone fly were obtained from both trappings and cone collections of Siberian larch, *L. gmelinii Rupr. (Kusen.*), in the Da Xinggan mountains of Heilongjiang. Additional trappings carried out in 1996 lead to consider that these insects probably correspond to the female of *S. luteoforceps Fan & Fang* that has not yet been described. In addition, *S. svenssoni Michelsen* is recorded for the first time in China, where it attacks cones of Siberian larch in the northeast. Finally, we present an updated list of 7 larch cone flies in China, including distribution, host, and description of the genital apparatus of females and males.

Keywords: Diptera, cone, insect damage, *Strobilomyia*, *Larix*, China.

INTRODUCTION

Cone flies of the genus *Strobilomyia* MICHELSEN (= *Lasionoma* STEIN auct. partim = *Chorthophila* MACQUART = *Hylemia* ROBINEAU-DESOIVDY) (Diptera: Anthomyiidae) are undoubtedly among the most serious insect pests that damage cones and seeds of conifers (ROQUES, 1988). Species of this apparently monophyletic genus occur mainly in the boreal and montane parts of the Holartic, where larval instars develop exclusively in the cones of various groups of Pinaceae except the pine species (Michelsen, 1988). A total of 18 *Strobilomyia* species were identified (TURGEON et al., 1994), most of them being related to larch, *Larix* MILLER.

In Eurasia, the species diversity of larch cone flies seems to increase from west to east. The larch cone resource is shared among 3 *Strobilomyia* species in both western Europe (ROQUES et al., 1984) and Finland (Pulkinnen, 1989). However, a total of 7 species, *S. baikalensis* (Elberg), *S. infrequens* (Ackland), *S. laricicola* (Kar1), *S. luteoforceps* (Fan & Fang), *S. melaniola* (Fan), *S. sibirica* Michelsen, and *S. viaria* (Huckett), has been recorded from larch cones in the Far East (Popova & Elberg, 1970; Suwa, 1971; Stadnístskii et al., 1978; Fang et al., 1980, 1989; Fan et al., 1982, 1990; Fang, 1987; Fan, 1988; Michelsen, 1988; Kamijo, 1993). In most areas of Siberia, Kamchatka, and northern China, up to 4-5 species were observed to coexist, and larvae of the different species were often found developing within the same larch cone (YAO et al., 1991; ROQUES, unpublished data). Because insects have to cope both
with spatial and temporal heterogeneity of seed cones and to reduce competition for a limited cone resource, the coexistence of such a high number of congeneric species likely relies on specific adaptations developed through the evolution of insect-seed cone relationships. However, the precise knowledge of specific distribution and biology of cone flies is still hindered by taxonomic uncertainties because much of larch cone damage was attributed for a long time to a single species, Strobilomyia laricicola in Russia (e.g., Efremova, 1971) and China (e.g., Anonymous, 1960, 1963, 1964, 1977; Xu, 1981). The use of male genitalia to identify adults was effective since the 1980’s in China (Fang et al., 1980; Fan et al., 1982) but the female genitalia were almost not used although Michelsen (1988) detailed most of them.

The large species diversification observed in China also suggested to survey the presence of cone flies in the whole range of larch in the country, especially in the southwestern (pre-Himalayan) range that had never been studied.

In this study, we will present (1) the description of new species found during a survey of larch cone damage in Yunnan province, southwestern China, and during field trappings with visual traps in Heilongjiang province, northeastern China; (2) an update synthesis, mostly based on Chinese literature, of the occurrence and distribution of cone flies in China, including a description of the genitalia of females and males.

MATERIAL AND METHODS

Survey of insect damage to cones of Himalayan larch in the Lijiang area of southwestern China

A stand of Himalayan larch, Larix potaninii Batalin var. mastersiana Law was surveyed on the lower slopes of Yulongxueshan (27°01’N, 100°09’E, 3000-3300 m elevation), Lijiang County, Yunnan province. A total of 50 cones was collected at random from 5 different trees on June 12, 1993. Cones were immediately dissected, and the position of insect larvae recorded. Half of the cone fly larvae was kept in alcohol for further examination and the other half was put on wet sand in order to allow pupation. Then, the pupae were placed into individual rearing boxes. Half of the pupae was stored in an outdoor insectary located at INRA, Orléans, France (107 m elevation), the other half kept at Northeast Forestry University, Harbin, China. Adult emergence was surveyed during 1994 and 1995. However, the emergence dates were only indicative because of differences in altitude and climatic conditions between native and rearing sites.

Survey of cone flies in stands of Siberian larch in northeastern China.

Visual trappings of cone flies were carried out at two sites near Jagedaqi (51°28’N, 124°29’E), Da Khinggan Mountains, Heilongjiang Province, during April-June 1993. The experiments were realized in a seed orchard and in natural stands of Siberian larch, Larix gmelinii Rupr. (Kusen). The trapping procedure has been described in another paper (Roques et al., 1995). All of the trapped flies were identified to species using the keys supplied by Fan et al. (1982, 1990) and Michelsen (1988). We systematically dissected the genital apparatus of both females and males, following an exposure to 10% KOH for 4 hours, because the flies were glued and sometimes crushed. Following larch cone maggot rearings performed during the 1981-1993 period, we also dissected the genitalia of the fly specimens that
CONES were conserved in the collection boxes of the Jagedaqi Forestry Bureau, to obtain additional information on the species composition of the cone fly complex in the area. To confirm the results, an additional trapping experiment was realized during May-June 1996 at the same locations, and using the same procedure.

RESULTS AND DISCUSSION

Survey of insect damage to cones of Himalayan larch in the Lijiang area of southwestern China

Of the 50 cones of *L. potaninii* collected at Yulongxueshan in June 1993, 76% (i.e., 38) were attacked by cone flies, a few (14%) being additionally attacked by a seed midge (*Resseliella* sp.). Different types of larval damage were observed. Most of the fly larvae (60%) did not enter the axis of the big-size (about 6-8 cm long) cone of Himalayan larch, but tunneled around the axis. Larval course was limited either to the base (20% of the total larvae), to the middle (25%), or to the apex (15%) of the cone. A few number of larvae (40%) entered the axis at the apex (15%), the middle (12.5%) or the base (12.5%) of the cone. The different types of larval course were observed in the same cone. The number of larvae per cone varied between 1 (31.8% of the attacked cones) and 3 (26.2%), a maximum of cones containing 2 larvae (42%). The cone fly larvae exited the cones from June 12 to June 21, 1993, and they immediately pupated. A total of 37 pupae were obtained.

Only 16 adult flies (4♂️♂️ and 12♀️♀️) emerged in 1994 from the pupae stored under outdoor conditions at Orléans and Harbin. Adult emergence began on March 21, 1994, and lasted until April 17, 1994. Four parasites, preliminary identified as *Sarothrus (= Seitneria)* sp.n., (Hymenoptera: Cynipidae) (M. Söderlund, personal communication), also emerged from pupae in early May (1-5 May). Related cynipid species were observed to parasitize second-instar larvae, and emerge from pupae of *Strobilomyia laricicola* and *S. melania* ACKLAND in Europe (*Seitneria austriacus* TAVARES; ROQUES, 1988), and *S. melaniola* in northern China (*Seitneria* sp.; ZHANG et al., 1991b). Thus, 54% of the cone fly pupae remained in prolonged diapause in 1994. In 1995, 5 more flies (2♂️♂️ and 3♀️♀️) emerged from April 1 to April 8. At this time, the remaining pupae were either in prolonged diapause for 4 of them, or dead for 8 of them.

Although we observed several patterns of larval damage, all of the adults which emerged in 1994 and 1995 were similar, and corresponded to a new species of cone fly. However, we cannot exclude that dead pupae or pupae remaining in prolonged diapause corresponded to other species because the European species of larch cone flies clearly differentiate by their specific damage pattern (ROQUES et al., 1984). Because of the structure of Sternite V in male terminalia and that of female cerci, the new species was clearly linked to the *melania* group defined by MICHELSL (1988). The description is the following:

Strobilomyia lijiangensis ROQUES & SUN sp.n.

Female

Medium-sized. Wing length 5 mm, i.e. a size approximating that of *S. melania*, the largest species in the *melania* group. Pupa length: 4.9-5.2 mm. Terminalia (Figs 1-2): Ovipositor 2.67 mm long on average. Cerci rounded at apex and not pro-
Figs 1-2: Female ovipositor of *S. lijiangensis* sp.n.: 1- Dorsal view (Tergites VII, VIII and IX); 2- Ventral view (Sternite VII, VIII and IX).

jecting, with 2 long setae at apex and 1 at base. Tergite (T) IX triangular; Sternite (St) IX broader than long. Segment VIII elongate and provided only with setulae. T VIII with elongate pieces, pieces of St VIII large. Segment VII elongate, with long marginal setae; T VII with two large elongate pieces; St VII with a large elongate piece along midline. Segment VI shorter than segments VII and VIII, with marginal setae stronger than those on Segment VII; T VI with two rectangular pieces at sides, St VI with an elongate piece along midline. Spermathecae oval elongate. The ovipositor resembles that of *S. sibirica* (MICHELSEN, 1988) but this species notably differs by the projecting cerci, the shape of the pieces of Sternite VI and the fewer number of marginal bristles on Tergites VI and VII. Cerci of the other species
in the *melania* group are either projecting (*S. melania* - ROQUES et al., 1984; *S. melaniola* - Fig. 13, *S. viaria* - MICHELSH, 1988) or more slender (*S. infrequens* - Fig. 10; *S. baicalensis* - Fig. 12).

Male

Small to medium-sized. Wing length 4-4.6 mm, i.e. an intermediate size in the *melania* group. Pupae length 4.4-4.7 mm. Genitalia (Figs 3-6): Sternite V closely resembling that of *S. melania* (ACKLAND, 1965; ROQUES et al., 1984; MICHELSH, 1988). Lobes apically convergent, with a distinct group of 10-12 strong medial bristles in a brush-like arrangement at base. Cereal plate heart-shaped, supplied with two pairs of long bristles, the one closer to apex being longer than surstyli. Surstyli very enlarged in the middle. Apical incision not enlarging at bottom. Phallus slender at extremities. The enlargement of the surstyli at its middle is much less important in the other species of the *melania* group (*S. melania* - ROQUES et al., 1984; *S. melaniola* - Fig. 18; *S. sibirica* and *S. viaria*, MICHELSH, 1988).

Type material

1♂ holotype and 3♂♀, 12♀♀ paratypes, Yulongxueshan (27°01’N, 100°09’E, 3000 m altitude), Lijiang, Yunnan, China, emerged from cones of *Larix potaninii* var. *macrocarpa* (Leg. A. ROQUES, 12.VI.1993). Holotype: ♂, ex. 21.III.1994 (kept at INRA Orléans, France). Paratypes: 1♂, 2♀♀ ex. 23.III.1994 (NFU, Harbin, China); 1♂ ex. 25.III.1994 (SWFC, Kunming, China); 1♂ ex. 21.III.1994 (kept at INRA Orléans, France).
Survey of cone flies in stands of Siberian larch in northeastern China

The trappings resulted in a total of 339 cone flies from 6 different species (ROQUES et al., 1996). Among the trapped specimens, we identified 150 specimens (62♂♂, 88♀♀) of Strobilomyia melaniola, 73 (13♂♂, 60♀♀) of S. baikalensis, 63 (27♂♂, 36♀♀) of S. infrequens, and 1♂ of S. laricicola. These 4 species have already been observed in the Da Khinggan Mountains of northeastern China (FANG et al., 1989; YAO et al., 1991). In addition, we identified 41 specimens (4♂♂, 37♀♀) of S. svenssoni MICHELS, and 11♀♀ of Strobilomyia that could not be referred to any of the described species.

S. svenssoni had previously been recorded from Sweden and Mongolia (MICHELS, 1988), but not from China. The host was unknown but supposed to be spruce in Sweden. Five specimens of S. svenssoni were also identified within the adult flies reared from cones of Siberian larch, which were kept in the collection of the Jagedaqi Forestry Bureau. Thus, it confirmed that this cone fly attacks Siberian larch, Larix gmelini. The life cycle and biology of the species has been described by SUN et al. (1995).

Four female specimens similar to the unidentified individuals caught in the 1993 visual trappings were found in the collection of flies reared from cones of Siberian larch at Jagedaqi Forestry Bureau. We supposed these specimens to be S. luteoforceps FAN & FANG because the female of this species was still not described. However, S. luteoforceps had only been observed in the Xiao Khinggan Mountains (YAO et al., 1991), and no male of S. luteoforceps was neither observed in the collection of Jagedaqi Forestry Bureau nor trapped during the 1993 experiment. By contrast, first results of the 1996 trappings revealed the presence of males of S. luteoforceps as well as of females similar to the unidentified 1993 specimens. Although the trapping is not completed yet, 6 males and 3 females were trapped on May 16, 1996, after all. This result ascertained the presence of S. luteoforceps in the Da Khinggan Mountains. Therefore, we considered that the female specimens probably correspond to females of S. luteoforceps, whose description is the following:

Strobilomyia luteoforceps FAN & FANG

Female

Terminalia (Figs 7-8): Ovipositor rather long, 2.8 mm long on the average. Cerci rounded at apex and not projecting, with 2 long setae at apex and 1 at base. T IX and St IX pieces transversally elongate with two long setae in the middle. Segment VIII provided only with setulae; T VIII pieces clava-shaped; St VIII pieces large. Segment VII with long marginal setae; T VII with two broad rectangular pieces at sides; St VII with a broad rectangular piece along midline. Segment VI with marginal setae stronger than these on Segment VII; T VI with two rectangular pieces at sides. Spermathecae oval-shaped.

The species largely differs from S. baikalensis and S. laricicola by a much longer ovipositor. The ovipositor of these two species only measured 1.9 mm and
CONE FLIES ATTACKING LARCH CONES IN CHINA

Figs 7-8: Female genitalia of Strobilomyia luteoforceps Fan & Fang: 1- Dorsal view (Tergites VII, VIII and IX); 2- Ventral view (Sternite VII, VIII and IX).

2 mm, respectively, in the specimens we observed at the same locations. In addition, St VIII pieces were much smaller in S. baicalensis (Fig. 12) whereas cerci were more flattened in S. laricicola (Fig. 9). Although the ovipositor size is similar to that of S. luteoforceps, the cerci of S. melaniola (Fig. 13; Fan et al., 1990) and S. sibirica (Michelsen, 1988) are notably projecting at apex, whereas S. svenssoni (Fig. 11) and S. infrequens (Fig. 10) differ by the shape of the sclerotized pieces of Segment VII (Roques et al. 1984; Michelsen, 1988).

Material

15 ♀ ♂, Jagedaqi (51° 28'N, 124° 29'E), Da Khinggan Mountains, Heilongjiang Province, China. 1 ♀ ex. 16.IV.1988; emerged from cones of Larix gmelini collected at Hu Zhong, Jagedaqi region, in late spring 1987 (genitalia kept at INRA Orléans, France); 3 ♀ ♂ ex. 17.IV.1988 (genitalia kept at NFU, Harbin, China); 11 ♀ ♀ trapped, using blue traps from May 3 to June 13 1993 at Jagedaqi larch seed orchard and in a larch stand located about 3 km west of Jagedaqi City (genitalia kept at INRA Orléans, France).

424
Distribution and host plants of larch cone flies occurring in China

A total of seven species of cone flies has been identified so far in cones of *Larix* spp. in China, including *S. lijiangensis*. Figs 9-13 and 14-19 show the female and male terminalia, respectively. Three of the species present a wide distribution range:

1. *S. laricicola* (Figs 9 and 14) is a widespread Palearctic species continuously observed from Western Europe (ROQUES et al., 1984) to Kamchatka (ROQUES, unpublished data), and Japan (SUWA, 1971; KAMUO, 1993), including central Siberia and eastern Siberia (POPOVA & ELBERG, 1970; STADNISTKII et al., 1978). In China, the species was observed in northern China (Inner Mongolia, Heilongjiang, Liaoning, Jilin; FANG et al., 1980, 1989; FAN et al., 1982, 1990; FAN, 1988; YAO et al., 1991, 1993; ZHANG et al., 1991a, 1996; LIU, 1994b; SUN et al., 1994; ROQUES et al., 1995) but also in Hebei and Shanxi (ZHANG & LI, 1991, 1994). Besides *Larix gmelini*, it attacks *L. olgensis* HENRY (SUN & ROQUES, unpublished observations), and *L. principis-rupprechtii* MAYR. (ZHANG & LI, 1991, 1994). Damage was also observed on all the other larch species growing in northern Asia, e.g., *L. sibirica* LEDEB., *L. czekanowskii* ZSAF., *L. leptolepis* (SIEB. & ZUCC.) GORD., and *L. cajanderi* MAYR. (KAMUO, 1993; POPOVA & ELBERG, 1970; STADNISTKII et al., 1978; YAMADA et al., 1972).

2. *S. infrequens* (Figs 10 and 15) shows a similar distribution except it has not yet been recorded from Japan. In China, the species has been observed in Inner Mongolia, Heilongjiang, Liaoning, Jilin, Shanxi and Hebei (FANG et al., 1980, 1989; FAN et al., 1982, 1990; FAN, 1988; YAO et al., 1991, 1993; ZHANG et al., 1991a, 1996; ZHANG & LI, 1991, 1994; LIU, 1994b; SUN et al., 1994; ROQUES et al., 1995). It attacks *L. gmelini*, *L. olgensis*, and *L. principis-rupprechtii* in China.

3. *S. svenssoni* (Figs 11 and 16) has been observed in Sweden, Mongolia (MICHELSEN, 1988) and Heilongjiang (SUN et al., 1995; ROQUES et al., 1995), and the only known host is *L. gmelini*.

The 4 other species of larch cone flies seem endemic to Eastern Asia.

4. *S. baicalensis* (Figs 12 and 17) is a northasian species observed from central Siberia to eastern Siberia and Kamtchatka, including the Lake Baikal area and Yakutia (POPOVA & ELBERG, 1970; STADNISTKII et al., 1978; MICHELSEN, 1988; ROQUES, unpublished observations). In China, the species is recorded from Inner Mongolia and Heilongjiang (FANG et al., 1980, 1989; FAN et al., 1982, 1990; FAN, 1988; YAO et al., 1991, 1993; ZHANG et al., 1991a, 1996; SUN et al., 1994; ROQUES et al., 1995). Known hosts are *L. gmelini* and *L. olgensis* in China, and *L. sibirica*, *L. czekanowskii*, and *L. cajanderi* in other parts of northern Asia.

6. *S. luteoforceps* (= *Lasionema jurtzenkot* ELBERG) (Fig. 19) is apparently limited to the Far-East, having only been recorded from the northeastern part of China (Xiao and Da Khingan mountains, Heilongjiang; FANG et al., 1980, 1988; FAN & FANG, 1981; FAN et al., 1982, 1990; FAN, 1988; YAO et al., 1991, 1993; LIU, 1994; SUN et al., 1994), from the Primorié and Amur region of Russia, and from

Sakhalin (Stadnitskii et al., 1978). In China, it attacks *L. gmelini* and *L. olgensis*, but also *L. cajanderi* in Russia.

7- *S. lijiangensis* Roques & Sun.

Two other species may be present in northern China, but were not yet recorded:

- *S. viaria* (Huckett), a trans-beryngian species, that has been observed from the northwest of America (Canada, USA) to the Baikal area and northeastern Siberia (Yakutia; Michelsen, 1988), including Kamchatka (Roques, unpublished observations). In these areas, it attacks *L. gmelini*, *L. sibirica*, and *L. cajanderi*.

- *S. sibirica* Michelsen, an Eurosiberian species observed in the range of the Siberian larch, *L. sibirica*, from eastern Scandinavia (Pulkinnen, 1989) to central Siberia (Krasnoyask area, Khakassia; Popova & Elberg, 1970; Michelsen, 1988).
Only few literature exists about the relationships between cone development and species life cycles (YAO et al., 1991; ROQUES et al., 1995). The specific patterns of oviposition and egg shape are still unclear for some species (SUN et al., 1996) as well as specific larval damage (YAO et al., 1991), and the pupae of only 4 species are described (SUN et al., 1993; FAN & HE, 1995). Because larch cone flies constitute a complex of species whose dominant species may change with year and prolonged diapause, the definition of specific methods of control is needed. It thus requires further studies to precise the specific stages of development and specific damage to cones.

ACKNOWLEDGEMENTS

We thank LI HUA for field assistance, XU SHAN-BIN, XU YUI-BO and WANG HONG-BIN for logistic support at Jagedaqi, and LI WEI-GAN and XU CHANG-SHAN from Lijiang Forestry Bureau. This study was part of the cooperative program “Insects of cones and seeds of conifers in northeastern China”, developed between the Northeast Forestry University, Harbin, China and the “Institut National de la Recherche Agronomique”, Olivet, France. The work was partly funded by a Chinese grant “Outstanding Young Teachers Funding” from State Education Commission, by an European project entitled “Management of cone and seed insects in seed orchards” (FOREST program), and by “Green Plan Funds”.

RÉSUMÉ

Les mouches des cônes de mélèze, Strobilomyia spp., ont été inventoriées dans les provinces chinoises du Yunnan et du Heilongjiang durant le printemps 1993, à partir de récoltes de cônes et de piégeages visuels. Une nouvelle espèce, S. lijiangensis sp.n. est décrite de Lijiang, Yunnan, où elle présente de fortes attaques sur le mélèze de l'Himalaya, Larix potanini var. mastersiana. Des femelles d'une espèce inconnue de mouches des cônes ont été obtenues à la fois à partir des piégeages et des récoltes de cônes de mélèze de Sibérie dans les Monts Da Khingan du Heilongjiang. Des piégeages complémentaires réalisés en 1996 amènent à considérer que ces insectes correspondent probablement à l'espèce S. luteoforceps, dont la femelle n'était pas décrite. De plus, S. svenssoni est décrite pour la première fois de Chine, où elle attaque les cônes de mélèze de Sibérie dans le nord-est. Enfin, l'article présente une liste de 7 mouches des cônes de mélèze identifiées en Chine, incluant leur distribution, les arbres-hôtes et la description des appareils génitaux femelles et mâles.

REFERENCES

(reçu le 24 mai 1996; accepté le 18 juillet 1996)