Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft =

Bulletin de la Société Entomologique Suisse = Journal of the Swiss

Entomological Society

Herausgeber: Schweizerische Entomologische Gesellschaft

Band: 17 (1937-1939)

Heft: 9

Artikel: Zur Fortpflanzungsbiologie einiger Solenobia-Arten [Vortrag]

Autor: Seiler, J.

DOI: https://doi.org/10.5169/seals-400879

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mitteilungen der Schweizerischen Entomologischen Gesellschaft

Bd. XVII, Heft 9 Redaktion: Dr. H. Kutler, Flawil 15. März 1939

Inhalt: J. Seiler, Zürich: Zur Fortpflanzungsbiologie einiger Solenobia-Arten.

— N. Cerutti, Martigny: Captures intéressantes d'Hémiptères du Valais et description d'espèces nouvelles. — J. Zingg, Meggen: Kritische Studie über Coenonympha arcania L. und satyrion Esp. und ihre Formen. — Graf Emilio Turati 1858—1938. — Aus den Sektionen: Entomologia Zürich, Jahresbericht 1937.

Zur Fortpflanzungsbiologie einiger Solenobia-Arten.

Nach einem Vortrag,

gehalten an der Jahresversammlung der Schweiz. Entomolog. Gesellschaft in Wädenswil am 24. April 1938

von

J. Seiler, Zool. Institut der Eidg. Techn. Hochschule Zürich.

(Mit 8 Textfiguren.)

Seit über 20 Jahren beschäftige ich mich experimentell mit verschiedenen Psychiden aus der Familie der Talaeporiden. Von den Hauptproblemen, deren Lösung ich an diesen Objekten erstrebe, soll hier nur andeutungsweise die Rede sein. Es sind Probleme der Geschlechtsvererbung, Intersexualitätsprobleme und Fragen nach Wesen, genetischer Bedingtheit und Ursprung der Parthenogenese.

Der Leser dieser Zeitschrift wird erraten, warum zur Lösung der genannten Fragen gerade die Talaeporiden herangezogen wurden. Es gibt wenige Tiere, bei welchen der Unterschied zwischen den beiden Geschlechtern so groß ist wie bei den Talaeporiden. Das Weibchen ist ein flügelloser, in allen Organen außer den Fortpflanzungsorganen stark reduzierter Schmetterling (Abb. 1). Das Männchen dagegen ist normal beflügelt (Abb. 2) und zeigt auch in den übrigen Organen keine Anzeichen einer Reduktion.

Es versteht sich von selbst, daß für Experimente über das Problem der Geschlechtsvererbung dieser extreme Sexualdimorphismus eine überaus wichtige Eigenschaft des Untersuchungsobjektes darstellt. Es gibt kein Organ — selbst Muskulatur, Nervensystem und Darm sind davon nicht ausgenommen —, in welchem die beiden Geschlechter sich nicht stark unterscheiden würden.

Was die Talaeporiden und mit ihnen die weitere Familie der Psychiden aber besonders auszeichnet, das ist die Tatsache, daß

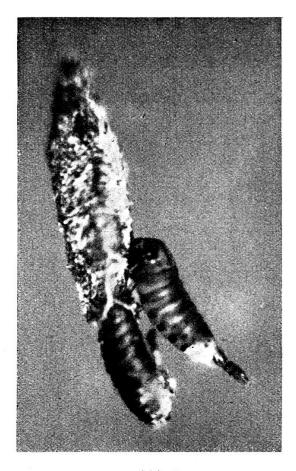
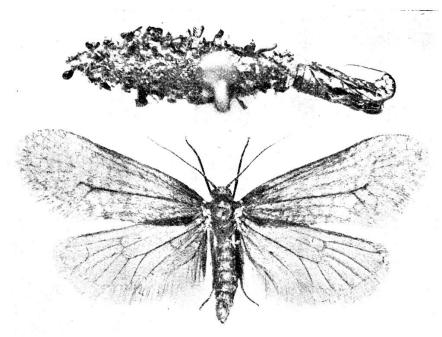


Abb. 1.

Solenobia triquetrella F. R. Weibchen der bisexuellen Rasse nach dem Schlüpfen aus der Puppenhülle. Raupensack von oben gesehen. Puppenhülle in Seitenansicht. Vergr. 6mal.


manche Gattungen sich normal bisexuell vermehren (z. B. Talaeporia, Fumea usw.), während andere sich eingeschlechtlich, parthenogenetisch fortpflanzen und nur im weiblichen Geschlecht vorkommen. Oder es nen innerhalb derselben Gattung parthenogenetsich sich vermehrende Arten oder Rassen neben bisexuellen vorhanden sein. so bei Solenobia. — Von Siebold (1856) war der erste, der das Vorkommen parthenogenetischer Vermehrung bei Schmetterlingen nachwies und zwar gerade bei meinem hauptsächlichen Untersuchungsobjekt, der Solenobia. Leuckart (1858) ergänzte später die Angaben von Siebolds. Das Verdienst, die Fortpflanzungsbiologie der Solenobien und anderer Psychiden weitgehend aufgeklärt zu haben, gehört aber Ottmar Hofmann (1859), der in seiner kleinen bewunderungswürdigen Arbeit «Ueber die Naturgeschichte der Psychiden » nicht nur eine Fülle sorgfältigster Beobachtungen niederlegte,

der überdies — seiner Zeit weit vorauseilend — die Fortpflanzungsverhältnisse seiner Objekte durch die Aufzucht vom Ei an und durch Kreuzungsexperimente zu lösen versuchte.

Nach Hofmann hat sich meines Wissens nur noch O. Hartmann (1871) mit der Fortpflanzungsbiologie der Solenobien abgegeben. Hartmann bestätigte die Feststellung Hofmanns, daß Solenobia in parthenogenetisch und zweigeschlechtlich sich vermehrenden Arten oder Rassen vorkommt. Auch Hartmann versuchte das Kreuzungsexperiment; es glückte! Aus der Paarung der parthenogenetischen Weibchen von *Solenobia triquetrella* mit Männchen einer bisexuellen Rasse resp. Art erhielt er lauter Weibchen, die aber im Gegensatz zu den Weibchen der parthenogenetischen Ausgangsrasse ohne Begattung nicht zur Eiablage schritten.

Bei Schmetterlingen sowohl wie überhaupt im Tier- und Pflanzenreich ist die Parthenogenese zweifellos aus der bisexuellen Vermehrungsart hervorgegangen. Welches mögen nun die Gründe sein

für das Auftreten dieser neuen Fortpflanzungsart? Welches der Weg, auf dem sie eingeführt wurde? Etwa auf dem Wege eines Mutationsschrittes? Man wird, jedenfalls für unsere Objekte, kaum an eine solche Möglichkeit zu glauben wagen; denn parthenogenetische Fortpflanzung bedeutet hier nicht nur, daß das Ei ohne den Entwicklungsimpuls, der normalerweise aus der Befruchtung resultiert, sich zu entwickeln vermag und daß der ganze Chromosomenmechanismus umgestellt wird; es bedeutet überdies, daß auch die erblich fest verankerten Sexualinstinkte der Weibchen eine Abänderung erfahren.

Bei den Solenobien sowohl wie bei anderen Schmetterlingen warten die bisexuellen Weibchen nach dem Schlüpfen aus der Puppe auf die Begattung. Sie strecken dabei die Legeröhre vor und scheiden Duftstoffe aus, durch welche die Männchen angelockt werden. Abbildung 1 zeigt das frischgeschlüpfte Weibchen einer bisexuellen Rasse von Solenobia triquetrella F. R., die Legeröhre vorstreckend. Die Solenobien sind Frühaufsteherinnen. In der Regel beginnt das Schlüpfen der Weibchen aus den Puppen beim ersten Morgengrauen. Das Licht ist, jedenfalls in erster Linie, der auslösende Faktor. Dunkelt man den Puppenbehälter ab, so wird das Schlüpfen verzögert. Die Männchen schlüpfen, nebenbei bemerkt, in der Regel nachmittags oder abends und nachts und sind am nächsten Morgen bereit zur Kopulation.

Fliegt ein Männchen an, so ziehen die bisexuellen Weibchen die Legeröhre ein und die Begattung erfolgt dann sofort und in stürmischer Weise. Nachdem der Penis in die Begattungsöffnung eingeführt ist, verharren beide Partner einige Minuten in vollständiger Ruhe; dann macht das Weibchen ruckweise Bewegungen mit

dem Hinterleib, als ob es das Männchen abschütteln wollte. Sobald die Kopula gelöst ist, biegt das Weibchen sein Abdomen ein, schiebt die Legeröhre zwischen der Puppenhülle und der Sackwand in die Tiefe des Sackes (vergl. Abb. 3) und legt in einem Zuge die Eier. Die Ablage dauert höchstens eine Stunde. Hierauf bedeckt das Weibchen das Eigelege mit der Wolle seines Afterwollbusches (vergl. Abb. 1 und 3), und damit ist seine Uhr abgelaufen. Es stochert noch etwa zwei bis drei Stunden am Sack herum, macht wohl auch eine kleine Wanderung durch die Welt, die sich aber kaum über die Ausdehnung des Sackes erstreckt, fällt dabei oft vom Sack und stirbt ab; oder es bleibt an den Sack geklammert und trocknet langsam ein.

Unterbleibt am Tage des Schlüpfens die Begattung, so ziehen die Weibchen in der Regel etwa um 8, 9 oder 10 Uhr morgens die Legeröhre ein und verharren bewegungslos bis zum Morgengrauen des nächsten Tages, um nun von neuem die Legeröhre vorzustrecken und das Glück zu versuchen. Die Werbung scheint jetzt intensiver zu sein; der Hinterleib wird noch stärker gegen die leere Puppenhülle zu eingebogen, als das frisch geschlüpfte Tier der Abb. 1 es tut, und die Legeröhre wird maximal ausgestreckt. Fliegt auch jetzt kein Männchen an, so kann sich dasselbe Spiel an den folgenden Tagen wiederholen. Bald aber wird erkennbar, daß die Kräfte zu schwinden beginnen. Unterbleibt auch am fünften oder sechsten Tag die Begattung, so trocknen die Weibchen, an den Sack geklammert, ein, ohne die Eier gelegt zu haben. Vor dem Absterben machen manche Weibchen wiederholte Anstrengungen, den Hinterleib zur Ablage einzukrümmen und die Legeröhre in die Tiefe des Sackes zu senken. Merkwürdigerweise gelingt das unbegatteten Weibchen in der Regel nicht. Gelingt es jedoch ausnahmsweise doch einmal und glückt es überdies, vereinzelte Eier abzulegen, so entwickeln sich diese nicht, jedenfalls nicht bis zum fertigen Räupchen. So das Verhalten der bisexuellen Weibchen aller Solenobia-Arten, die ich unter Beobachtung hielt.

Ganz anders ist das Verhalten der Weibchen parthenogenetischer Rassen oder Arten. Das Verhalten der parthenogenetischen Weibchen von Sol. triquetrella sei hier geschildert. Unmittelbar nach dem Schlüpfakt verharren diese Weibchen einen Moment in Ruhe, gleichsam um Atem zu schöpfen. Das dauert in der Regel aber nicht länger als eine Minute, dann biegen sie, ohne die Legeröhre vorgestreckt zu haben, den Hinterleib in einem eleganten mühelosen Ruck ein und schreiten zur Eiablage (Abb. 3). Das geschilderte Verhalten gilt unter normalen Aussenbedingungen fast ausnahmslos und ist von mir an vielen Hunderten von Tieren der verschiedensten Herkunft beobachtet worden. —

Man sieht, das Phänomen der Parthenogenese ist komplexer Natur. Es besteht nicht nur darin, daß die Eier die Fähigkeit bekommen, sich ohne Besamung entwickeln zu können; vielmehr wurden auch die Fortpflanzungsinstinkte der Weibchen abgeändert. Wie mag das alles erfolgt sein? so frage ich abermals! Nach dem Gesagten wird der Leser verstehen, warum ich der Annahme skeptisch gegenüberstehe, daß all diese Abänderungen auf einen Schlag entstanden sind. Vielleicht aber sind sie etappenweise durch viele Mutationsschritte entstanden?

Da taucht nun sofort der Gedanke auf: Wenn eine solche Entstehungsart in Frage käme, dann könnte es vielleicht gelingen, über den Weg, auf welchem die Parthenogenese eingeführt wurde, etwas in Erfahrung zu bringen, wenn solche Arten studiert würden, bei welchen neben bisexuell sich vermehrenden Rassen bereits parthenogenetische vorhanden sind. Hier hätte man, so war zu hoffen, die Möglichkeit, dem Uebergang von einer Vermehrungsart zur anderen gleichsam zuzusehen. Die genannten Voraussetzungen schienen nach den erwähnten älteren Arbeiten unter anderem bei der Gattung Solenobia erfüllt zu sein. Damit kennt der

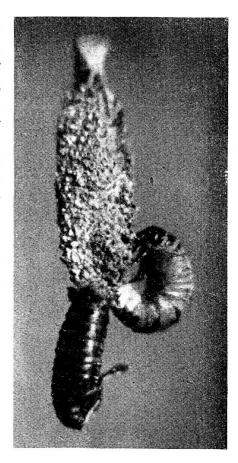
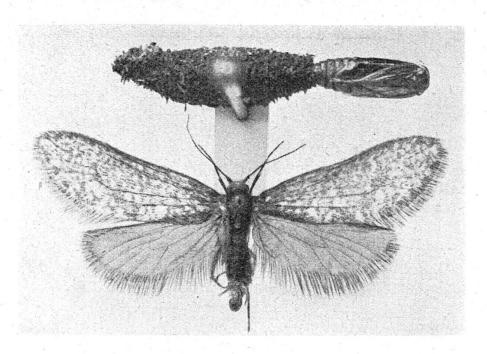
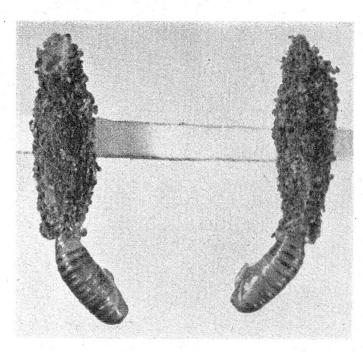


Abb. 3.


Solenobia triquetrella F. R.
Weibchen der parthenogenetischen Rasse in Eiablage begriffen. Sack von Ventralseite gesehen. Vergr. 6mal.

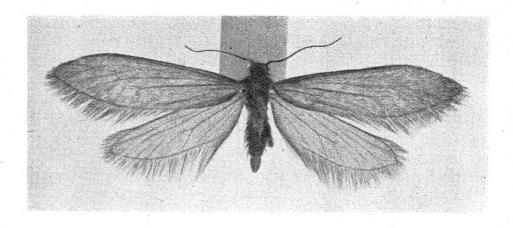
Leser den Hauptgrund, warum ich dieses züchterisch so überaus unbequeme Objekt heranzog. —


Zunächst war die Frage zu prüfen, ob die Literaturangaben über die Fortpflanzungsbiologie der Solenobien richtig sind. Parthenogenetische Vermehrung wurde angegeben für *S. pineti* Z., *S. lichenella* L. und *S. triquetrella* F. R. Leider sind diese Arten sehr wenig gut umschrieben, und es ist dem besten Kenner der Talaepoiden, Rebel, beizustimmen, wenn er 1919 feststellte, daß eine sichere Diagnostizierung überhaupt nicht möglich ist. Das ist inzwischen nicht anders geworden.

1. Solenobia pineti Z.

Diese Art vermehrt sich bisexuell und kommt in den Föhrenwäldern Norddeutschlands, vor allem in der Mark, massenhaft vor. Sie ist aber auch in Mittel- und Süddeutschland stellenweise

a



b Abb. 4. Solenobia pineti Z.

 a) Männchen und männlicher Sack in Seitenansicht. Die Ventralseite schaut nach oben. — b) Weibliche Säcke, links Ventral-, rechts Dorsalansicht. Vergr. 6mal.

häufig und ist fast überall da zu finden, wo Föhrenwälder sind. In der Schweiz scheint *pineti* seltener zu sein.

An der Form, Bekleidung, Farbe und Größe ist der Pinetisack leicht zu charakterisieren und kann kaum verwechselt werden

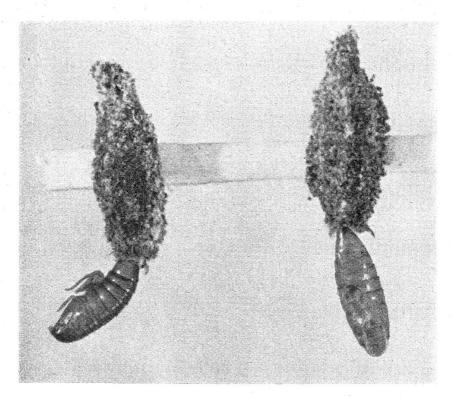


Abb. 5. Solenobia lichenella L. Männchen der bisexuellen Rasse und Weibchensäcke der parthenogenetischen Rasse in Ventral- und Dorsalansicht. Vergr. 6mal.

mit dem Sack von *S. triquetrella* (vergl. Abb. 4 mit Abb. 1—3). Wohl aber ist eine Verwechslung mit dem Sack der Form möglich, die ich *lichenella* nenne und die sogleich beschrieben werden soll (vergl. Abb. 5).

Der Sack der Solenobien besteht aus einer Bauchfläche und zwei Rückenflächen. Er hat eine vordere und hintere Oeffnung; die vordere schaut nach unten, ist also auf die Bauchseite verschoben; die hintere, durch die der Kot ausgestoßen wird, ist terminal. Hier ist der Sack, entsprechend seinen drei Wänden, in drei Zipfel ausgezogen. Die Einschnitte sind bei *Sol. pineti* wenig tief.

Charakteristisch für den Pinetisack ist es, daß die Bauchfläche und auch die Rückenflächen stark gewölbt sind und der Sackquerschnitt fast rund ist. Da, wo die beiden Rückenflächen zusammenstoßen, ist der Sack im mittleren Drittel in eine schwache, aber doch ziemlich deutliche Gratlinie ausgezogen (Abb. 4). Der Grat läuft nach vorn zu bald aus; nach rückwärts kann er oft verfolgt werden bis in den Einschnitt zwischen den beiden Rückenflächen. Da, wo die Rückenflächen mit der Bauchfläche zusammenstoßen, sind die stärker betonten Seitenkanten. Diese treten allerdings nur deshalb mehr in Erscheinung, weil entlang dieser Linien der Sack mit gröberem Material, mit kleinen Schüppchen der verschiedensten Herkunft, bekleidet ist. Der obere und der linke untere Sack der Abbildung 4 geben die beste Vorstellung vom Pinetisack.

Der Sack wirkt als Ganzes grauschwarz und ist größtenteils mit feinen schwarzen Körnchen bekleidet. Quarzkörnchen werden als Baumaterial nur spärlich verwendet, im Gegensatz zu *triquetrella*.

Ueber die Maße des Sackes von Material aus der freien Natur (Berlin, Pleinfeld, Nürnberg) gibt die folgende Tabelle 1 Auskunft.

Tabelle 1. Länge der Säcke von *S. pineti*.

mm	$4^{1/2}$	5	$5^{1/2}$	6	$6^{1/2}$	7	$7^{1/2}$
Zahl der Tiere	2	18	42	121	32	22	1

$$n = 238$$
; $M = 5,99$; $\sigma = \pm 0,523$; $m = \pm 0,037$.

Die *Pineti*-Raupen kriechen Ende März-Anfang April an den Föhrenstämmen hoch und spinnen das Vorderende des Sackes fest, drehen sich dann im Sack um und verpuppen sich. Das Schlüpfen erfolgt etwas später als bei *triquetrella* und ist in der Regel von Mitte April bis Anfang Mai im Gange. —

Pineti wählte ich als Untersuchungsobjekt, weil behauptet wurde (Literatur siehe bei Rebel 1919), daß diese Art auch in einer parthenogenetischen Form vorkomme. Ich suchte nach ihr und fand in der Umgebung Münchens (Kirchseeon, Forstenriederpark, Pupplingerau bei Wolfratshausen) an Wildparkzäunen, Lattenzäunen an Waldrändern, seltener an Tannenstämmen und nur vereinzelt im Föhrenhochwald (Wolfratshausen) tatsächlich eine Solenobia (Abb. 5, untere Reihe), die parthenogenetisch ist und die im Sack der pineti ähnlich ist, so sehr, daß ich der Meinung war, die parthenogenetische Rasse von pineti gefunden zu haben, und sie auch unter diesem Namen beschrieb (vergl. Seiler 1923).

Das war eine holde Täuschung, wie ich heute mit Sicherheit sagen kann. Worauf diese Feststellung beruht, wird sich aus folgendem ergeben.

Solenobia pineti vermehrt sich an all den zahlreichen Fundstellen Deutschlands, von welchen ich Material eintrug, ausschließlich bisexuell. In Klausur gehaltene, unbegattete Weibchen verwei-

gern die Eiablage. —

Ich sprach einleitend die Vermutung aus, daß die Parthenogenese in Etappen eingeführt worden sein könnte. Eine erste Etappe könnte nun die sein, daß die Zahl der Männchen kleiner wird als die der Weibchen und diese dazu gezwungen werden, ihren Weg ohne Männchen zu suchen. Aus dieser Ueberlegung resultierte die Aufgabe, das Sexualverhältnis der Objekte zu prüfen, die im Verdacht stehen, zur Parthenogenese überzugehen. Die folgende Tabelle 2 stellt die Sexualverhältnisse der Tiere einiger Fundorte (von Norden nach Süden geordnet) zusammen.

Tabelle 2. Solenobia pineti.

Fundort	φ	3	♀:♂ Verhältnis
Mark, Berlin	527	775	0,68:1
Nürnberg	149	80	1,86:1
Pleinfeld	49	18	2,72:1
Wolfratshausen bei München	69	18	3,84:1

Man möchte die Tabelle fortgesetzt sehen für Fundorte, die noch weiter südlich liegen. Der Leser errät meine Gedanken: Ob wir in der eingeschlagenen Richtung schließlich zu Fundorten mit der parthenogenetischen Form stoßen würden? Und er erkennt zugleich, daß es überaus wertvoll wäre, *pineti* an schweizerischen Fundstellen unter Beobachtung zu halten.

Wie vermehrt sich *pineti* hier? Parthenogenetisch, zweigeschlechtlich? Wenn das letztere der Fall ist: Wie sind die Sexualverhältnisse?

Die Beobachtung hätte einzusetzen im frühen Frühjahr. Während des Heraufkriechens an den Baumstämmen findet man *pineti*, ebenso wie die anderen Solenobien, leicht; auch später natürlich noch, wenn die Säcke angesponnen sind. Während der ganzen Raupenentwicklung aber sucht man die Solenobien meist vergebens.

2. Solenobia lichenella L.

Die parthenogenetsiche Form, die ich ursprünglich für eine pineti-Rasse hielt, und die ich an den bereits genannten Fund-

stellen in der Nähe Münchens fand, dürfte wohl identisch sein mit der *S. lichenella* L. der Literatur (vergl. Rebel 1919). Ich nenne sie deshalb provisorisch so, weiß aber, daß die Aufgabe noch zu erledigen sein wird, das vorliegende Objekt einer genauen morphologischen Untersuchung zu unterziehen und in Vergleich zu setzen mit den übrigen Solenobia-Arten.

Hier soll zunächst nur über die Beschaffenheit der Raupensäcke (Abb. 5) und über das Verhalten der Imagines berichtet werden.

Ueber die Größe des Sackes orientieren die Daten der folgenden Tabelle 3. Sie zeigen, daß der Mittelwert der Sacklänge von

Tabelle 3. Länge der Säcke von *S. lichenella*, in mm.

Herkunft des Materials	4	$4^{1/2}$	5	5 1/2	6	$6^{1/2}$	7
Forstenried bei München			50	132	130	16	
Zuchten 1922/23			16	23	26		
Zuchten 1923/24	1	15	54	61	21		

$$n = 545$$
; $M = 5,55$; $\sigma = \pm 0,44$; $m = \pm 0,02$.

lichenella etwas kleiner ist als der von *pineti*, und zwar ist diese Aussage, wie die Berechnung der mittleren Fehler zeigt, statistisch gesichert.

Farbe und Baumaterial des Sackes sind bei beiden Arten sehr ähnlich, wobei es selbstverständlich ist, daß die Art des Baumateriales und damit auch die Farbe abhängig ist vom Milieu, in dem die Tiere leben. Typisch dagegen ist die Sackform. Für *lichenella* ist nach dem relativ großen mir zur Verfügung stehenden Freiland- und Zuchtmaterial charakteristisch, daß die Sackwände etwas flacher sind als bei *pineti*, so daß der Querschnitt mehr der Dreieckform sich nähert. Auch sind die Kanten des Sackes deutlicher und die Rückenkante verläuft in der Regel über die ganze Länge des Sackes (Abb. 5). Im Gegensatz dazu ist der *pineti*-Sack mehr walzenförmig (vergl. Abb. 4 oben).

In der Sackform nähert sich *lichenella* der *triquetrella*; deshalb ist es zu verstehen, daß *lichenella* offensichtlich auch mit *triquetrella* häufig verwechselt wurde. Der *triquetrella*-Sack ist aber größer und mehr oder minder dicht belegt mit Quarzsteinchen, die bei *pineti* und *lichenella* nur spärlich sind oder ganz fehlen.

Urteilt man allein nach der Sackform und der Sackgröße, so ist aber eine Verwechslung zwischen *lichenella* und einer diploid parthenogenetischen *triquetrella* (Lägernrasse) (Abb. 7), auf die ich zu sprechen kommen werde, möglich. Die Chromosomenverhältnisse beider Objekte sind aber grundverschieden (vgl. Seiler 1938), so daß nicht der leiseste Zweifel darüber besteht, daß es sich um zwei verschiedene Arten handelt. Daß *lichenella* mit *triquetrella* nichts zu tun hat, ergibt sich auch aus den gleich zu schildernden Kreuzungsversuchen. —

Ich sprach die Vermutung aus, daß die Parthenogenese wohl schrittweise eingeführt wurde und überließ es den Lesern, sich die Etappen des Weges von der bisexuellen zur parthenogenetischen Vermehrung auszumalen. Im Verhalten der eingangs geschilderten parthenogenetischen Form von *S. triquetrella* sind (soweit ich das Verhalten bis jetzt geschildert habe!) keine Reminiszenzen an das Verhalten der bisexuellen Weibchen mehr erkennbar. Bei den parthenogenetischen Weibchen von *S. lichenella* dagegen ist das anders.

Die meisten lichenella-Weibchen zögern nach dem Schlüpfen aus der Puppe einen kurzen Moment, biegen aber dann den Hinterleib zur parthenogenetischen Eiablage ein. Andere Weibchen warten, ohne die Legeröhre vortreten zu lassen, mehr oder minder lang mit der Eiablage. Und wieder andere strecken, genau so wie die bisexuellen Weibchen es tun, die Legeröhre vor und verharren in der Regel eine bis zwei Stunden, um dann zur parthenogenetischen Eiablage zu schreiten. Innerhalb ein und derselben reinen Linie meiner Zuchten verhielten sich die Weibchen so oder so, wenn auch als Regel galt, daß die Eiablage kurz nach dem Schlüpfen aus der Puppe begann. Aehnlich verhielten sich auch Weibchen, die aus der freien Natur stammten. Genauere Taten sind in der folgenden Tabelle 4 zusammengestellt.

Man sieht, das Verhalten des parthenogenetischen lichenella-Weibchens nach dem Schlüpfen aus der Puppe gleicht jedenfalls zum Teil noch dem der bisexuellen Weibchen: die Legeröhre wird vorgestreckt. Bedeutet das nun, daß Männchen angelockt werden sollen? Was würde geschehen, wenn Männchen kämen? Ist die geschilderte Lichenellaform vielleicht einfach ein fakultativ parthenogenetisches Objekt? Man möchte das letztere annehmen. Doch der Schein trügt!

Aus den Ergebnissen der zytologischen Untersuchung (vergl. Seiler 1923) geht eindeutig hervor, daß der ganze Chromosomenzyklus und der Ablauf der Eireifung von *lichenella* auf parthenogenetische Entwicklung umgestellt ist, derart, daß eine « Rückschaltung » auf Amphimixis unmöglich scheint. Um fakultative Parthenogenese handelt es sich also bei dem Material, das mir vorlag, bestimmt nicht. Das geht auch aus den Kreuzungsversuchen hervor, über die ich gleich berichten werde.

Tabelle 4. Verhalten der parthenogenetischen Weibchen von S. lichenella nach dem Schlüpfen.

Herkunft des Materiales	Zeit und Datum des Schlüpfens	Verhalten nad Legeröhre vorstreckend	ch dem Schlüpfen Legeröhre nicht vorstreckend	Beginn und Ende der Ablage parth.
Kirchseeon b. München	16. IV. 23 5.15			6.40
	5.45		a second of the	6.45—7.40
	6.10			6.30
	5 30			8.00—9.00
	17. IV. 24 5.40			
		.,,		6.07—6.40
.,	,, 5.45		,,	6.10—6.30
	" 5.45			6.15—7.15
,,,	,, 5.45	"	1	6.40 - 7.15
,,	,, 5.45	"		7.00—7.50
,,	,, - 6.37			7.00—8.00
,,	,, 5.30			7.45 - 8.20
,,,,,	,, 5.45			7.30—8.30
,,,	,, 5.50	,,		8.10 - 9.00
,,	,, 8.00	"		9.30—10.00
,,	18. IV. 23 5.30	22		6.25 - 6.55
,,	,, 5.40	,,		6.35 - 7.35
,,	,, 5.55	•••		6.35 - 7.35
,,	,, 5.55		,,	6.15
,,,	,, 6.20	,,		7.25 - 8.40
,,,	,, 5.55	,,		7.03 - 8.00
,,	,, 5.10	,,		6.55 - 8.00
"	,, 5.30	,,		7.00 - 7.25
Forstenried	28. IV. 23 5.55	,,	i mai	7.15—8.15
,,	,, 5.00		220.0 m	5.15-8.00
))	,, 5.48		2,5	5.50—6.50
	,, 5.08	77	22	6.00
	5.55	•••		7.15—8.15
, , , , , , , , , , , , , , , , , , ,	5.00	"		5.15—8.00
	5.00		**	5.15—10.00
- 11-1 - 27	5.19		22	5.50—6.50
	5.09		27	5.12—7.15
2,	29. IV. 23 5.23		**	5.50
	= 00	**		$\frac{5.50}{6.50}$
	5.00			5.20
	F 25		23	
	,, 5.35		22	5.45—7.03
"	,, 5.35			5.50—8.00
	<u>,, 5.35</u>		,,	5.45
,,	" 5.35	,,		5.58

Ich züchtete die parthenogenetische *lichenella* in zahlreichen Linien und in mehreren aufeinanderfolgenden Generationen und erhielt ausschließlich Weibchen; die Parthenogenese ist also thelytok.

3. Die bisexuelle Form von S. lichenella.

Wie bereits gesagt, glaubte ich ursprünglich, daß *lichenella* die parthenogenetische Form von *S. pineti* sei. Ausgedehnte Kreuzungsversuche zwischen *lichenella*-Weibchen und *pineti*-Männchen (von Berlin, München, Pleinfeld usw.) mißglückten jedoch ausnahmslos. Bringt man ein frisch geschlüpftes *lichenella*-Weibchen in die Nähe eines *pineti*-Männchens, so nimmt dieses entweder überhaupt keine Notiz von dem Weibchen oder es flattert beunruhigt auf und verzieht sich. Bringt man dagegen zu demselben Männchen ein frisch geschlüpftes *pineti*-Weibchen, so erfolgt die Begattung augenblicklich.

Kreuzungsversuche mit *triquetrella*-Männchen mißglückten ebenfalls. Dieselben Männchen aber kopulierten augenblicklich sowohl mit Weibchen der bisexuellen wie der parthenogenetischen *triquetrella*-Rasse.

Damit war der Beweis so gut wie erbracht, daß *lichenella* weder zu *triquetrella* noch zu *pineti* gehört. Das Verhalten der parthenogenetischen *lichenella*-Weibchen ließ den Schluß zu, daß diese Rasse noch jung ist, und der Verdacht war begründet, daß die bisexuelle Ausgangsform noch vorhanden sein könnte. Ich suchte nach ihr und glaubte, das mit viel System zu tun. An zahlreichen Fundstellen zwischen Berlin und München sammelte ich Säcke, um schließlich die gewünschte Form, allerdings nur in wenigen Exemplaren, am Gartenzaun des Nachbarhauses (des Hauses Rich. v. Hertwigs in Schlederlohe) und später auch an den alten Fundstellen der parthenogenetischen Form im Forstenriederpark und in Kirchseen zu finden.

Ueber die Zahl der Männchen, die ich an den beiden letztgenannten Fundstellen im Laufe einiger Jahre fand, gibt die Tabelle 5 Aufschluß. Die Großzahl der Weibchen dieser Fundplätze

Fundort \bigcirc Sexualverhältnis \bigcirc : \bigcirc Forstenried 364 32 11 : 1

Kirchseeon 23 1 23 : 1

Tabelle 5.

gehörte der parthenogenetischen Rasse an. Eine kleine Anzahl von Weibchen dagegen streckte nach dem Schlüpfen aus der Puppe die Legeröhre und zog sie nach einigen Stunden wieder ein, um sie in den nächsten Tagen je in der Frühe erneut auszustrecken. Unterblieb die Begattung, so verweigerten diese Weibchen die Eiablage oder, falls es vereinzelt glückte, einige unbesamte Eier zu legen, so entwickelten diese sich nicht. In allen Einzelheiten benahmen sich diese Weibchen wie die eingangs geschilderten bisexuellen Weibchen von triquetrella.

Eine Begattung dieser bisexuellen *lichenella*-Weibchen mit *pineti*- oder *triquetrella*-Männchen glückte nicht, wohl aber kopulierten die im Forstenriederpark gefundenen Männchen augenblicklich. Sofort nach der Begattung erfolgte eine normale Eiablage und es entwickelten sich alle Eier.

Obwohl die Säcke der soeben geschilderten bisexuellen Form nicht zu unterscheiden waren von den Säcken der parthenogenetischen *S. lichenella* und auch zwischen den Imagoweibchen kein Unterschied zu erkennen war, konnte nur das Kreuzungsexperiment über die Frage der Zusammengehörigkeit entscheiden. Die Entscheidung war eindeutig: Bringt man ein parthenogenetisches *lichenella*-Weibchen, das noch nicht mit der Eiablage begonnen hat, in die Nähe eines Männchens von Forstenried, so erfolgt die Begattung sofort.

Damit steht nun endgültig fest, daß in Kirchseen und Forstenried eine parthenogenetische und eine bisexuelle *lichenella*-Rasse nebeneinander vorkommen. Gleiches gilt noch für einige weitere Fundplätze im Isartal, so für die Pupplingerau bei Wolfratshausen. Die Abbildung 5 zeigt das Männchen der bisexuellen *lichenella-*Rasse.

Aus diesen Feststellungen ist zu erkennen, daß S. lichenella ein überaus wichtiges Objekt zum Studium der Fragen wäre, welche in dieser Mitteilung angeschnitten wurden. Leider glückte es mir jedoch nicht, die Experimente zu einem befriedigenden Abschluß zu bringen. Es ist überaus schwer, mit einem Objekte zu experimentieren, das in der Natur so spärlich gefunden wird, wie die bisexuelle Form von lichenella. Hatte ich ein Männchen zur Verfügung, so fehlten meist die Weibchen und umgekehrt. Das war um so unangenehmer, als es mir damals noch nicht recht glücken wollte, die Tiere zu züchten.

So blieben fast alle wesentlichen Fragen offen. Unbekannt ist das Sexualverhältnis bei der bisexuellen *S. lichenella*; ungelöst ist die Frage, was mit dem Spermatozoen im besamten parthenogenetischen Ei geschieht. Fest steht nur, daß aus der Kreuzung der parthenogenetischen Weibchen mit den Männchen der bisexuellen Rasse z. T. sogenannte Intersexe hervorgehen, d. h. Tiere, die weder Männchen noch Weibchen sind, Tiere also, die zwischen den Geschlechtern stehen (vergl. Seiler 1936). Dringend notwendig ist endlich auch eine rein morphologische Analyse des Objektes, zu welcher

mein Material von der bisexuellen Form noch kaum ausreichen dürfte.

Der Leser versteht deshalb, wenn ich den Wunsch ausspreche, daß namentlich über lichenella neue Beobachtungen sammelt werden. Kommt das Objekt in der Schweiz vor? Welches ist der Habitus der Fundplätze? die parthenogenetische oder die bisexuelle Rasse vorhanden? Wenn das letztere der Fall ist, wie ist das Sexualverhältnis? Wie verhalten sich die bisexuellen Weibchen, wenn sie unbegattet bleiben? Werden unbesamte Eier ab-

Abb. 6. Solenobia triquetrella F.R. Männchensäcke in Dorsalansicht, rechts vom Nürnberger Fundplatz, links aus einer Zucht desselben Stammes. Vergr. 6mal.

gelegt? Entwickeln sie sich oder entwickelt sich wenigstens ein Teil derselben?

Wenn die parthenogenetische Form bei uns vorkommt, wie verhalten sich dann diese Weibchen vor der Eiablage? Entwickeln sich alle Eier? Was ergibt die Aufzucht parthenogenetischer Gelege?

Man sieht, alles Fragen, die jeder sorgfältige Beobachter lösen könnte und Fragen überdies, deren Beantwortung eine wesentliche Förderung der Analyse des Phänomens der Parthenogenese bringen würde. Sobald Schweizer Fundorte bekannt sind, möchte ich selbst die experimentelle und zytologische Arbeit an diesem Objekt wieder aufnehmen.

4. Solenobia triquetrella F. R.

Weiter vorgeschritten ist die Analyse dieses Objektes (vergl. die Arbeiten Beyer 1937, Keil 1935, 1936, Nuesch 1937, Lauten-

schlager 1932, Seiler 1923—38). Von triquetrella kenne ich eine, vielleicht zwei (vergl. weiter unten) bisexuelle und mehrere sicher voneinander verschiedene parthenogenetische Rassen. Unter gleichen Bedingungen gezüchtet, sind die Säcke all dieser Formen gleich, wenn wir absehen von Unterschieden in der Größe; die aus der freien Natur stammenden Säcke dagegen sind im Baumaterial sehr variabel. Die Säcke der bisexuellen, aus einem Föhrenhochwald bei Nürnberg stammenden Rasse sind sehr rauh (Abb. 6 rechts) und bekleidet mit abstehendem Material der verschiedensten Art. Mit Vorliebe finden Stücke vom Chitinpanzer der Arthropoden Verwendung; sie sind vor allem entlang der Kanten und vorn am Sack angeklebt.

Unter den Bedingungen, unter welchen ich züchte, sieht der Sack derselben Rasse ganz anders aus (Abb. 6 links). Ebenso sehen

in der Regel die Säcke der meisten Fundorte aus.

Der *triquetrella*-Sack ist dreikantig. Die Sackwände, vor allem die Bauchseite, sind fast flach, so daß der Querschnitt annähernd ein gleichschenkliges Dreieck bildet, die Grundlinie der Bauchfläche entsprechend. Der Sack ist bekleidet mit Sand-Quarz-Erdkörnchen.

a) Die bisexuelle Rasse von S. triquetrella.

Dank der genauen Fundortangaben von Ottmar Hofmann war es mir möglich, die bisexuelle Rasse von triquetrella wieder zu finden, offenbar an genau derselben Fundstelle, an der sie Hofmann 1859 fand, nämlich im Reichswald bei Nürnberg-Dutzendteich, einem Föhrenhochwald. Am selben Fundort ist auch die parthenogenetische Rasse vorhanden. Sie ist allerdings mehr an den Lattenzäunen, Bretterzäunen zu finden, die am Rand oder innerhalb des Waldes Grundstücke abgrenzen, während die bisexuelle Rasse fast ausschließlich an Föhrenstämmen angetroffen wird, und zwar in Waldparzellen, wo das Unterholz fehlt und der Sandboden mit Erika, Heidelbeersträuchern, Ginster, Moos und einer mageren Grasnarbe besetzt ist.

An den ersten schönen Frühlingstagen kriechen die Raupen der bisexuellen Rasse an den Föhrenstämmen zum Anspinnen hoch. Seit 1918 suchte ich den Fundplatz fast jährlich ab und trug bis jetzt einige tausend Säcke ein. Sie ergaben fast ausschließlich Männchen. Im ganzen fand ich kaum ein Dutzend Weibchen. Wo die weiblichen Raupen ihre Säcke vor der Verpuppung anspinnen, weiß ich heute noch nicht. Vermutlich geschieht das in der Nähe des Bodens am Moos, Erika usw. Ueber das Sexualverhältnis, das am Fundplatz herrscht, kann ich deshalb nichts aussagen. Einige Aufzuchten von unter Kontrolle entstandenen Gelegen bisexueller Weibchen ergaben ein normales Sexualverhältnis. Weitere Erhebungen über diesen Punkt sind aber notwendig, denn die bisexuelle Rasse

gedeiht unter meinen Zuchtbedingungen schlechter als die übrigen Rassen. Ueber das Sexualverhältnis aber kann man natürlich erst dann etwas Bindendes sagen, wenn man wenigstens annähernd 100 Prozent der Tiere bis zur Imago bringt. Ich habe die Rasse seit einem Jahr wieder in Zucht.

Wie bereits gesagt, verweigern unbegattete bisexuelle Weibchen die Eiablage. Ueber die Maße der Säcke orientiert die folgende Tabelle 6.

Tabelle 6. Längenmaße der Säcke der bisexuellen *triquetrella* in mm.

Herkunft des Materials		6	6 1/2	7	7 1/2	8	8 1/2	9
Säcke v. Nürnb. Fundpl.			6	16	32	44	4	2
Zuchten 1924/25			1	2	6	39	5	
Zuchten 1925/26	6	6	27	91	45	31	2	
Summe	6	6	34	109	83	114	11	2

n = 365; M = 7,39; $\sigma = \pm 0,62$; $m = \pm 0,033$.

b) Parthenogenetische Rassen von S. triquetrella.

Die parthenogenetische Rasse, mit der ich ursprünglich arbeitete, ist weit verbreitet. Ich sammelte sie von zahlreichen über ganz Deutschland zerstreuten Fundstellen oder erhielt sie zugeschickt. Man findet diese Form im frühen Frühjahr an mit grünen Algen und Flechten bewachsenen Latten- oder Bretterzäunen, an Baumstämmen, Wegrandsteinen usw. Man findet sie wohl auch im Hochwald, doch seltener. Unter gleichen Bedingungen gezüchtet, glei-

Tabelle 7. Längenmaße der Säcke der tetraploid parthenogenetischen Rasse von *S. triquetrella* in mm.

Herkunft des Materials	6 1/2	7	7 1/2	8	8 1/2	9	9 1/2	10
Zuchten 1924/25				10	6	138	18	55
Zuchten 1925/26	3	17	39	152	207	336	82	7
Zuchten 1926/27				17	92	133	7	
Zuchten 1927/28		2	1	15	47	65	10	1
Summe	3	19	40	194	352	672	117	63

n = 1460; M = 8,76; $\sigma = \pm 0,57$; $m = \pm 0,03$.

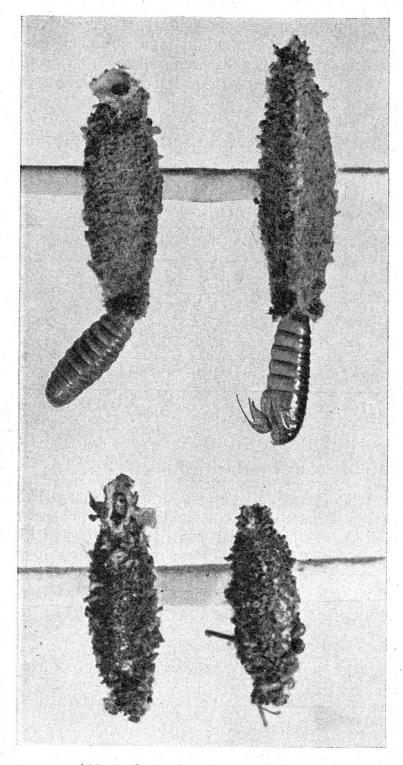


Abb. 7. Solenobia triquetrella F. R. Weibchensäcke parthenogenetischer Rassen. Oben: tetraploid parthenogenetische Rasse; unten: diploid

parthenogenetische Rasse vom Lägern-Fundplatz. Links je in Ventral-, rechts in Dorsalansicht. Vergr. 6mal.

chen die Säcke dieser parthenogenetischen Rasse (Abb. 7 oben) denjenigen der bisexuellen Rasse. Diese sind aber im Mittel merklich kleiner als die Säcke der parthenogenetischen Rasse, wie ein Vergleich der Daten der Tabelle 6 u. 7 zeigt. Dieser Größenunterschied hängt zusammen mit den Chromosomenverhältnissen. Die bisexuelle Rasse hat diploid 60 Chromosomen: die parthogenetische Rasse hat 120 Chromosomen, ist also tetraploid und dementsprechend auch größer. Messungen an den Puppen ergaben, wie erwartet, ein Volumenverhältnis von annähernd 1:2 (vergl. Arbeit Keil). –

Die Tatsache ist auffällig, daß parthenogenetische Objekte häufig tetraploid sind. Bei Solenobia ist das bei zwei Arten der Fall. bei lichenella und der eben geschilderten triquetrella-Rasse. Wie mag die Tetraploidie entstanden sein? Es wurde vermutet (Ernst 1918, Winge 1917),

daß die Tetraploidie und die Parthenogenese zugleich und im Gefolge einer Bastardierung und zwar einer Artkreuzung entstanden. Tatsachen, welche diese Arbeitshypothese stützen würden, konnten inzwischen jedenfalls auf zoologischem Gebiete keine gefunden werden. Außerdem würde eine Artkreuzung allenfalls das Auftreten der Tetraploidie erklären, nicht aber den Uebergang von der bi-

sexuellen zur parthenogenetischen Vermehrung.

Daß ich selbst den Ursprung der Parthenogenese in anderer Richtung suche, wurde angedeutet. Ich rechnete für *Solenobia* von Anfang mit der Möglichkeit, daß die parthenogenetische Entwicklung ursprünglich mit der diploiden Chromosomenzahl erfolgte (vergl. Seiler 1923) und suchte nach einer diploid parthenogenetischen *Solenobia*. Ich fand sie vor einigen Jahren auf der Lägern bei Zürich. Daß ich sie fand, verdanke ich unserem ausgezeichneten Mikrokenner, Herrn Lehrer Weber, Zürich, der mich auf den Fundplatz und das Objekt verwies.

Die Lägernrasse ist, wie ich vorwegnehmen will, zweifellos eine parthenogenetische *triquetrella*-Rasse. Das Verhalten der Chromosomen entspricht dem der tetraploid parthenogenetischen *triquetrella*-Rasse in allen Einzelheiten, nur hat die Lägernrasse nicht 120, sondern 60 Chromosomen; sie ist also diploid (Seiler

1938).

Der Lägernfundplatz hat ein ganz anderes Gepräge als alle anderen mir bekannten *triquetrella*-Fundplätze. Die Tiere findet man unter Kalksteinplatten am steilen Südhang des Lägerngrates, einer Steinhalde mit niederem Buschwerk, vorwiegend aus Buscheichen, Erlen und Weiden und mit spärlicher Grasvegetation.

Die Säcke der Lägernrasse haben die Form der triquetrella-Säcke (Abb. 7 unten), sind aber fast schwarz und nur mit wenigen Steinchen besetzt und sind außerdem kleiner als die Säcke der übrigen triquetrella-Rassen. Daß diesen Unterschieden aber kein Gewicht zukommt, ergibt sich aus den Resultaten gleichzeitiger Aufzucht all der drei triquetrella-Rassen unter genau den gleichen Bedingungen. So gezüchtet, stimmen die Säcke aller triquetrella-Rassen im Aussehen überein. Ein Unterschied besteht nur in der Größe. Die Säcke der Lägernrasse sind gleich groß wie die der ebenfalls diploiden, aber bisexuellen Nürnberger Rasse; beide sind kleiner als die Säcke der tetraploid parthenogenetischen triquetrella, wie die Daten der Tabellen 8 und 9 zeigen.

Im Verhalten nach dem Schlüpfen aus der Puppe zeigen die Weibchen der parthenogenetischen Lägernrasse Aehnlichkeit mit der parthenogenetischen S. lichenella. In der Regel biegen die Lägernweibchen sofort nach dem Schlüpfen den Hinterleib ein und beginnen mit der Eiablage. Manche Weibchen aber zögern und bleiben entweder ruhig ausgestreckt, ohne die Legeröhre vortreten zu lassen, oder sie versuchen wiederholt, den Hinterleib zur Ablage

Tabelle 8. Längenmaße der Säcke der dipl. parth. Lägernrasse aus der freien Natur und aus der Zucht und Vergleich mit der tetrapl. parth. und bisexuellen *triquetrella*.

Herkunft des Materials	5	$5^{1/2}$	6	$6^{1/2}$	7	7 1/2	8	81/2	9	91/2	10
1. Lägern, Fund- platz	6	9	77	93	183	42	19	1			
2. Läg. dipl. parth. Zuchten 1935/36			2	3	27	46	173	65	16		-
Zuchten 1936/37				2	18	53	394	378	245	4	
Zuchten 1937/38					1	8	82	68	66	32	2
3. Tetrapl. parth. Zuchten 1936/37							15	47	88	15	2
Zuchten 1937/38					•		4	21	159	93	18
4. Bisex. Nürnberg Zuchten 1937/38					2	8	20	3	1		7

T a b e l l e 9. Die Mittelwerte aus den Daten der Tabelle 8.

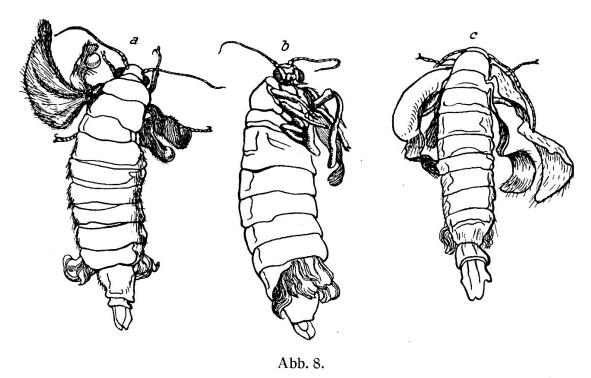
Herkunft des Materials	N Gesamt- zahl der Individuen	M Mittelwerte	σ±	m ±
1. Lägern	430	6,75	0,59	0,03
2. Zuchten der Lägernrasse 1935-38	1685	8,31	0,53	0,01
3. Zuchten der tetrapl. parth. triquetrella Rasse 1936-38	462	9,05	0,42	0,02
4. Zucht der bisex. Nürnbergerrasse 1937/38	34	7,90	0,40	0,07

einzubiegen. Das fällt ihnen allem Anschein nach schwer. Nach einer Stunde spätestens kommt aber auch hier die parthenogenetische Eiablage in Gang. Ein kleiner Teil der Lägernweibchen endlich streckt nach dem Schlüpfen die Legeröhre vor, genau wie bisexuelle Weibchen das tun. So verharren sie mehr oder minder lang, um dann mit der Eiablage zu beginnen.

Seit 1935 züchte ich mehrere Linien der Lägernrasse und erhielt bis jetzt ausschließlich Weibchen. Die Rasse ist also thelytok.

c) Eine bisexuelle Lägernrasse.

Das geschilderte Verhalten der Lägernweibchen erweckte den Verdacht, daß auf der Lägern neben der parthenogenetischen Rasse eine bisexuelle vorhanden sein könnte, gleich wie bei *lichenella*. Wir suchten den Fundplatz genau ab und fanden 1936 eine von Schlupfwespen infizierte männliche Puppe; außerdem streckten zwei der Lägernweibchen die Legeröhre an aufeinanderfolgenden Tagen vor und verweigerten die parthenogenetische Eiablage. Im Frühjahr 1938 kamen wir — Lehrer Weber und ich — leider einige Tage nach dem Schlüpfen auf die Lägern, fanden aber (22. III. 38) in der unmittelbaren Nähe des alten Fundplatzes 16 geschlüpfte Männchensäcke und 23 Weibchensäcke mit Eigelegen. Ich ziehe diese auf, und nächstes Jahr werden wir vermutlich die bisexuelle Lägernrasse und damit das Material zu neuen Kreuzungsmöglichkeiten haben.


d) Kreuzungen

der parthenogenetischen triquetrella-Rassen mit Männchen der bisexuellen Nürnberger Rasse.

Es wurden ausgedehnte Versuche angestellt, die tetraploid parthenogenetischen triquetrella-Weibchen mit pineti-Männchen zu kreuzen. Keiner dieser Versuche glückte. Desgleichen mißglückten Paarungsversuche mit lichenella-Männchen. Die Nürnberger Männchen dagegen kopulierten mit frisch geschlüpften tetraploid parthenogenetischen Weibchen augenblicklich. Aus dieser Kreuzung geht eine F_1 -Generation hervor, die intersex ist. Vom äußerlich normalen Weibchen sind alle denkbaren Zwischenstufen bis zum äußerlich normalen Männchen vorhanden.

Der engere Fachkollege kennt dieses Resultat; den Fernerstehenden soll die folgende Abbildung 8 eine Vorstellung von diesen merkwürdigen Tieren geben. Ihre Analyse wird beitragen zur Lösung der Frage der Geschlechtsvererbung. —

Da in Nürnberg neben der bisexuellen Rasse auch vereinzelte Tiere der parthenogenetischen Rasse vorkommen, war zu erwarten, daß an einem Fundplatz auch in der freien Natur Intersexe angetroffen werden müßten. Letztes Jahr fanden wir auch tatsächlich ein hochgradig intersexes Tier. Solche Tiere sind nur als große Seltenheit zu erwarten, denn das parthenogenetische Weibchen beginnt sofort nach dem Schlüpfen mit der Eiablage, und ist diese im Gange,

Intersexe verschiedenen Grades aus der Kreuzung der tetraploid parthenogenetischen Weibchen mit Männchen von Nürnberg.

dann greift kein Männchen mehr an. Eine Kreuzbegattung kann also nur erfolgen, wenn zufällig ein Männchen in unmittelbarer Nähe eines schlüpfenden parthenogenetischen Weibchens sich befindet. —

Die triquetrella-Männchen begatten zwar öfters, haben aber höchstens für zwei (oder drei) Begattungen genügend Sperma zur Verfügung. Wird nun ein bisexuelles Weibchen von einem Männchen begattet, das keinen Samen mehr besitzt, so versucht das Weibchen nach der Begattung wie üblich sofort die Eiablage; diese gelingt aber nicht, und es streckt nach einer Weile erneut die Legeröhre aus.

Es reizte, den Versuch zu machen, das parthenogenetische Weibchen von Männchen begatten zu lassen, die bereits mehrere Kopulationen hinter sich hatten. Und siehe da, alte Reflexketten kamen wieder in Gang! Nach der Begattung versucht das parthenogenetische Weibchen die Ablage, zieht aber nach kurzen vergeblichen Versuchen die Legeröhre wieder aus dem Sack und streckt sie aus, wie ein bisexuelles Weibchen es tut, « vergißt freilich dann bald diese alten Gewohnheiten wieder » und schreitet, wie es sich für ein parthenogenetisches Weibchen schickt, zur Ablage unbesamter Eier. —

Kreuzungsversuche mit den parthenogenetischen Weibchen meiner Lägernlinien und pineti-Männchen gelangen nicht. Eine Paarung mit lichenella-Männchen konnte ich nicht vornehmen, da ich diese Form nicht mehr besitze. Ein großes Material dagegen stand zur Verfügung zur Kreuzung mit Nürnberger Männchen. Alle Paarungen glücken, vorausgesetzt, daß man den Nürnberger Männchen Lägern-Weibchen bietet, die mit der Eiablage noch nicht begonnen haben.

Die Lägernform ist also zweifellos eine triquetrella-Rasse.

Aus der Kreuzung gehen in F₁ normale Weibchen und normale Männchen hervor. Das Resultat ist also ein anderes, als bei der Kreuzung der tetraploid parthenogenetischen Weibchen.

Ueber die theoretische Tragweite dieser Ergebnisse zu reden, ist hier nicht der Ort. Es mag genügen, zu sagen, daß den Genetiker wohl gerade diese Verschiedenheit im Kreuzungsresultat am meisten interessieren wird und er diese Befunde in Rechnung zu stellen haben wird bei seinen Versuchen, die Probleme der Geschlechtsvererbung zu lösen.

Darüber hinaus aber ist nun in triquetrella ein Objekt gefunden, an dem es möglich sein dürfte, den Weg zu verfolgen, der von der bisexuellen Fortpflanzung zur Parthenogenese führt. Ob es gelingen wird, dieses alte Problem zu lösen, hängt im wesentlichen davon ab, daß nun über triquetrella systematisch Beobachtungen gesammelt und mitgeteilt werden und möglichst viele Fundstellen genauer analysiert werden. Die Kraft einiger weniger wird nicht genügen; es sollten viele angreifen!

Ob neue Beobachter sich finden werden? *

Literaturverzeichnis.

- Beyer, R. 1937. Ueber die Keimdrüse und ihre Ausführwege bei den intersexen F₁-Puppen von *Solenobia triquetrella*. Revue Suisse de Zool. T. 44. S. 319—329. 7 Abb.
- Ernst, A. 1918. Bastardierung als Ursache der Apogamie im Pflanzenreich, Jena.
- Hartmann, A. 1871. Die Kleinschmetterlinge des europäischen Faunengebietes. München.
- Hofmann, O. 1859. Ueber die Naturgeschichte der Psychiden. Erlangen. S. 1-54. 2 Taf.
- Keil, I. 1935. Ergebnisse aus der Kreuzung parthenogenetischer und zweigeschelchtlicher Schmetterlinge. II. Die äußere Morphologie der F₁-Puppen. Revue Suisse de Zool. T. 42, S. 427—436, 6 Abb. (vorläufige Mitteilung).
 - 1936. Dasselbe, definitive Arbeit. Z. f. indukt. Abst. u. Vererb., Bd. 72, S. 313—360, 23 Abb.

^{*} Zu jeder Auskunft bin ich gerne bereit. Auch kann ich Vergleichsmaterial von Solenobiasäcken zur Verfügung stellen.

- Lautenschlager, F. 1932. Die Embryonalentwicklung der weiblichen Keimdrüse bei der Psychide *Solenobia triquetrella*. Zool. Jahrbuch, Abt. f. Anat. u. Ontog. d. Tiere, Bd. 56, S. 121—162, 32 Abb.
- Leuckart, R. 1859. Zur Kenntnis des Generationswechsels und der Parthenogenesis bei den Insekten. Frankfurt a. M. Verlag Meidinger und Sohn. S. 1—112. 1 Taf.
- Nüesch, H. 1937. Ueber den Bau der F₁-Imagotiere von Solenobia triquetrella. Revue Suisse de Zool. T. 44, S. 309—318, 5 Abb.
- Rebel, H. 1919. Zur Kenntnis palaearktischer Talaeporiden. D. entom. Z. « Iris », Bd. 32, Heft 3/4, S. 95—111, 1 Taf., 1 Textfig.
- Seiler, J. 1923. Geschlechtschromosomen-Untersuchungen an Psychiden. IV. Die Parthenogenese der Psychiden. Zeitsch. f. indukt. Abst. und Vererb., Bd. 31, S. 1—99, 3 Taf., 12 Abb.
 - 1927. Ergebnisse aus der Kreuzung parthenogenetischer und zweigeschlechtlicher Schmetterlinge. Biol. Zentralbl., Bd. 47, S. 426—446, 12 Abb.
 - 1929. Ergebnisse aus der Kreuzung parthenogenetischer und zweigeschlechtlicher Schmetterlinge. I. Die Keimdrüse der intersexen F₁-Raupen. Arch. f. Entwicklungsmech., Bd. 119, S. 543—576, 34 Abb.
 - 1935. Ergebnisse aus der Kreuzung parthenogenetischer und zweigeschlechtlicher Schmetterlinge. III. Der Einfluß von Temperaturfaktoren auf das F₁-Resultat der *Solenobia triquetrella*-Kreuzungen. Revue Suisse de Zool., T. 42, S. 437—445, 2 Abb.
 - 1936a. Neue Ergebnisse aus der Kreuzung parthenogenetischer Schmetterlinge mit Männchen zweigeschlechtlicher Rassen. Verh. d. Deutsch. Zool. Gesell. 1936, S. 147—150.
 - 1936b. Ergebnisse aus der Kreuzung parthenogenetischer und zweigeschlechtlicher Schmetterlinge. IV. Entwicklungsmechanische Bemerkungen über die intersexen F₁-Puppen aus den *Solenobia triquetrella*-Kreuzungen. Zeitsch. f. indukt. Abst. u. Vererb., Bd. 72, S. 361—377, 4 Abb.
 - 1937. V. Die Solenobia-Intersexe und die Deutungen des Phänomens der Intersexualität. Revue Suisse de Zool., T. 44 Nr. 15, S. 283—307, 4 Abb.
 - 1938. Ergebnisse aus der Kreuzung einer diploid-parthenogenetischen Solenobia triquetrella mit Männchen einer bisexuellen Rasse. Revue Suisse de Zool. Tome 45, S. 405—413, 2 Textfig.
- Siebold, von Carl, Theodor, Ernst. 1856. Wahre Parthenogenesis bei Schmetterlingen und Bienen. Leipzig, Verlag Engelmann. S. 1—144. 1 Taf.