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Weltraumfahrt mit Sekundarschul-Mathematik
F. Hegner

1. Vorbemerkung
Diese Arbeit möchte Lehrer und Schüler
anregen, die Eroberung des Weltalls mit den Mitteln,

welche die Sekundarschulmathematik zur
Verfügung stellt, physikalisch mitzuerleben. An
Kenntnissen werden vorausgesetzt: Grundrechnungsarten,

Potenzieren und Quadratwurzelziehen,
Rechnen mit 10er-Potenzen, Proportionen,

Umformen und Auflösen einfacher Gleichungen,
Satz von Pythagoras. Für die numerischen
Berechnungen ist die Verwendung von Rechenscheibe

oder Rechenstab vorteilhaft. Von den
Kapiteln der Physik werden berührt: Gleichförmige

und beschleunigte Bewegung, freier Fall
und waagrechter Wurf, Begriff und Einheit der
Kraft. Gravitationsgesetz, potentielle und kinetische

Energie. Da die vorliegende Arbeit die theo-

2. Größenverhältnis im Weltall

Tabelle 1 Radien, Volumen, Maße, mittl. Dichte

Der Durchmesser des Mondes ist also nicht ganz
viermal kleiner als jener der Erde. Stellt man sich
die Sonne als Ball von 10 cm Durchmesser vor,
so wäre die Erde ein Stecknadelköpfchen von
nicht ganz 1 mm Durchmesser und die Mondbahn

würde mit 5,5 cm Durchmesser gut im
Sonnenball Platz haben. Die Reise der drei Ame-

retischen Grundlagen bereitstellen möchte, fehlt
ein experimenteller Teil. Dies bedeutet nicht,
daß nicht der Zusammenhang zwischen Kraft,
Masse und Beschleunigung, der freie Fall und
die wichtigsten Konstanten durch Versuche
lebendig gemacht werden sollen. Auch die
nachstehend zusammengestellten astronomischen Daten

könnten zum Teil mit behelfsmäßigen Mitteln

in grober Annäherung selbst erworben werden.

Da der Zweck der Arbeit die Verwendung
der Infinitesimalrechnung verbot, mußten oft
Näherungslösungen anstelle exakter Methoden
verwendet werden. Die Berechnungen sind meist
stark gerundet. Trotzdem ist anstelle des
Ungefährzeichens ~ stets das Gleichheitszeichen

gesetzt.

rikaner Bormann, Lovell und Anders an
Weihnachten 1968 zum Mond dauerte ungefähr drei
Tage. Die Fahrt zur Sonne ergäbe bei gleicher
Durchschnittsgeschwindigkeit eine Reise von über
drei Jahren. Verkleinert man die Erde zu einem
Globus von 30 cm Durchmeser, so würde der
Mond in einem Abstand von 9 m seine Kreise

Mond Erde Sonne

Radien km 1740 6370 696000

cm 1,74.10s 6,37.10s 6,96.1010
Verhältnis 0,27 1 110
Volumen km3 22000 000000 1 080000 000000 1,4.10ls
Masse g 7.35.1025 5,98.1027 1.99.1033

Dichte g/cm3 3.3 5,5 1,4

Tabelle 2 Entfernungen

Von bis km cm Verhältnis

Erde Mond 384000 3,84.1010 1

Erde Sonne 150 000000 1,5.1013 390
Sonne Pluto 5900 000000 5,9.10t4 15000

(äußerster Planet)
Sonne a-Centauri 40 000000 000000 4.1016 100 000000

(nächster Fixstern)
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ziehen. Die Vorgänger der drei Mondfahrer
umkreisten die Erde in Bahnen, die nur 2 bis 3 mm
Abstand von diesem 30 cm-Globus hatten.

3. Die drei Newton'schen Bewegungsgesetze
Nach dem 1. Newton'schen Bewegungsgesetz
verharrt ein Körper im Zustand der Ruhe oder der
gleichförmigen Bewegung, bis eine Kraft ihn
zwingt, diesen Zustand zu ändern. Bei gleichförmiger

Bewegung legt ein Körper in gleichen
Zeitabständen gleiche Strecken auf gerader Bahn
zurück. Es gelten folgende Gleichungen, in denen
s den zurückgelegten Weg in cm, t die Zeit in sec

cmund v die Geschwindigkeit in — bedeuten.
sec

I v =— II s v.t III t —t V

Wirkt auf einen Körper eine konstante Kraft,
so beschreibt er eine gleichmäßig beschleunigte
Bewegung, d. h. seine Geschwindigkeit nimmt
pro Zeiteinheit stets um den gleichen Betrag zu

cmoder ab. Wird die Geschwindigkeit in

gemessen und die Zeit in sec, so bekommt die
Beschleunigung (die Geschwindigkeitsänderung)

die Dimension Cm
: sec

Cm
Bei der be-

sec sec

schleunigten Bewegung spielen neben dem Weg s

und der Zeit t noch folgende Größen eine Rolle:
Die eigentliche Beschleunigung a, die
Anfangsgeschwindigkeit v0, die Endgeschwindigkeit ve

und die mittlere oder Durchschnitts-Geschwindigkeit

vm. Bei einer Beschleunigung von der
Größe a nimmt die Geschwindigkeit jede
Sekunde um den Wert a zu. In t Sekunden ist die
Geschwindigkeitszunahme a.t und die
Endgeschwindigkeit ve v0 + a.t
Ist die Anfangsgeschwindigkeit v0 0, so ist

IV ve a.t
Die Durchschnittsgeschwindigkeit vm ist gleich
dem arithmetischen Mittel von Anfangsgeschwindigkeit

v„ und Endgeschwindigkeit ve. Für v0

0 gilt also

v0 + v„ 0 + a.t a
vm - 2 - 2 2 ' 1

Für die in der Zeit t zurückgelegte Strecke s gilt
nach Formel II
WT a aVI s vm t —2 • t • t --—. t-

Für ve benötigen wir noch eine Formel, welche t

nicht enthält.

V VAus IV ve a. t folgt t e—-und t2 =- -
a a~

Nach Formel VI ist s ^ t2, daraus folgt t2

2._s_
a

Setzen wir die beiden so gefundenen Werte für t2

einander gleich, ergibt sich aus

ve2 2.s
— lur ve der Wert

a2 a

VII ve \ 2.a.s

Damit haben wir für die beschleunigte Bewegung
vier Formeln gefunden, von denen jede die Größe
a und je zwei von den Größen s, t und v enthält.
Hier sind sie noch einmal zusammengestellt:

IV ve a.t V vm ^ • 1 VI s — "
2 ' t2

VII ve V 2.a.s

Wirkt die beschleunigende Kraft in der
Bewegungsrichtung eines Körpers, so äußert sich die

Beschleunigung als reine Geschwindigkeitsänderung.

Wirkt sie senkrecht zur Bahn des Körpers,
resultiert eine Richtungsänderung. Auf den Mond
wirkt die Anziehungskraft der Erde dauernd
senkrecht zu seiner Bahn und zwingt ihn zum
Kreisen um die Erde. Aus den Daten dieser Kreisbahn

können wir die Beschleunigung des Mondes

infolge der Erdanziehung berechnen. Für
einen Umlauf um die Erde benötigt der Mond
die Zeit t 271/3 Tage 2 360 000 sec. Der
Kreisradius ist gleich der Entfernung Mond-
Erde r 384 000 km und die Bahnlänge gleich
dem Kreisumfang s 2.r.:i 2.384000.3,14
2 400000 km. Die Geschwindigkeit v des Mondes

s 2 400000 km
beträgt nach Formell v= t =^ ^km

sec

In der nachstehenden Skizze würde sich der
Mond infolge der Trägheit in einer Sekunde von
A nach B verschieben. Unter dem zusätzlichen
Einfluß der Schwerkraft bewegt er sich aber
tatsächlich auf einem Kreisbogen von A nach C. Er
fällt also in dieser Sekunde von B nach C um
die Strecke BC s. Mit dem Satz des Pythagoras

können wir aus dem Dreieck ABZ die Strecke
s berechnen.
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s + r \ r2 + v2 und s \ r2 + v2 — r

\ 3840002 + l2— 384000 0.0000013 km
0.13 cm

Er fällt somit in der Zeit t 1 sec. um die
Strecke s 0,13 cm. Daraus kann nach Formel I
die mittlere Geschwindigkeit vm berechnet werden.

s 0,13 cm
V'"= t

"
1 sec

0,13
ein
sec

Formel V liefert die zur mittleren Geschwindig-
cmkeit vm 0,13 - und der Zeit t 1 sec

gehörende Beschleunigung.

Aus v,

2 0,13

t folgt a
2 vn

t

1 - 0,26
sec'

Nach dem 2. Newton'schen Bewegungsgesetz ist
die Kraft K proportional der Masse m eines Körpers

und seiner Beschleunigung a.

VIII K
Die Dimensionen von m und a sind g und

sec'

Also hat die Kraft K die Dimension ^T Cm

sec-

Die in diesem Zusammenhang zweckmäßige
Maßeinheit für die Kraft ist das Dyn. 1 Dyn ist
jene Kraft, welche einem Körper von 1 g Masse

die Beschleunigung 1 erteilt. Die Größe der
sec2

Kraft, mit welcher die Erde den Mond anzieht,
läßt sich aus der Mondmasse m und ihrer
Beschleunigung a herleiten. Aus der Tabelle 1

entnehmen wir für die Mondmasse m 7,35.1023 g
und oben haben wir für ihre Beschleunigung a

cm
0,26 -- gefunden. Setzen wir diese Werte in

Formel VIII ein, erhalten wir die Kraft K
m a 7,35.1023 0,26 1,9.1025 Dyn.

Das 3. Netwon'sche Bewegungsgesetz sagt, daß
zu jeder Kraft eine gleich große Kraft gehört, die
in entgegengesetzter Richtung wirkt. Damit können

wir auch die Beschleunigung ae ausrechnen,
welche die Erde mit der Masse m,. vom Mond
erfährt, denn die Kraft, mit welcher der Mond
die Erde anzieht, ist ebenfalls K 1.9.1025 Dyn.

Aus K me a(. folgt ae
K

1,9 1023_

5.98 102r 0,0032
cm
sec2

In der Formel VIII K m a sind K und a

gerichtete Größen, Vektoren. Daher sagt diese
Formel auch aus, daß die Kraft K die gleiche
Richtung hat wie die Beschleunigung a.
Zwischen den beiden Himmelskörpern ist also eine
Kraft in der Richtung Erde—Mond wirksam. Es

ist die Gravitations- oder Schwerkraft.

4. Das Newton'sche Gravitationsgesetz

Newton vertrat schon im 17. Jahrhundert die
Ansicht, daß die Kraft, welche den Mond in
seine Kreisbahn um die Erde zwingt, die gleiche
sei wie jene, welche einen vom Baum fallenden
Apfel gegen die Erde beschleunigt. Experimentell

läßt sich feststellen, daß ein in der Nähe der
Erdoberfläche fallender Körper eine Beschleuni-

cm
gung von 980 „ aufweist. Hier stellt sich die

ein
Frage, warum der Mond nur mit 0,26 ge-

sec

gen die Erde beschleunigt wird, wenn es sich
doch um die gleiche Kraft handelt? Stellt man
sich vor, daß sich die Schwerkraft von dem im
Erdmittelpunkt liegenden Gravitationszentrum
strahlenförmig gleichmäßig nach allen Seiten
ausbreitet, begreift man gut, daß sie sich bei
Verdoppelung des Abstandes auf eine viermal so

große Fläche verteilt und ihre Wirkung daher
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IX K
G in, m..

K
G m, m2

2 1CF Dvn.

6,7 7,35.1027' 5,98.1027

10V (3,84 lO10)2

Dieser Wert stimmt mit guter Annäherung mit
dem oben auf anderem Weg gefundenen Wert
von 1,9.1025 Dvn überein.

Mit Hilfe dieses Newton'schen Gravitationsgesetzes,

Formel IX, und dem 2. Newton'schen
Bewegungsgesetz, Formel VIII, welche beide einen
Wert für die Kraft K angeben, erhält man durch
Gleichsetzung der beiden Werte

G m, m,
m, a

s2

für die Beschleunigung a die Formel

viermal kleiner ist. Mit anderen Worten, sie ist
umgekehrt proportional dem Abstand vom
Erdmittelpunkt. Für den in Erdnähe fallenden Körper

ist dieser Abstand gleich dem Erdradius
6370 km. Der Mond ist 384 000 km weit weg.
Das ist rund 60mal weiter. Deshalb ist die
Anziehungskraft auf den Mond und damit seine

Beschleunigung 602 3600mal kleiner. Die
Beschleunigung auf der Erde 980 cm/sec2 : 3600

gibt 0,27 cm/sec2, was recht genau dem oben

gefundenen Wert entspricht.
Newton schloß aus der Anziehung zwischen Erde
und Mond, die er auch anhand der Sonne und
ihrer Planeten überprüfte, auf ein allgemein
gültiges Gravitationsgesetz. Danach ziehen sich zwei

Körper mit den Massen m, und m2 und dem
Abstand s mit einer Kraft an, die proportional dem
Produkt ihrer Massen m, m2 und umgekehrt
proportional dem Quadrat s2 ihres Abstandes ist.

Hundert Jahre später konnte die Größe dieser
Gravitationskraft experimentell gemessen werden.

Cavendish fand, daß sich zwei Körper von
je 1 g Masse und 1 cm Abstand mit der Kraft G

6 7' Dvn anziehen. Mit Hilfe dieser Zahl, der
10s

J

Newton'schen Gravitationskonstanten, läßt sich
die Anziehungskraft K zweier Körper mit den
Massen m, und m2 und dem Abstand s berechnen.

X
G m,

Das heißt, es läßt sich die Beschleunigung für
irgend einen Körper in beliebigem Abstand vom
Erdmittelpunkt berechnen. Die Formel enthält
die Masse des fallenden Körpers m, nicht. Die
Beschleunigung ist also von der Masse des fallenden

Körpers unabhängig, alle fallen gleich
schnell.
Für einen auf der Erdoberfläche fallenden Körper

ist s 6370 km 6,37 10s cm und m2 die
Erdmasse 5,98.1027 g. Für die Beschleunigung a
erhält man

G m.,
a — - ~

S"

9,9.102

6,7 5.98.1027

10s (6,37.108)2
cm
sec,2

Auch dieser Wert stimmt gut mit dem bekannten

Wert von 9,8.102 cm/sec2 überein.

5. Die erste kosmische Geschwindigkeit
Man spricht heute oft von der 1. und 2. kosmischen

Geschwindigkeit. Unter der ersten wird
jene Geschwindigkeit verstanden, die ein in einer
bestimmten Höhe um die Erde kreisender Körper

besitzen muß. um antriebslos in seiner Kreis-

O
waagrechte Komponente, gleichförmige Bewegung

-»t *
Überprüfen wir diese Formel am Beispiel Erde—
Mond mit der Erdmasse m2 5,98.1027 g, der
Mondmassc m, 7,35.1023 g und der Entfernung

s 3,84. Wem.
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bahn zu verharren. Die meisten bemannten
künstlichen Satelliten benützen Flugbahnen in
100 bis 200 km Höhe über der Erde. Rechnen
wir deshalb mit einer mittleren Flughöhe von
150 km. Wir beginnen mit der Betrachtung des

waagrechten Wurfs. Die Bewegung eines waagrecht

geworfenen Körpers setzt sich aus zwei
Komponenten zusammen. Diese können getrennt
behandelt werden (Gesetz von der Unabhängigkeit

der Bewegug). Die eine Komponente ist
nach dem 1. Newton'schen Bewegungsgestz eine

gleichförmige, waagrechte Bewegung. Die
andere ist infolge der konstant einwirkenden
Schwerkraft ein senkrechter, freier Fall, also

gleichmäßig beschleunigt.

W irft man von einem Punkt A in der Höhe h
150 km einen Körper in Richtung B, so wird

er je nach seiner Geschwindigkeit bei C, D oder
E auf der Erde aufschlagen. Ist die
Wurfgeschwindigkeit groß genug, so kehrt er zum
Ausgangspunkt A zurück. Um diese zu berechnen,
wenden wir die gleiche Methode an wie bei der
ersten Berechnung der Mondbeschleunigung.
Nur ist jetzt die Beschleunigung a gegeben und
dafür die Geschwindigkeit v gesucht. Da wir uns
noch recht nahe der Erdoberfläche befinden,
dürfen wir mit guter Annäherung mit dem hier
geltenden Wert a 9,8.102 cm/sec2 rechnen.
Die Strecke AB entspricht dem in einer Sekunde

zurückgelegten Weg der horizontalen Kompo¬

nente, der Geschwindigkeit v. Sie wollen wir
herausfinden. Nach Formel VI beträgt die zugehörige

Fallstrecke s in einer Sekunde

a 9 8
s —— t2 —^—. I2 4,9 m 0,0049 km

Im rechtwinkligen Dreieck ABZ ist ZA r + h
6370 + 150 6520 km und ZB r + h +

s 6370 + 150 + 0,0049 6520.0049 km.
Nach dem Satz von Pythagoras ist

AB v V'ZB2 — ZA2

\76520,00492 — 65202 8 km/s 29 000 km/h

Um den Körper auf die gewünschte Flughöhe
von 150 km zu befördern, ist die gleiche
Anfangsgeschwindigkeit nötig, die ein aus dieser Höhe
fallender Körper als Endgeschwindigkeit auf der
Erdoberfläche aufweisen würde (bei Vernachlässigung

des Luftwiderstandes).

Für ve liefert die Formel VII
ve 4/2 a s

y'2.0,0098.150 1,7 km/sec 6000 km/h

Die Rakete, welche einen solchen Satelliten in
seine Umlaufbahn bringt, muß sowohl die Energie

für die Erreichung dieser \Tertikalgeschwin-
digkeit von 6000 km/h als auch für die Tangen-
tialgeschwindigkeit von 29 000 km/h aufbringen.

6. Die zweite kosmische Geschwindigkeit

Es ist jene Geschwindigkeit, die man einem Körper

erteilen muß, damit er das Schwerefeld der
Erde verläßt. Sie ist gleich der Endgeschwindigkeit.

die ein aus dem Unendlichen auf die Erde
fallender Körper erreichen würde. Ihre Berechnung

ist deshalb etwas umständlicher, weil die

Beschleunigung nicht mehr auch nur angenähert
konstant ist wie in unmittelbarer Erdnähe,
sondern mit dem Quadrat der Entfernung abnimmt.
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Hier hilft eine Betrachtung über die Arbeit, die
aufgewendet werden muß, um einen Körper von
der Masse ml5 der sich in A befindet, von einem
Körper der Masse m2, der sich in E aufhält, weg
— unter Überwindung der Gravitationskraft —
nach B zu verschieben. Nach dem Newton'schen
Gravitationsgesetz, Formel IX, ziehen sich die
beiden Körper in der Entfernung EA sa an
mit der Kraft

K,
m, m.

mit der Kraft K,

und im Abstand EB

G mx m2

Sh

sb

Weil die Gravitationskraft umgekehrt proportional

zum Quadrat des Abstandes ist, berechnen

wir die mittlere Gravitationskraft als geometrisches

Mittel:

Km \ K, K2

_ G mx m2

G nij m2 G m1 m,
Sb2

Sa Sb

Die für diese Verschiebung nötige Arbeit A2

Kraft mal Weg beträgt für die Kraft Km und den

Weg von A nach B

^ G m, m,
Ax Km AB 1—- (sh - sa) —

G nij. m2. (-

Sa • Sb

1

_
l

Sb

XI
G m, m2

XII A,

Durch Gleichsetzung der Werte A2 und A2 für
potentielle und kinetische Energie erhält man aus
der Gleichung

G mx m2

XIII

m, v' die Größe von v

2 G

Wiederum fällt eine Masse aus der Formel heraus.

Es ist die Masse m, des ins All zu befördernden

Körpers. Die zweite kosmische Geschwindigkeit,

die Entweichungsgeschwindigkeit, ist also

von der Masse des abzuschießenden Dings
unabhängig. Den numerischen Betrag erhalten wir,
wenn wir für m2 die Erdmasse und für sa den
Erdradius einsetzen.

2 G

Sa

Soll sich ein Körper aus dem Gravitationsfeld der
Erde entfernen, ins Unendliche entweichen, so

wird sb x und -
*

- =0. Damit erhält A, den
Sb

Wert

/ 2.6.7 5,98.1027

/ 10s 6,37.10"
11,2 km/sec 40 000 km/h

Obwohl der Mond nicht unendlich weit weg ist,
sondern «nur» 384 000 km, ist die zum Flug zum
Mond nötige Abschußgeschwindigkeit praktisch
gleich der Entweichungsgeschwindigkeit. Wir
haben früher gesehen, daß die Gravitationsbeschleunigung

in Mondferne statt wie 980 cm/sec2
auf der Erde nur noch 0,26 cm/'sec2, also praktisch

gleich Null ist.

Für die Rückkehr vom Mond ist es von Bedeutung,

daß die Entweichungsgeschwindigkeit von
ihm weg viel kleiner ist. Setzen wir für m2 die
\londmasse ein und für sa den Mondradius, so

erhalten wir

V
2 G 2.6,7_. 7,35.1025

1ÖÜ 1,74.10s

2,4 km/sec 8500 km/h

Der Körper enthält nach der Verschiebung diesen

Betrag in Form potentieller Energie. Nach
dem Gesetz von der Erhaltung der Energie muß

man ihm beim Abschuß den gleichen Betrag an
kinetischer Energie zuführen. Sie verwandelt sich

dann während dem Entweichen allmählich in
potentielle Energie. Für die kinetische Energie
A2 gilt
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