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Weltraumfahrt mit Sekundarschul-Mathematik

F. Hegner

1. Vorbemerkung

Diese Arbeit mochte Lehrer und Schiler an-
regen, die Eroberung des Weltalls mit den Mit-
teln, welche die Sekundarschulmathematik zur
Verfiigung stellt, physikalisch mitzuerleben. An
Kenntnissen werden vorausgesetzt: Grundrech-
nungsarten, Potenzieren und Quadratwurzelzie-
hen, Rechnen mit 10er-Potenzen, Proportionen,
Umformen und Auflésen einfacher Gleichungen,
Satz von Pythagoras. Fur die numerischen Be-
rechnungen 1st die Verwendung von Rechen-
scheibe oder Rechenstab vorteilhaft. Von den
Kapiteln der Physik werden beriihrt: Gleichfér-
mige und beschleunigte Bewegung, freier Fall
und waagrechter Wurf, Begriff und Einheit der
Kraft, Gravitationsgesetz, potentielle und kineti-
sche Energie. Da die vorliegende Arbeit die theo-

2. GroBenverhaltnis im Weltall

retischen Grundlagen bereitstellen mochte, fehlt
ein experimenteller Teil. Dies bedeutet nicht,
daf} nicht der Zusammenhang zwischen Kraft,
Masse und Beschleunigung, der freie Fall und
die wichtigsten Konstanten durch Versuche le-
bendig gemacht werden sollen. Auch die nach-
stethend zusammengestellten astronomischen Da-
ten konnten zum Teil mit behelfsmafigen Mit-
teln in grober Annaherung selbst erworben wer-
den. Da der Zweck der Arbeit die Verwendung
der Infinitesimalrechnung verbot, muBten oft Na-
herungslésungen anstelle exakter Methoden ver-
wendet werden. Die Berechnungen sind meist
stark gerundet. Trotzdem ist anstelle des Unge-
fahrzeichens =~ stets das Gleichheitszeichen =
gesetzt.

Tabelle I  Radien, Volumen, MaBe, mittl. Dichte
Mond Erde Sonne
Radien km | 1740 6370 696000
cm 1,74.10% 6,37.10% 6,96.10'°
Verhaltnis 0.27 1 110
Volumen  km?® 22000 000000 1 080000 000000 1,4.10%
Masse 7,35.10% 5,98.10%" 1,99.10%
Dichte g/cm? 3.3 55 1.4
Tabelle 2 Entfernungen
Von bis km cm Verhaltnis
Erde Mond 384000 3,84.10™ 1
Erde Sonne 150 000000 1,5.10* 390
Sonne Pluto 3900 000000 5,9.10" 15000
(auBerster Planet)
Sonne a-Centauri 40 000000 000000 4.10'8 100 000000
(nédchster Fixstern)

Der Durchmesser des Mondes ist also nicht ganz
viermal kleiner als jener der Erde. Stellt man sich
die Sonne als Ball von 10 cm Durchmesser vor,
so ware die Erde ein Stecknadelképfchen von
nicht ganz 1 mm Durchmesser und die Mond-
bahn wirde mit 5,5 cm Durchmesser gut im
Sonnenball Platz haben. Die Reise der drei Ame-
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rikaner Bormann, Lovell und Anders an Weih-
nachten 1968 zum Mond dauerte ungefihr drei
Tage. Die Fahrt zur Sonne ergéibe bei gleicher
Durchschnittsgeschwindigkeit eine Reise von iiber
drei Jahren. Verkleinert man die Erde zu einem
Globus von 30 cm Durchmeser, so wiirde der
Mond in einem Abstand von 9 m seine Kreise



ziehen. Die Vorginger der drei Mondfahrer um-
kreisten die Erde in Bahnen, die nur 2 bis 3 mm
Abstand von diesem 30 cm-Globus hatten.

3. Die drei Newton’schen Bewegungsgesetze

Nach dem 1. Newton’schen Bewegungsgesetz ver-
harrt ein Korper im Zustand der Ruhe oder der
gleichformigen Bewegung, bis eine Kraft ihn
zwingt, diesen Zustand zu dndern. Bei gleichfor-
miger Bewegung legt ein Korper in gleichen Zeit-
abstanden gleiche Strecken auf gerader Bahn zu-
riick. Es gelten folgende Gleichungen, in denen
s den zuriickgelegten Weg in cm, t die Zeit in sec

. . .. . . cm
und v die Geschwindigkeit in — bedeuten.
sec

I v=— II s=vt IIt=—
t v
Wirkt auf einen Korper eine konstante Kraft,
so beschreibt er eine gleichméBig beschleunigte
Bewegung, d. h. seine Geschwindigkeit nimmt
pro Zeiteinheit stets um den gleichen Betrag zu

oder ab. Wird die Geschwindigkeit in Cncl
se

ge-

messen und die Zeit in sec, so bekommt die Be-

schleunigung (die Geschwindigkeitsinderung)
) ) ) cm cm ,
die Dimension tsec = o Bei der be-
sec sec

schleunigten Bewegung spielen neben dem Weg s
und der Zeit t noch folgende Gréofen eine Rolle:
Die eigentliche Beschleunigung a, die Anfangs-
geschwindigkeit v,, die Endgeschwindigkeit v,
und die mittlere oder Durchschnitts-Geschwin-
digkeit v,. Bei einer Beschleunigung von der
Grofle a nimmt die Geschwindigkeit jede Se-
kunde um den Wert a zu. In t Sekunden ist die
Geschwindigkeitszunahme a.t und die End-
geschwindigkeit v, = v, + a.t

Ist die Anfangsgeschwindigkeit v, = 0, so ist
v Ve = a.t

Die Durchschnittsgeschwindigkeit v, ist gleich
dem arithmetischen Mittel von Anfangsgeschwin-
digkeit v, und Endgeschwindigkeit v.. Fur v,
= 0 gilt also

0 + at a

2 T 2 T o2t
Fur die in der Zeit t zuruckgelegte Strecke s gilt
nach Formel 11

Vo + Ve

Vv Vi =

a a
72'”’". t.t = 2
Fir v. benétigen wir noch eine Formel, welche t
nicht enthalt.

VI S = V.t = L t?

Ve Ve
—und t* =— —
a

a?

AusIV v, = a. tfolgtt =

Nach Formel VI ist s =
2.8

a

;——. t*, daraus folgt t> =

Setzen wir die beiden so gefundenen Werte fur t*
einander gleich, ergibt sich aus

L2

- ‘82—4 = s fur v, der Wert
a a

VII v, = \2as

Damit haben wir fur die beschleunigte Bewegung
vier Formeln gefunden, von denen jede die GroBe
a und je zwel von den Groflen s, t und v enthalt.
Hier sind sie noch einmal zusammengestellt:

a a
IVv. =at Vv, = . Vis = . t2
v a \. 5 t S 5 t

VIIv, = \/2.as

Wirkt die beschleunigende Kraft in der Bewe-
gungsrichtung eines Kérpers, so duflert sich die
Beschleunigung als reine Geschwindigkeitsande-
rung. Wirkt sie senkrecht zur Bahn des Korpers,
resultiert eine Richtungsinderung. Auf den Mond
wirkt die Anziehungskraft der Erde dauernd
senkrecht zu seiner Bahn und zwingt thn zum
Kreisen um die Erde. Aus den Daten dieser Kreis-
bahn kénnen wir die Beschleunigung des Mon-
des infolge der Erdanziehung berechnen. Fir
einen Umlauf um die Erde benétigt der Mond
die Zeit t = 27'/, Tage = 2360000 sec. Der
Kreisradius ist gleich der Entfernung Mond-
Erde r = 384 000 km und die Bahnlinge gleich
dem Kreisumfang s = 2.r.x = 2.384000.3,14 =
2 400000 km. Die Geschwindigkeit v des Mondes

) m ' s 2400000 km
betrdgt nach Formell v = = 2 360000 sec

_q km
sec

In der nachstehenden Skizze wurde sich der
Mond infolge der Trigheit in einer Sekunde von
A nach B verschieben. Unter dem zusatzlichen
Einfluft der Schwerkraft bewegt er sich aber tat-
sachlich auf einem Kreisbogen von A nach C. Er
fallt also in dieser Sekunde von B nach C um
die Strecke BC = s. Mit dem Satz des Pythago-
ras konnen wir aus dem Dreieck ABZ die Strecke
s berechnen.
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S +r = >\“’r2 + viunds =

A\ 4 Vit =
-\3’13840002 + 1*— 384000 = 0,0000013 km
= 0.13 cm

Er fallt somit in der Zeit t = 1 sec um die
Strecke s = 0,13 cm. Daraus kann nach Formel I
die mittlere Geschwindigkeit v,, berechnet wer-
den.

S 0,13 cm cm
Vi = = = 0,13 —
t 1 sec sec

Formel V liefert die zur mittleren Geschwindig-

keit v, = 0,13

sec
horende Beschleunigung,

und der Zeit t = 1 sec ge-

a Z . Vi
Aus v, = 9 t folgt a = . n =
2.0.13 . cm
— — = 0,26 ————
1 sec”

Nach dem 2. Newton’schen Bewegungsgesetz ist
die Kraft K proportional der Masse m eines Kor-
pers und seiner Beschleunigung a.

VIII K=m.a
. . . . cIn
Die Dimensionen von m und a sind gund 2
sec
. ) . . T Cm
Also hat die Kraft K die Dimension gq
sec”

Die in diesem Zusammenhang zweckmiBige
MaBeinheit fir die Kraft ist das Dyn. 1 Dyn ist
jene Kraft, welche einem Koérper von 1 g Masse
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die Beschleunigung 1 cm‘)r erteilt. Die GréBe der
sec?

Kraft, mit welcher die Erde den Mond anzieht,
laflt sich aus der Mondmasse m und ihrer Be-
schleunigung a herleiten. Aus der Tabelle 1 ent-
nehmen wir fir die Mondmasse m = 7,35.10* g
und oben haben wir fiir ihre Beschleunigung a =

cm R .,
- gefunden. Setzen wir diese Werte in
sec?

Formel VIII ein, erhalten wir die Kraft K =
m.a = 7,35.10" . 0,26 = 1,9.10*® Dyn.

0,26

Das 3. Netwon’sche Bewegungsgesetz sagt, dal}
zu jeder Kraft eine gleich grofe Kraft gehort, die
in entgegengesetzter Richtung wirkt. Damit kén-
nen wir auch die Beschleunigung a. ausrechnen,
welche die Erde mit der Masse m. vom Mond
erfahrt, denn die Kraft, mit welcher der Mond
die Erde anzieht, ist ebenfalls K = 1,9.10* Dyn.

K
Aus K = m, . a, folgt a. = - =
m.
1.9 .10% cm
sog qom = 00082

In der Formel VII K = m . a sind K und a
gerichtete Grofen, Vektoren. Daher sagt diese
Formel auch aus, daB die Kraft K die gleiche
Richtung hat wie die Beschleunigung a. Zwi-
schen den beiden Himmelskdrpern ist also eine
Kraft in der Richtung Erde—Mond wirksam. Es

ist die Gravitations- oder Schwerkraft.

4. Das Newton’sche Gravitationsgesetz

Newton vertrat schon im 17. Jahrhundert die
Ansicht, dafl die Kraft, welche den Mond in
seine Kreisbahn um die Erde zwingt, die gleiche
sei wie jene, welche einen vom Baum fallenden
Apfel gegen die Erde beschleunigt. Experimen-
tell 1aBt sich feststellen, daf} ein in der Nahe der
Erdoberfliche fallender Korper eine Beschleuni-

cm : . : .
gung von 980 - aufweist. Hier stellt sich die
sec”

Frage, warum der Mond nur mit 0,26 ::: ge-
gen die Erde beschleunigt wird, wenn es sich
doch um die gleiche Kraft handelt? Stellt man
sich vor, daf} sich die Schwerkraft von dem im
Erdmittelpunkt liegenden Gravitationszentrum
strahlenformig gleichmifiig nach allen Seiten
ausbreitet, begreift man gut, daf} sie sich bei Ver-
doppelung des Abstandes auf eine viermal so
grofle Fliche verteilt und ihre Wirkung daher



viermal kleiner ist. Mit anderen Worten, sie ist
umgekehrt proportional dem Abstand vom Erd-
mittelpunkt. Fiir den in Erdnihe fallenden Koér-
per ist dieser Abstand gleich dem Erdradius
6370 km. Der Mond ist 384 000 km weit weg.
Das ist rund 60mal weiter. Deshalb ist die An-
ziehungskraft auf den Mond und damit seine
Beschleunigung 60° = 3600mal kleiner. Die Be-
schleunigung auf der Erde 980 cm/sec? : 3600
gibt 0,27 cm/sec®, was recht genau dem oben
gefundenen Wert entspricht.

Newton schlof3 aus der Anziehung zwischen Erde
und Mond, die er auch anhand der Sonne und
ithrer Planeten iiberpriifte, auf ein allgemein giil-
tiges Gravitationsgesetz, Danach ziehen sich zwei
Korper mit den Massen m, und m, und dem Ab-
stand s mit einer Kraft an, die proportional dem
Produkt ihrer Massen m, . m, und umgekehrt
proportional dem Quadrat s® ihres Abstandes ist.
Hundert Jahre spiter konnte die Gréfe dieser
Gravitationskraft experimentell gemessen wer-
den. Cavendish fand. daB sich zwei Kérper von
je 1 g Masse und 1 cm Abstand mit der Kraft G

6,7 . ' vps :
= WjEﬁ Dyn anziehen. Mit Hilfe dieser Zahl, der
Newton’schen Gravitationskonstanten, laf3t sich
die Anziehungskraft K zweier Korper mit den
Massen m, und m, und dem Abstand s berech-
nen.

G.m,.m,

K=—r"1""2

2
S

IX

Uberpriifen wir diese Formel am Beispiel Erde—
Mond mit der Erdmasse m, = 5,98.10*" g, der
Mondmasse m, = 7.35.10* g und der Entfer-

nung s = 3,84.10" cm.

G.m,.m,

6.7 . 7.35.10 . 5,98.10
10°. (3.84 . 10')?

K = £
&
~ 2.10% Dyn.

Dieser Wert stimmt mit guter Anniherung mit
dem oben auf anderem Weg gefundenen Wert
von 1,9.10%° Dyn uberein.

Mit Hilfe dieses Newton’schen Gravitationsgeset-
zes, Formel 1X, und dem 2. Newton’schen Bewe-
gungsgesetz, Formel VIII, welche beide einen
Wert fur die Kraft K angeben, erhilt man durch
Gleichsetzung der beiden Werte

G'ml',r,r}?,,

m,.a = X
s
fur die Beschleunigung a die Formel
i G.m,
X a = 2

Das heif3t, es 1aBt sich die Beschleunigung fur ir-
gend einen Korper in beliebigem Abstand vom
Erdmittelpunkt berechnen. Die Formel enthilt
die Masse des fallenden Kérpers m, nicht. Die
Beschleunigung ist also von der Masse des fallen-
den Korpers unabhingig, alle fallen gleich
schnell.

Fiir einen auf der Erdoberfliche fallenden Kor-
per ist s = 6370 km = 6,37 . 10° cm und m, die
Erdmasse 5,98.10°7 g. Fiir die Beschleunigung a

erhilt man

6.7 . 5.98.10%7
2 105 . (6,37.10%)

CIIl

9,9.10° R
sec”

Auch dieser Wert stimmt gut mit dem bekann-
ten Wert von 9,8.10% cm/sec? iiberein.

5. Die erste kosmische Geschwindigkeit

Man spricht heute oft von der 1. und 2. kosmi-
schen Geschwindigkeit. Unter der ersten wird
jene Geschwindigkeit verstanden, die ein in einer
bestimmten Hohe um die Erde kreisender Kor-
per besitzen muf}, um antriebslos in seiner Kreis-

waagrechte Komponente, gleichformige Bewegung

& =

w
ro
~I
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bahn zu verharren. Die meisten bemannten
kiinstlichen Satelliten beniitzen Flugbahnen in
100 bis 200 km Hche tber der Erde. Rechnen
wir deshalb mit einer mittleren Flughohe von
150 km. Wir beginnen mit der Betrachtung des
waagrechten Wurfs. Die Bewegung eines waag-
recht geworfenen Korpers setzt sich aus zwei
Komponenten zusammen. Diese kénnen getrennt
behandelt werden (Gesetz von der Unabhingig-
keit der Bewegug). Die eine Komponente ist
nach dem 1. Newton’schen Bewegungsgestz eine
gleichformige, waagrechte Bewegung. Die an-
dere ist infolge der konstant einwirkenden
Schwerkraft ein senkrechter, freier Fall, also
gleichmiBig beschleunigt.

B
Mond A v

Wirft man von einem Punkt A in der Hohe h

= 150 km einen Korper in Richtung B, so wird
er je nach seiner Geschwindigkeit bei C, D oder
E auf der Erde aufschlagen. Ist die Wurfge-
schwindigkeit grofy genug, so kehrt er zum Aus-
gangspunkt A zuriick. Um diese zu berechnen,
wenden wir die gleiche Methode an wie bei der
ersten Berechnung der Mondbeschleunigung.
Nur ist jetzt die Beschleunigung a gegeben und
dafiir die Geschwindigkeit v gesucht. Da wir uns
noch recht nahe der Erdoberfliche befinden,
dirfen wir mit guter Annaherung mit dem hier
geltenden Wert a = 9.8.10° cm/sec? rechnen.
Die Strecke AB entspricht dem in einer Sekunde
zuriickgelegten Weg der horizontalen Kompo-
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nente, der Geschwindigkeit v. Sie wollen wir her-
ausfinden. Nach Formel VI betrigt die zugeho-
rige Fallstrecke s in einer Sekunde

a 9.8

2

s = _2_ = 9
Im rechtwinkligen Dreieck ABZ ist ZA = r + h
= 6370 + 150 = 6520kmund ZB = r + h +
6370 + 150 + 0,0049 = 6520,0049 km.
Nach dem Satz von Pythagoras ist

.12 = 49 m = 0,0049 km

S =

AB =v = \ZB' —ZA® =
1/6520,0049° — 6520° = 8 km/s = 29 000 km/h

Um den Korper auf die gewtinschte Flughoéhe
von 150 km zu beférdern, ist die gleiche Anfangs-
geschwindigkeit nétig, die ein aus dieser Hohe
fallender Korper als Endgeschwindigkeit auf der
Erdoberflache aufweisen wiirde (bei Vernachlas-
sigung des Luftwiderstandes).

Fir v, liefert die Formel VII
V’e — ‘\IJ'JFQ .a .S —

1/2.0,0098.150 =

1,7 km/sec = 6000 km/h

Die Rakete, welche einen solchen Satelliten in
seine Umlaufbahn bringt, muf} sowohl die Ener-
gie fur die Erreichung dieser Vertikalgeschwin-
digkeit von 6000 km/h als auch fiir die Tangen-
tialgeschwindigkeit von 29 000 km/h aufbringen.

6. Die zweite kosmische Geschwindigkeit

Es ist jene Geschwindigkeit, die man einem Kor-
per erteilen muB, damit er das Schwerefeld der
Erde verlaf3t. Sie ist gleich der Endgeschwindig-
keit, die ein aus dem Unendlichen auf die Erde
fallender Korper erreichen wiirde. Thre Berech-
nung ist deshalb etwas umstindlicher, weil die
Beschleunigung nicht mehr auch nur angenihert
konstant ist wie in unmittelbarer Erdnahe, son-
dern mit dem Quadrat der Entfernung abnimmt.




Hier hilft eine Betrachtung tber die Arbeit, die
aufgewendet werden muf3, um einen Korper von
der Masse m,, der sich in A befindet, von einem
Kérper der Masse m,, der sich in E aufhilt, weg
— unter Uberwindung der Gravitationskraft —
nach B zu verschieben. Nach dem Newton’schen
Gravitationsgesetz, Formel IX, ziehen sich die
beiden Korper in der Entfernung EA = s, an
mit der Kraft

und im Abstand EB = s,
G.m,.m,

G.m,.m,

mit der Kraft K, =

sp”
Weil die Gravitationskraft umgekehrt proportio-
nal zum Quadrat des Abstandes ist, berechnen
wir die mittlere Gravitationskraft als geometri-
sches Mittel:

/G.ml.m2 G.m,.m,

/ 2

2
Sa Sp

Die fiir diese Verschiebung nétige Arbeit A, =
Kraft mal Weg betrigt fir die Kraft K,, und den
Weg von A nach B

G.m,.m,

AA1 = Ku .AB = . S - (Sh_sa_\? —
a - oh
1 1
=G.m,.m,. ( . - qsbw)

Soll sich ein Kérper aus dem Gravitationsfeld der
Erde entfernen, ins Unendliche entweichen, so

wird s, = * und - 1— = 0. Damit erhdlt A, den
Sp

Wert
G. . m,

X1 A =—ciaile

Sa

Der Kérper enthilt nach der Verschiebung die-
sen Betrag in Form potentieller Energie. Nach
dem Gesetz von der Erhaltung der Energie mul}
man ihm beim Abschufl den gleichen Betrag an
kinetischer Energie zufiihren. Sie verwandelt sich
dann wihrend dem Entweichen allméhlich in
potentielle Energie. Fiir die kinetische Energie
A, gilt

XI1 A, = -V

Durch Gleichsetzung der Werte A, und A, fir
potentielle und kinetische Energie erhilt man aus

der Gleichung

G.m,.m m, . v~
i B L~ die GroBe von v

I

Sa

XIII Vo= l,w' 2 . G . I,

Sa

Wiederum fillt eine Masse aus der Formel her-
aus. Es ist die Masse m, des ins All zu beférdern-
den Korpers. Die zweite kosmische Geschwindig-
keit, die Entweichungsgeschwindigkeit, ist also
von der Masse des abzuschiefenden Dings unab-
hangig. Den numerischen Betrag erhalten wir,
wenn wir fir m, die Erdmasse und fiir s, den
Erdradius einsetzen.

1/ 2.G.m, / 26,7 .598.10%
e S T R TAT
= 11,2 km/sec = 40 000 km/h

Obwohl der Mond nicht unendlich weit weg ist,
sondern «nur» 384 000 km, ist die zum Flug zum
Mond noétige AbschuBlgeschwindigkeit praktisch
gleich der Entweichungsgeschwindigkeit. Wir
haben frither gesehen, daB die Gravitationsbe-
schleunigung in Mondferne statt wie 980 cm/sec?
auf der Erde nur noch 0,26 cm/sec®, also prak-
tisch gleich Null ist.

Fiir die Rickkehr vom Mond ist es von Bedeu-
tung, daB die Entweichungsgeschwindigkeit von
thm weg viel kleiner ist. Setzen wir fir m, die
Mondmasse ein und fiir s, den Mondradius, so
erhalten wir

/2.G.m, 26,7 . 7.35.10%

M l e T W 20T
= 2.4 km/sec = 8500 km/h
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