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Der Satz des Pythagoras
Eine Materialsammlung

Von F. Hegner, Lachen

Sekundär- und Mittelschule

Die weisen auf das am Schlüsse aufgeführte
Literaturverzeichnis hin.

i. Geschichtliches

Die diesem Abschnitt beigefügte Zeittafel (i) gibt
einen Überblick über die Stellung des ionischen
Mathematikers Pythagoras von Samos in der
Geschichte. Der ihm zugeschriebene Lehrsatz muß
jedoch schon viel früher bekannt gewesen sein. So

sind mathematische babylonische Texte aus der

Mitte des 2.Jahrtausends v.Chr. entziffert worden,
welche die Kenntnis des pythagoreischen Lehrsatzes
bereits voraussetzen (2). Ebenso war er den Chinesen,

Ägyptern und Indern schon vor Lebzeiten des

Pythagoras bekannt (3).
Pythagoras von Samos im Ägäischen Meer lebte

ungefähr von 580 bis 500 v. Chr., siedelte um 530
nach Kroton in Unteritalien über und unternahm
weite Reisen nach Ägypten und Babylon. Er selbst

hinterließ keine Schriften. Die Auffassung, daß die
natürliche Zahl das Wesen aller Dinge sei, legte er
seinem philosophischen System zugrunde. In Kroton

gründete er eine geheime Bruderschaft, die zum
Teil wissenschaftliche Zwecke verfolgte (2).

2. Formulierungen

2.1 Im rechtwinkligen Dreieck ist das H7 potenusen-
quadrat gleich der Summe der beiden Kathetenquadrate

(2).

2.2 Im rechtwinkligen Dreieck ist die Summe der

Quadrate über den Katheten flächengleich dem

Quadrat über der Hypotenuse (3).

2.3 Hypotenusenquadrat Summe der
Kathetenquadrate (4).

2.4 Im rechtwinkligen Dreieck ist das Quadrat über
der Hypotenuse gleich der Summe der Kathetenquadrate

(5).

2.5 Im rechtwinkligen Dreieck ist das Quadrat über
der Hypotenuse gleich der Summe der Quadrate
über den Katheten (6).

2.6 Im rechtwinkligen Dreieck ist das Quadrat über
der Hypotenuse c flächengleich der Summe der

Quadrate über den Katheten a und b, in Zeichen:
c2 a2 -f- b2 (7).

2.7 Im rechtwinkligen Dreieck mit der Hypotenuse
c und den Katheten a und b ist das Quadrat mit der
Seite c flächengleich mit der Summe zweier Qua-
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drate, von denen das eine die Seite a und das andere
die Seite b besitzt (8).

3. Beweise

Es soll gegen hundert verschiedene Beweise des

Lehrsatzes des Pythagoras geben. Dabei wird der gleiche
Beweisgedanke oft vielfach variiert. Man kann die
Beweise wie folgt gruppieren (6):
Verwandlungbeweise, Zerlegungsbeweise, algebraische

Beweise, Ähnlichkeitsbeweise. Die nachstehende

Auswahl ist eine eher zufällige. Sie ergab sich

anhand der zur Verfügung stehenden Literatur. Bei

den Verwandlungs- und Zerlegungsbeweisen ist
jeweils die Flächengleichheit oder die Kongruenz der

verglichenen Flächen mit Hilfe der Sätze über
Flächenberechnungen, über Schiebung, Drehung und
Umwendung oder der Kongruenzsätze zu zeigen.
Der Satz des Pythagoras ist ein zentrales Gebiet der
Sekundarschulmathematik. Sein Bildungswert ist

wesentlich, die Anwendungen vielfältig. Der Lehrer
wird mit seinen Schülern meist nur einen der
Beweise - vielleicht jedes Jahr einen andern - erarbeiten.

Dabei lohnt es sich, recht ausführlich vorzugehen.

Deshalb sind einige der Beweise detailliert,
andere mehr summarisch wiedergegeben.

3.1 Verwandlungsbeweise

3.1.1 Der erste indische Beweis - <Stuhl der Braut>

(6).

Behauptung:

Quadrat ACHJ -j- Quadrat CBKL
Quadrat ABEF

Voraussetzung:

Dreieck ABC Dreieck BED, denn
AB BE als Quadratseiten

<jC CAB <r DBE nämlich 90°— <C ABC
<£ BCA EDB nach Konstruktion 90°

Beweis:

Das Ausgangsdreieck ABC und das diesem

kongruente Dreieck BED der Fig. ia werden durch eine

Viertelsdrehung um A bzw. E in die Lage AFJ bzw.
FEG der Fig. ib gebracht. Dadurch wird das

Hypotenusenquadrat ABEF in das flächengleiche Sechseck

ACDEGJ verwandelt. Dieses wird durch die
Strecke CH in die beiden Quadrate ACHJ und
HDEG zerlegt. Letzteres wird durch Verschiebung
in die Lage CBKL zum zweiten Kathetenquadrat.
Daraus folgt:

Quadrat ACHJ -1- Quadrat CBKL Quadrat ABEF
(was zu beweisen war!)

3.1.2 Der klassische griechische Beweis, der 1.

Beweis von Euklid. (3) Er benützt den Weg über den

Kathetensatz, den Satz des Euklid.

Behauptung:

Quadrat ACKL Rechteck AEFD

Beweis:

Dreieck ACL Dreieck ABL (gleiche Seite AL und

gleiche zugehörige Höhe AC).
Dreieck ABL ^ Dreieck AEC

(LA CA als Quadratseiten
AB AE als Quadratseiten

<E LAB CAE nämlich je 90° — <X CAB)
Dreieck AEC Dreieck AED
(gleiche Seite AE und gleiche zugehörige Höhe AD)

G

Fig. 1a Fig. 1b Fig. 1c
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a

ff G

Fig. 2

Daraus ergibt sich, daß

Dreieck ACL Dreieck AED
Durch Verdoppelung der beiden Dreiecke folgt:
Quadrat ACKL Rechteck AEFD (w. z.b.w.)
Gleich läßt sich zeigen, daß

a

ff g
Fig. 3

Quadrat CBEIJ Rechteck DFGB
Die Summe der beiden Rechtecke AEFD und DFGB
ist aber gleich dem Hypotenusenquadrat AEGB.

3.1.3 Eine Variante zum Beweis 3.1.1 (4)

Man benützt anstelle flächengleicher und kongruenter

Dreiecke die entsprechenden Parallelenvierecke.

Quadrat ACKL Viereck ABML gsj ViereckAENC Rechteck

AEFD

3.1.4 Eine weitere Variante zum Beweis 3.1.i (5)

Vorerst beweist man mit Hilfe der Kongruenz der
Dreiecke ABC und MBH, daß MB BG AB).
Dann ist leicht zu zeigen, daß

Quadrat CBHJ Parallelenviereck CBMN Rechteck DFGB

3.1.5 Der zweite indische Beweis (3)

Im Quadrat CGJF der Fig. 5a sind die Quadrate
AGHD und BDEF die Kathetenquadrate des Dreiecks

ABC. Sie werden durch Verschieben der übrigen

drei Dreiecke in die Lage gemäß Fig. 5b in das

flächengleiche Hypotenusenquadrat AKLB
verwandelt.

Frg.4
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Fig.5a Fig. 5b

3.2 ^erlegungsbeweise

3.2.1 Beweis von Alnairizi, ca. 900 v.Chr. (3 u. 6).

3.2.2 Mosaikbeweis von Gutheil, 1914. (7)

3.2.3 Beweis von Perigal, 1830. (7)

3.2.4 Subtraktionsbeweis von Tempelhoff, 176g.

(3,5 u. 7)

Die Pythagorasfigur wird ergänzt mit den dem
Ausgangsdreieck ABC kongruenten Dreiecken KHJ und
FEC. Das achsensymmetrische Sechseck GABDEF
und das zentralsymmetrische Sechseck CAHJKB

Fig. 6 Fig. 7
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Fig. 9

sind flächengleich, denn ihre Hälften GABD und
JKBC können durch Drehung um B zur Deckung
gebracht werden. Subtrahiert man von beiden
Sechsecken je die zwei kongruenten Dreiecke, so

bleibt einmal die Summe der beiden Kathetenquadrate

übrig, das andere Mal das Hypotenusenquadrat.

3-3 Algebraische Beweise

3.3.1 Fig. 5a und b können auch rechnerisch
ausgewertet werden: (5)

ah
Aus Fig. 5a folgt CFZ — 4 • — a2 -+- b2

aV,
Aus Fig. 5b folgt CF2 — 4 • — c2

Also az + b2 c2

3.3.2 In der nachstehenden Fig. 10 setzt sich das

Quadrat über der Hypotenuse c aus vier kongruenten,

rechtwinkligen Dreiecken mit den Katheten a
und b und dem kleinen Quadrat in der Mitte mit der
Seite a-b zusammen. (2)

4 • + (a — b)2 c2

2ab + a2 — 2ab + b2 c2

a2 -f b2 c2

73S

Fig. 8

3.3.3 Ein Beweis mit Hilfe der Trapezfläche. (9)

Die Fläche des Trapezes EACD kann aufzwei Arten
berechnet werden, a und b sind die beiden Parallelen,

a + b ist die Höhe. Nach der Trapezformel ist

F (a + b)

c

Fig.10



E

Fig.11

Als Summe der drei Teildreiecke ist

„ a.b a.b c2 c2
F — + — + — a.b + —

2
1

2
1 a

1

2

Nach Verdoppelung beider Ausdrücke und erfolgter
Gleichsetzung erhält man

(a — b) • (a — b) 2ab + c2

a2 + 2ab + b2 2ab -(- c2

Wird auf beiden Seiten der Gleichung 2ab subtrahiert,

ergibt sich wieder

a2 b2 c2

3.4 Äknlichkeitsbeweise

Da in der Sekundärschule die Ähnlichkeit der Dreiecke

erst nach dem Satz von Pythagoras zur Sprache
kommt, eignen sich diese Beweise als Anwendung
der Ähnlichkeit und als Repetition.

3.4.1 Der zweite Beweis von Euklid. (6)

c

Fg.12

Durch Einzeichnen der Höhe DC im ursprünglichen
Dreieck ABC erhält man die diesem ähnlichen Drei¬

ecke CBD und ACD. Die Flächen der drei Dreiecke
verhalten sich wie die Quadrate entsprechender Seiten.

ABC : CBD : ACD c2 : a2 : b2

ABC : (CBD - ACD) c2 : (a2 - b2)

weil CBD - ACD ABC

ist auch a2 -f b! c2

3.4.2 Der folgende Beweis nimmt wieder den Weg
über den Kathetensatz. (2)

Aus Fig. 12 folgt

AD : b b : c DB : a a : c

b2 AD • c a2 DB - c

Daraus folgt

a2 + b2 AD c + DB c c (AD — BD)
c c c2

Also ergibt sich wiederum
a2 t b2 c2

4. Pythagoreische /yahlentripel (3)

x | y a b c a2 b2 c2

2 1 3 4 5 9 16 25

3 2 5 12 r3 25 144 169

4 1 :5 8 225 64 289

4 3 7 24 25 49 576 625

5 2 21 20 29 441 400 841

5 4 9 40 41 81 1600 1681

6 1 35 12 37 1225 J44 1369

6 3 27 36 45 729 1296 2025
6 5 11 60 61 121 3600 3721

7 2 45 28 53 2025 784 2809

7 4 33 56 65 C7>
CO0 3J36 4225

7 6 '3 84 85 169 7056 7225
8 1 63 16 65 3969 256 4225
8 3 55 48 73 3025 2304 5329
8 5 39 80 89 1521 6400 792 1

8 7 l5 112 "3 225 12 544 12769

9 2 77 36 85 5929 1296 7225

9 4 65 72 97 4225 5184 9409
9 6 45 108 117 2025 11664 13689

9 8 144 145 289 20736 21025

Darunter versteht man drei ganze Zahlen, bei denen
die Summe der Quadrate der beiden kleineren Zahlen

gleich dem Quadrat der größten Zahl ist. Mit
Hilfe solcher Tripel lassen sich zur Einführung leicht
Beispiele herstellen, die <aufgehen >.
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Man erhält die drei Zahlen a, b, c eines Tripels nach
den Formeln

a x2 — y2 b 2xy c x2 + y2

x und y sind dabei ganze Zahlen, wobei x größer als

y zu wählen ist. Enthalten x und y keine gemeinsamen

Faktoren und ist eine der beiden Zahlen gerade,
so erhält man primitive, d.h. teilerfremde Tripel.
Durch Multiplikation der primitiven Tripel mit
beliebigen positiven Zahlen erhält man abgeleitete
Tripel. Die nachstehende Tabelle enthält die kleinsten

primitiven Tripel.
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Ein für die Aeronautik
grundlegendes Gesetz der Mechanik

Dr. P. Theodor Schwegler OSB, Einsiedeln

In jüngster Zeit brachte die Presse allerlei Angaben
über die Höhe (bzw. Erdentfernung), Zeit und
Geschwindigkeit der Erdumflüge der Russen und
der Amerikaner. Mancher Leser wird sich da
gefragt haben, welcher Zusammenhang zwischen den

angegebenen Größen bestehe. Dieser Zusammenhang

soll im folgenden so einfach als möglich
dargestellt werden.
Die Mathematiker, die die Erdumflüge zu berechnen

hatten, mußten darauf bedacht sein, daß die

Erdanziehung durch die Geschwindigkeit der Kapsel

paralysiert wurde. Bei kleinerer Geschwindigkeit

entstand die Gefahr, daß die Kapsel in dichtere
Luftschichten und wegen der Reibung in Brand
geriet oder bei längerer Fahrt irgendwo mit dem
Erdboden zusammenstieß. War die Geschwindigkeit
größer, so mußte sich die Kapsel immer weiter von
der Erde entfernen und im Weltenraum verlieren.
Die eingeschlagenen Kurven waren jeweils Ellipsen,

die, vom Erdmittelpunkt aus gesehen, einem Kreise
sehr nahe kamen, war doch die numerische Exzentrizität

der von Glenn beschriebenen Bahn r. 1/170.

Fur die Umlaufgeschwindigkeit kann daher die
Exzentrizität e vernachlässigt werden. Eine technische
Kreislinie, läßt sich zwar mathematisch errechnen,
ist aber von der Wahrscheinlichkeitsrechnung her
höchst unwahrscheinlich.

Im folgenden bezeichnet c die Geschwindigkeit,
a die Erdbeschleunigung von 9,81 m's2, r den

Äquator-Radius der Erde (6378388 m), t die Zeit
des Umlaufes; a0, c0 und t0 die Beschleunigung, die

Geschwindigkeit und die Umlaufzeit im Abstand

ra vom Erdmittelpunkt. Da die Anziehungskraft der
Erde mit dem Quadrat der Entfernung abnimmt,
gelten die Beziehungen:

aG : a r2 : r2 und cD : c y/ r : y/ rD

Aus dem elementar leicht ableitbaren Gesetz der

Kreisbewegung c2 a • r ergibt sich nun fur einen

Erdumflug in möglichster Erdnähe:

c y/6378388 • 9,81 m, s 7906 m 's oder
28,46 km/h und

t=^= 271 ,'a 5070s i h 24,5min.

Beim Erdumflug des Amerikaners Glenn war r0 im
Mittel r -j- 208 km, also r0/r 1,0326. Daraus

ergeben sich die Werte:

co V a° ' r° r • V/a/r«= 7784 m/s oder

28,023 km/h

und to G^f -VT'l*=Mrf s 1 h 28 min

36 s.

Diese letzte Formel, auf die Form t® r2
u a-r- 0

gebracht, spiegelt unmittelbar das dritte Keplersche
Gesetz der Planetenbahnen wider, wonach sich die

Quadrate der Umlaufszeiten verhalten wie die
Kuben der großen Halbachsen - genauer wie die
Kuben der Abstände vom gemeinsamen Schwerpunkt

der beiden Massen. Wenn die Kapsel Glenns
der eine < Planet > ist, dann eine der Kapseln der
russischen Aeronauten oder der Mond der
Vergleichs-Planet.
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