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1. Beschreibt: die Zwiebel, eine Vorratskammer der
Pflanze!

2. Erklärt mundlich die Mehrdarbietungsskizzen!

3. Stellt Fragen an die Klassenkameraden uberHya-
zinthen! (Jeder Schüler bearbeitet ein bestimmtes

Teilgebiet. Das Schulergesprach leitet nach
Möglichkeiten der Fragesteller. Der Lehrer greift nur
dann ein, wenn der Fragesteller die Schwierigkeiten
nicht mehr zu meistern vermag.)

Die angeführten Arbeitsaufgaben sind in Gruppen
oder auch einzeln zu lösen.

Diktat: Wie Hyazinthen gezogen werden.

Im Freien:

Sie werden im Oktober oder November, 10 bis 15

cm voneinander, gepflanzt. Im strengen Winter ist

der Boden dort mit Torfmull, Fichtenreis oder Laub
zu bedecken. Sobald die ersten Zwiebeln die Erde
durchbrechen, ist die Bedeckung zu entfernen.

Im ^immer:

Ende September werden die Zwiebeln

auf die Gläser gesetzt. Diese sind

mit Wasser gefüllt. Sie werden an
einen kühlen und dunklen Ort
gestellt (Keller). Dort bleiben sie, bis

der Sproß etwa 8 cm Lange erreicht
hat. Wenn die Wurzeln den
Glasboden erreicht haben (nach zirka 8

bis 10 Wochen), werden die Glaser

in ein kühles Zimmer verbracht.
Zuerst soll es dort 10 Tage lang halbschattig, erst
nachher hell und warm sein.

Woher kommen die Namen «Ellipse, Hyperbel, Parabel»?
Die Rolle der ,geometrischen Algebra' in der Entstehungsgeschichte der

Kegelschnitte

Mittelschule

Prof. Dr. Gaston Hauser, Luzern

Nach meiner Auffassung sollte man die Schuler,
soweit man dazu überhaupt in der Lage ist, auch über
die Herkunft und die Bedeutung der fremdsprachigen

Fachausdrücke orientieren, die im Unterricht
eingeführt und verwendet werden. Es dient nicht nur
dem Verständnis der betreffenden Begriffe, sondern
ist zugleich fur den Schuler lehrreich und anregend,
wenn man ihm z.B. erklärt, daß die Ausdrücke,Zentrum'

und Peripherie' von den griechischen Wörtern

kentron Stachel oder Stich bzw. peripherem

herumtragen abgeleitet werden und aufdie in früheren

Zeiten übliche Herstellung des Kreises mit Hilfe
eines Seiles und zwei Stiften, deren einen man
feststeckte, den andern aber herumtrug, hinweisen. Das

Wort Peripherie' kann auch mit der im alten
Griechenland verbreiteten Sitte zusammenhängen, bei
Prozessionen religiöse Standbilder um die Stadt her¬

umzutragen. Wie interessant ist ferner die Geschichte
des Wortes Sinus, das aus dem altindischen jiva =;
Sehne entstanden ist! Es ist fur den Schuler auch
nicht überflüssig zu wissen, daß Trigonometrie aus den
drei griechischen Wörtern tri drei, gonos Winkel

(oder Knie) und metron Maß zusammengesetzt
ist, daß dieser Ausdruck demnach irreführend ist, da

ja in der Trigonometrie die Winkel nicht gemessen,
sondern berechnet werden. Solche Worterklärungen
bewirken nicht nur eine gewisse Vertiefung, sondern

vermögen außerdem den eher spröden Lehrstoff des

Mathematikunterrichtes etwas zu beleben und
aufzulockern.

Wenn aber bei der Behandlung der Kegelschnitte die
Schuler eine Erklärung über die Herkunft und den
Wortsinn der Namen Ellipse, Hyperbel oder Parabel

wünschen, so kann diese Frage den Mathematik-
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lehrer in Verlegenheit bringen, weil er nicht ohne
weiteres Bescheid weiß. Vielleicht erinnert er sich

aus dem einstigen Religionsunterricht oder aus den

Deutschstunden, daß Parabel (vom griechischen pa-
rabole Vergleichung) ein Synonym für ,Gleichnis'
sei, weil eine Parabel gewöhnlich irgendeine
,Vergleichung' enthalte. Ferner ist einem etwa aus der
Stilkunde noch vage bekannt, daß man in der
Sprachwissenschaft für die Auslassung eines Wortes oder
eines Satzteiles (z.B. ,ein Helles' statt ,ein helles

Bier') den Fachausdruck Ellipse (vom griechischen
elleipsis Mangel, Auslassung) gebraucht, analog
fur einen übertreibenden Ausdruck (z.B. ,zum Sterben

langweilig' oder ,himmelhoch jauchzend') das

Wort Hyperbel (vom griechischen hyperbole

Uberschuß) In welchem Zusammenhang stehen aber die
drei berühmten Kegelschnitte mit diesen griechischen

Wortern

Um auf diese Frage eine befriedigende, genügend
klare Antwort geben zu können, muß man die
Frühgeschichte der Geometrie konsultieren. Wenn man dabei

wenigstens in Kurze bis aufdie Algebra der alten Baby-
lonier zurückgreift, so läßt sich gleichzeitig ein
wesentlicher und eigenartiger Aspekt der griechischen
Mathematik zur Geltung bringen.

Aus neueren Forschungen, insbesondere von O.
Neugebauer und B. L. van der Waerden, weiß man heute,
daß die babylonische Algebra seit der Zeit nach

2000 v. Chr. schon einen erstaunlich großen Bereich
beherrschte, nämlich außerden linearen Gleichungssystemen

und rein-quadratischen Gleichungen auch
die gemischt-quadratischen Gleichungen mit einer
und mehreren Unbekannten. Dazu kommt noch die

Behandlung von ,transzendenten' kubischen
Gleichungen mit Hilfe von Tabellen.

Alle ihre algebraischen Probleme ersten und zweiten
Grades mit einer und mehreren Unbekannten führten

die Babylonier auf die folgenden zehn Normalformen

zurück:

A. Gleichungen mit einer Unbekannten

(A, i) ax b

(A,2)
(A, 3)

CA, 4)

(A, 5) x° a

(A, 6) x2(x-!-i)=a

x-' a

x2+ax b
x2—ax b

3

B. Gleichungssysteme mit zwei Unbekannten

(B, 0 {

(B, 2)

(B, 3)

(B, 4) {

x + y a

xy b

J x—y a

j xy b

j x+y a
I x2+y2 b

x—y a

x2+y2 b

(Elliptische
Flächenanlegung)
(Hyperbolische
Flächenanlegung)

(Parabolische
Flächenanlegung)

Es kann nun als ein schlussiger Beweis fur die
Beziehungen zwischen der babylonischen und der griechischen

Mathematik gelten, daß man sämtliche in den

obigen Normalformen (A, 1-5) und (B, 1-4) enthaltenen

algebraischen Probleme bei den Griechen
wiederfindet und sogar Spuren von (A, 6) in der populären

griechischen Arithmetik. Es sind die Pythago-

reer, welche die babylonische Algebra den Griechen
übermittelt haben. (Es wird ja vermutet, daß Pythagoras

selbst auch eine große Reise nach Babylon
unternommen, sich also nicht nur in Ägypten aufgehalten

hat.) Die Griechen haben aber die von den Baby-
loniern übernommenen algebraischen Probleme in
eine ausgesprochen geometrische Form eingekleidet,
für welche H. G. Reuthen den zutreffenden Ausdruck
geometrische Algebra geprägt hat.
Warum haben die Griechen die babylonische Algebra

nicht als solche übernommen, sondern ins
Geometrische übersetzt? Da sie bekanntlich ausgesprochene

,Augenmenschen' waren, könnte man vermuten,

daß die Freude am Anschaulichen und Visuellen

sie veranlaßt habe, sich von den Zahlen
abzuwenden und sich vorzugsweise mit Figuren zu befassen.

Weil es ausgerechnet die Pythagoreer waren, die
nach dem zuverlässigen Zeugnis des Eudemos die
geometrische Algebra begründet haben, würde jedoch
dieser bloß äußere Grund in merkwürdigem Widerspruch

zur Tatsache stehen, daß für sie die Zahl «das
Erste und Wesentlichste in der ganzen Natur» war.
Der wirkliche Grund ist viel bedeutsamer und ernster,

nämlich die Entdeckung des Irrationalen. Die Pythagoreer

erkannten, daß sich das Verhältnis der
Diagonale zur Seite eines Quadrates nicht durch ganze
Zahlen ausdrücken läßt. Da die Griechen streng an
der Definition der Zahl ah, ganze Zahl (arithmos
bedeutet Anzahl) festhielten, konnten sie diesem
Verhältnis keine Zahl zuordnen. In ihrem logischen
Rigorismus ließen sie nicht einmal Brüche zu, sondern

ersetzten sie durch Verhältnisse von ganzen Zahlen
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(rationale Zahlen). Sie mußten ferner feststellen, daß

überhaupt die Losung der Gleichungen in rationalen

Zahlen nicht immer möglich ist. Mit einer nur
angenäherten Losung wollten sie sich aber nicht
begnügen.

Es gelang den Griechen, diese Schwierigkeiten zu
umgehen, indem sie die Strecke als Symbol und
Ersatz fur die allgemeine Zahl benutzten und
Rechenoperationen ahnlich ausführten, wie dies die heutige
graphische Statik mit gerichteten Strecken als

Darstellung von Kräften (und Vektoren überhaupt) tut:
Addition und Subtraktion werden durch Abtragen der
einen Strecke aufder Verlängerung der andern oder
in entgegengesetztem Sinne auf dieser selbst ausgeführt.

— Die Multiplikation zweier Zahlen wird
ausgeführt, indem man aus den beiden entsprechenden
Strecken das Rechteck konstruiert. Ein Produkt von
zwei Zahlen heißt deshalb eine Rechteckzahl oder eine

Flachenzahl, und wenn die beiden Faktoren gleich
sind, eine Quadratzahl. Ein Produkt von drei Zahlen
wird dementsprechend eine Korperzahl genannt, und

wenn die drei Faktoren gleich sind, eine Kubikzahl. -
Eine Divisionsaufgabe wird mit Hilfe des Satzes vom
Gnomon gelost. Damit ist die wichtigste Anwendung
vorbereitet, nämlich die Bestimmung unbekannter
Größen aus bekannten, also die Lösung von
einfachen Gleichungen ersten und zweiten Grades in
geometrischer Sprache.

Fig. i

Aus dieser geometrischen Algebra wollen wir nun
nur die Losung jener Probleme herausgreifen, welche

zur Beantwortung der Titelfrage beitragen.
Wenn es sich z.B. darum handelt, die Gleichung
cx ab zu losen, so lautet diese Aufgabe in der

Sprache der geometrischen Algebra: Es ist ein Rechteck

zu konstruieren, von dem man die eine Seite c und den

Flächeninhalt a.b kennt.

Zur Losung dieser Aufgabe zeichnet man zunächst

ein Rechteck ABCD mit dem Flächeninhalt a.b

(Fig. i). Alsdann wird die Seite BC um die Strecke
CE c verlängert. Im Punkte E errichtet man die
Senkrechte auf die Strecke BE, welche die Verlängerung

der Strecke AD im Punkte F treffe. Nun zieht
man die Diagonale FC und verlängert sie bis zu
ihrem Schnittpunkte G mit der Verlängerung der
Seite AB. Durch den Punkt G zieht man schließlich
eine Parallele zur Strecke BE. Diese schneidet die

Verlangerungen der Strecken DC und FE in den
Punkten H und K. Nach dem als bekannt
vorausgesetzten Satz vom Gnomon ist das Rechteck CHKE
flächengleich mit dem Rechteck ABCD, und die

Lange der Seite EK CH gleich der gesuchten
Größe x.

äb
Gibt man der Gleichung cx ab die Form x —,

so erkennt man sofort, daß man mit der Konstruk-
ab

tion der Große x den Quotienten — bestimmt und

demnach auch noch eine Division ausgeführt hat. Soll

der Quotient x oder x -^-konstruiert werden,

so geht man im einen Falle vom Rechteck mit den
Seiten a und i, im andern Falle vom Quadrat mit
der Seite i aus.

Die Losung dieser Aufgaben besteht im wesentlichen

darin, an eine gegebene Strecke eine gegebene Fläche

anzulegen. Diese Konstruktionsmethode hat deswegen den
Namen Flachenanlegung erhalten, und zwar handelt
es sich bei dem eben ausgeführten Beispiel um den
einfachsten Fall, um die sogenannte parabolische

Flachenanlegung.

Nun liegt die Aufgabe nahe, ein Rechteck in ein Quadrat

zu verwandeln, d.h. die mittlere Proportionale
zwischen zwei Zahlen a und b zu suchen, also eine
Zahl x, welche der stetigen Proportion a:x x:b
oder der Gleichung x2 a.b genügt. Die Lösung dieses

Problems kann man am Schluß (§ 14) des II.
Buches der ,Elemente' von Euklid nachlesen. In diesem

II. Buch wird ferner in § 11 die Aufgabe gelost: Eine

gegebene Strecke so zu teilen, daß das Rechteck aus der ganzen

Strecke und dem kleineren Abschnitt dem Quadrat über

dem größeren Abschnitt gleich ist. Es handelt sich also

um die stetige Teilung einer gegebenen Strecke, um
den Goldenen Schnitt. Damit wird zugleich die
folgende quadratische Gleichung in geometrischer
Form gelost:

a (a—x) x2 oder x2+ax—a2 o

Auch allgemeinere Gleichungen zweiten Grades
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wurden in dieser geometrischen Algebra behandelt.
So führte z.B. die Gleichung x2—ax-|-b2 oaufdie
Lösung der folgenden geometrischen Aufgabe:
An eine gegebene Strecke AB a) ist ein Rechteck AM
(Abkürzung für AKMD) gleich einem gegebenen Quadrat

b2) so anzulegen, daß das (am Rechteck ax über
AB) fehlende Flächenstück zu einem Quadrat (BM
x2) wird.
Die zugehörige Konstruktion, welche die elliptische

Flachenanlegung (elleipsis Mangel!) genannt wird,
soll anhand der Fig. 2 wenigstens kurz angedeutet

demos beruft, sind sie ebenfalls schon von den Pytha-

goreern gelost worden.
Mit diesem kurzen Ausschnitt aus der,geometrischen
Algebra' haben wir die ,Geschichte der Kegelschnitte'

bis in das 4.Jahrhundert v. Chr. skizziert. Bis
dahin waren aber die Kegelschnitte selbst noch nicht
,erfunden'. Denn in den Losungen der geometrischen

Algebra waren ihre Gleichungen nicht explizit,

sondern nur latent enthalten. Die eigentliche
Entdeckung der Kegelschnitte wird von allen Geschichtsschreibern

dem Menaichmos von Proconnesos (Insel im

werden: Es sei C der Mittelpunkt der Strecke AB a

und AM das Rechteck, welches flächengleich einem

gegebenen Quadrat (b2) ist. Legt man nun das Rechteck

CK an die Seite DB (als DF), so sieht man, daß

das Rechteck AM gleich einem Gnomon wird, nämlich

gleich der Differenz der Quadrate über BC und
CD.
In die Sprache unserer Algebra ubersetzt heißt dies:

b2 ax- er-(M!
Da b und CB - bekannt sind, kann man CD

2

- —x mit Hilfe des Satzes von Pythagoras finden, und

dadurch x selbst.

Auf ganz analoge Weise läßt sich die Gleichung
x2+ax—b2 o losen, welche Aufgabe die alten
Griechen wie folgt ausdrucken:
An eine gegebene Strecke AB a) ist ein Rechteck AM
gleich einem gegebenen Quadrat b2) so anzulegen, daß

das (über das Rechteck ax über AB) überschießende
Fldchenstück BMzu einem Quadrat x2) wird (Fig. 3).
Die entsprechende Konstruktion heißt die hyperbolische

Flächenanlegung (hyperbole Uberschuß!).
Die beiden letzten Probleme findet man bei Euklid
erst im VI. Buch (§28 und § 29) behandelt. Nach dem

glaubwürdigen Zeugnis von Proklos, der sich auf Eu-

Dg. 3

Marmarameer) zugeschrieben, also einem griechischen

Mathematiker, der besonders um die Mitte
des 4-Jahrhunderts schöpferisch tatig gewesen sein

soll. Er hat insbesondere die Parabel und die gleichseitige

Hyperbel als Losungskurven fur das Delische

Problem der Würfelverdoppelung erkannt. Menaichmos
gebrauchte noch nicht die Namen,Ellipse',,Parabel'
und ,Hyperbel', sondern nannte diese Kurven
Schnitte des spitzwinkligen Kegels (Ellipse), des

rechtwinkligen Kegels (Parabel) und des stumpfwinkligen
Kegels (Hyperbel). Bis zu Apollonios (2. Hälfte des 3.Jh.
v.Chr.) verwendete man nämlich zur Herstellung
der Kegelschnitte eine Ebene, die senkrecht aufeiner

Erzeugenden einer Kreiskegelfläche gelegt wurde.
Je nachdem der öffnungswinkel des Kegels kleiner,
gleich oder großer als 90 Grad war, ergaben sich so

drei verschiedene Kurven, welche nach der Art ihrer
Hervorbringung die eben erwähnten Namen erhielten.

Um 300 v. Chr. war die Theorie der
Kegelschnitte schon so weit entwickelt, daß Euklid ein
Lehrbuch darüber schreiben konnte. Diese
,Elemente der Kegelschnitte' sind verlorengegangen,
aber man kann sich trotzdem eine gute Vorstellung
von ihnen machen, da Archimedes oft Sätze daraus
zitiert. Archimedes hat übrigens den Beweis geleistet,
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daß die Ellipse auf dem Mantel eines jeden Kegels

erzeugt werden kann.
Menaickmos und Archimedes geben die Kegelschnitte
bereits systematisch durch ,Symptome', d.h. durch

Gleichungen in rechtwinkligen Koordinaten. Bei
Menaichmos findet man schon die Gleichung der
Parabel, y2 bx, und der gleichseitigen Hyperbel,

xy ab. Bei Archimedes haben die Gleichungen der
Ellipse und der Hyperbel die, Zwei-Abszissen-Form',
die wie folgt aussieht:

In Fig. 4 und Fig. 5 sei AB 2a die große Achse des

Kegelschnitts. Das Lot PQ_ y, von einem Punkt P

P

des Kegelschnitts aufAB gefallt, heißt die,Ordinate',
und die Abstände AQ x und BQ_ Xj heißen die
,Abszissen'. Im Falle der Ellipse ist also xt 2a—x,
im Falle der Hyperbel Xj 2a+x. Das Symptom

2a A\x0

Dg- 5

der Kurve, die Bedingung, welcher jeder Punkt P

der Kurve genügen muß, lautet nun in beiden Fällen

:

y2:xxj / oder y2 A.xxx,

worin X ein gegebenes Verhältnis bedeutet. (Im Falle
des Kreises ist X — 1.)

Sind x, Xj und y die Abszissen und die Ordinate eines

andern Punktes der Kurve, so kann man für die obige
Gleichung auch schreiben:

y2: xxj y2: xxx.

(Die analoge Form für die Parabel ist y2: y2 x:x.)
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Dies ist die Form, in der Archimedes das Symptom
stets benützt.
Es ist auffallend, daß hier bereits eine Darstellungsweise

auftritt, die sich nur wenig von der modernen
analytischen Geometrie unterscheidet.
In der zweiten Hälfte des 3. Jahrhunderts v. Chr.
lehrte zunächst in Alexandrien und später in Perga-
mon (Kleinasien) der im Altertum mit dem
Beinamen ,der Große Geometer' geehrte Apollonios, geb.

um 262 v. Chr. zu Perge (in Pamphylien, Kleinasien).
Sein berühmtes Hauptwerk mit dem Titel ,Konika'
(d.h. Kegelschnitte) stellt den Höhepunkt und
zugleich den erfolgreichen Abschluß der Geschichte
der Kegelschnitte im Altertum dar. Dieses große
Werk enthält die Lehre von den Kegelschnitten in
einer solchen Vollständigkeit und streng systematischen

Anordnung, daß erst die Neuzeit darüber
hinausschreiten konnte. Von seinen acht ,Büchern'
sind die vier ersten in griechischer Sprache, drei weitere

in arabischer Übersetzung erhalten, während
das achte verlorengegangen ist.

Apollonios gibt genau an, was er seinen Vorgängern
verdankt. So enthalten die vier ersten Bücher die bis
dahin bekannten Sätze, allerdings in erweiterter und
verallgemeinerter Form. Im ersten Buch gibt
Apollonios die Erzeugung der drei Kegelschnitte, wobei
er sofort eine grundlegende Neuerung einfuhrt: Er
schneidet nicht wie Menaichmos jede Kegelschnittart

aus einem Kegel mit anderem Öffnungswinkel,
sondern ein einziger beliebig geöffneter Kreiskegel
gibt ihm alle drei Arten von Kegelschnitten, indem
er nur die Lage der schneidenden Ebene ändert. Dabei

wird als Symptom der Parabel wie schon bei
Menaichmos jeaies gegeben, die wir durch die
Scheitelgleichung y2 px ausdrücken. Die Gleichungen
von Ellipse und Hyperbel lauten bei Apollonios
zunächst genau so wie bei Archimedes, jedoch mit dem

Unterschied, daß in der Ebene des Kegelschnitts die
Ordinate PQ, y nicht mehr senkrecht auf dem
Durchmesser AB steht. Das entscheidend Neue
besteht aber darin, daß es dem Apollonios durch
Anwendung der geometrischen Algebra alsdann
gelingt, die bisherigen Kegelschnittgleichungen auf
eine zweckmäßigere Gestalt zu bringen. Die
Parabelgleichung y2 px bedeutet nun in Fig. 6 einfach,
daß y2 gleich dem Inhalt des Rechtecks mit der Basis

x und der konstanten Höhe p ist. Zur Umformung
der Gleichungen von Ellipse und Hyperbel verwendet

Apollonios die Figuren 7 und 8.

AB 2 a sei ein Durchmesser einer Ellipse oder Hy-
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perbel, PQdie Hälfte einer dazugehörenden Sehne.

Die Tatsache, daß das Quadrat y2 in einem konstanten

Verhältnis A — zu dem Produkt x.x, stehen
2a

soll, findet seinen Ausdruck dadurch, daß man in A
und QaufAB die Senkrechten errichtet und aufder
ersten AC p abträgt. Ist dann D der Schnittpunkt

zwischen QD und BC, so muß das Quadrat über PQ
dem Rechteck AD gleich sein. Denn es verhält sich

DQ:BQwie p:2a oder DQ 2~"BQ,. Setzt man

PQ= y und AQ= x, so erkennt man, daß die Hilfsfigur

den geometrisch-algebraischen Apparat
ausmacht, durch den man dasselbe darstellt, was wir
durch die Gleichung

y2
w x(2at x) oder y2 pxt £ -x'2

ausdrucken wurden.

Bei der Ellipse (Fig. 7) ist also das Rechteck ,angelegt'

an eine konstante Strecke p 2 a, und zwar so,
daß daran ein rechteckiges Stück mit der Basis x und
der Höhe A - x ,fehlt', wobei Basis und Hohe in einem

konstanten Verhältnis A < — stehen.
2a

Bei der Hyperbel (Fig. 8) ist das Rechteck dagegen so

an die Strecke p 2 a angelegt, daß davon noch ein
Rechteck mit derselben Basis x und der Höhe A-x

,übrigbleibt'.
An diese Grundeigenschaft knüpft nun Apollonios
die neuen Namen ,Parabel' einfache Flächenanlegung,

Ellipse', d.h. Flächenanlegung mit einem,Defekt'

oder ,Mangel' (y2<px) und ,.Hyperbel', also

Flächenanlegung mit,Überschuß' (y2>px). DieseTer-
minologie der Flächenanlegung hat er somit aus der

geometrischen Algebra der Pythagoreer übernommen.

Damit sind die Namen Ellipse, Hyperbel und Parabel

genügend erklärt; zugleich haben wir einen
Überblick über die Entstehungsgeschichte der
Kegelschnitte im Altertum gewonnen.

Neuer
entscheidender Schritt zur Rechtschreibregelung

In diesen Tagen wurden vom Arbeitskreisfür
Rechtschreibregelung (Deutschland, Österreich und
Schweiz) die im Oktober beschlossenen Empfehlungen

an die deutsche Bundesregierung bekanntgegeben:

Einführung der gemäßigten Kleinschreibung,
Vereinfachung der Kommaregeln,
Angleichung gebräuchlicher Fremdwörter an die

deutschsprachliche Schreibweise. (Näheres spater.)
Dr. A. M.
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