Zeitschrift: Schweizer Schule

Herausgeber: Christlicher Lehrer- und Erzieherverein der Schweiz

Band: 43 (1956)

Heft: 6

Artikel: Einige ältere und neuere Verfahren bei der Konstruktion regelmässiger

Vielecke

Autor: Schwegler, Theodor

DOI: https://doi.org/10.5169/seals-529418

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Einige ältere und neuere Verfahren bei der Konstruktion regelmäßiger Vielecke

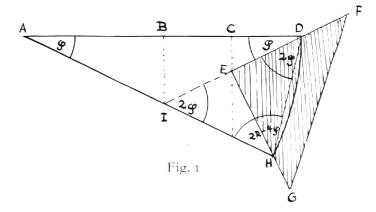
P. Dr. Theodor Schwegler OSB., Einsiedeln

Beim Geometrieunterricht in den Primar-, Sekundar-, Gewerbe- und Mittelschulen stellt sich für die Lehrer und die Schüler immer wieder die Aufgabe, irgendein regelmäßiges Vieleck, d.h. ein Vieleck mit lauter gleichen Seiten und Winkeln, zu konstruieren. Konstruieren aber besagt mehr als ein bloßes Abzirkeln; es besagt ein Vorgehen nach Sätzen und Grundsätzen der Geometrie. Dabei wird gewöhnlich vorausgesetzt, daß als Hilfsmittel nur Zirkel und Lineal gebraucht werden, nicht aber höhere Kurven bzw. deren Lineale.

Unter diesen Konstruktionen gibt es solche, die durch die innere Logik der angewandten Sätze theoretisch zu absolut genauen Ergebnissen führen, und solche, die nur einen sogenannten Näherungswert ergeben. Dieser Näherungswert kann in vielen Fällen dem Techniker und Graphiker, der mit seinen Instrumenten nur einen gewissen Grad von Genauigkeit erreichen kann, vollauf genügen, der Mathematiker dagegen wird diese Konstruktionsverfahren unbeirrbar als bloße Annäherung bezeichnen.

Die Zahl der regelmäßigen Vielecke, die nach der ersten Art genau konstruierbar sind, ist verhältnismäßig klein. Es sind dies vor allem das Dreieck, das Viereck und das Fünfeck und ihre Folgen, d.h. jene Vielecke, die durch fortschreitendes Halbieren der entsprechenden Zentriwinkel bzw. der Bogen des umschriebenen Kreises entstehen. Das Fünfeck erhält man aus dem Zehneck, dessen Zentriwinkelbzw. Bogen verdoppelt werden; im Zehneck selber ist die Seite der größere Abschnitt des stetig, d. h. im goldenen Schnitt geteilten Halbmessers. - Auch das Fünfzehneck ist konstruierbar, denn sein Zentriwinkel, der 24° beträgt, ist die Differenz der Zentriwinkel des Sechsecks und des Zehnecks. - Vom Siebzehneck hat der große Mathematiker Karl Friedrich Gauß (1777-1855) in seinen 1801 erschienenen Disquisitiones arithmeticae bewiesen, daß es ebenfalls mit Zirkel und Lineal allein genau konstruierbar sei; aber das Verfahren setzt soviel Kenntnis der höhern Mathematik voraus, daß hier von einer Skizzierung des Verfahrens abgesehen werden muß*. Interessenten seien indes auf das Buch »Triumph der Mathematik« von Heinrich Dörrie (Breslau 1940), Abhandlung 37, verwiesen.

Den Übergang zu den nicht mehr mit Zirkel und Lineal allein nach strengen geometrischen Sätzen konstruierbaren Vielecken bildet etwa der Fall, daß durch *Drehung* einer einfachen Figur innerhalb der Schenkel eines bestimmten Winkels ein regelmäßiges Vieleck entsteht. In der » Zeitschrift für mathematischen und naturwissenschaftlichen Unterricht aller Schulgattungen « Bd. 47 (1916) findet sich S. 179 solch » Eine einfache Konstruktion des regulären *Siebenecks* « (siehe Fig. 1). B sei die Mitte



der beliebigen Strecke AD, C die Mitte von BD. In B und D werden Lote auf AD errichtet. Ein rechter Winkel EFG wird nun so bewegt, daß der Schenkel EF immer durch D geht, während die Spitze E auf dem Mittellote von BD wandert. Um A wird der Kreis mit dem Halbmesser AD beschrieben. Der Schenkel EF treffe das Mittellot von AD in I, während der andere Schenkel, EG, den Kreis in H schneidet. Wird der rechte Winkel nun so gedreht, daß A, I und H in einer Geraden liegen, so ist der Winkel DAH = ½ · 2R.

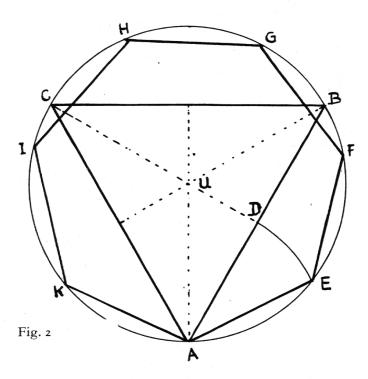
Beweis: Das Dreieck IAD ist gleichschenklig lt. Konstruktion. Ebenso ist das Dreieck HDI gleichschenklig, da ebenfalls lt. Konstruktion IE = ED und HE _ ID.

* Siehe auch » Schweizer Schule « 1955, S. 302 (Anmerkung der Redaktion).

Sei nun φ der Winkel bei A, so sind die Winkel DIH = IDH = 2φ , also Winkel DHI = $2R-4\varphi$. In dem gleichschenkligen Dreieck ADH ist dann Winkel ADH = Winkel AHD oder $3\varphi = 2R-4\varphi$ oder $7\varphi = 2R$.

Von diesem singulären Falle abgesehen, gibt es für die Konstruktion weiterer regelmäßiger Vielecke *Annäherungsverfahren*. Von diesen seien im folgenden einige genannt und ausgeführt.

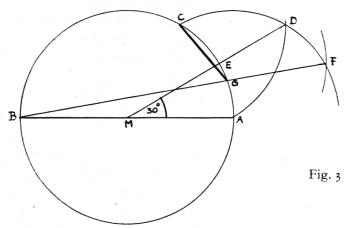
Für die Konstruktion des Siebenecks pflegen Praktiker, auf dem Kreisumfange die halbe Seite des einbeschriebenen gleichseitigen Dreiecks abzutragen (siehe Fig. 2). Diese Siebenecksseite hat den Wert



 $\frac{1}{2} \cdot \sqrt{3} = 0,8660254$ im Kreise mit dem Radius 1, und ihr entspricht der Zentriwinkel 51° 19'4,12", während der Zentriwinkel des regelmäßigen Siebenecks 51° 25' 42,86" und demgemäß die Seite 0,8677676.. mißt. Der Unterschied der beiden Werte macht 2 Promille aus: eine Genauigkeit, die in der Regel dem Techniker genügt.

Um das Neuneck zu konstruieren, wird in der vorhin genannten Zeitschrift, Bd. 68 (1937), S. 226/227 ein sehr einfaches Verfahren gezeigt, das ebenfalls einen recht guten Wert liefert (siehe Fig. 3). Von dem einen Ende des Kreisdurchmessers A (der Kreisradius sei wieder 1) wird ein Kreisbogen mit demselben Halbmesser geschlagen, ebenso vom Kreispunkte C aus. Der Schnittpunkt der beiden Hilfskreise sei D. Von Punkt E aus, der den Kreisbogen AC halbiert, wird abermals mit demselben Halbmesser ein Kreis geschlagen, der den

ersten Hilfskreis in F schneidet; F wird mit dem Gegenpunkte von A, mit B, verbunden, und die



Gerade BF schneide den ersten Kreis in G. Die Sehne CG ist die angenäherte Neunecksseite. Für den, der sich in der analytischen Geometrie auskennt, hat C die Koordinaten $(\frac{1}{2}, \frac{1}{2} \cdot \sqrt{3})$, und für den Punkt G errechnet man unschwer die Koordinaten $(\frac{21+2\sqrt{3}}{26}, \frac{14-3\sqrt{3}}{26})$. Der Horizontalabstand der beiden Punkte ist demnach $\frac{4+3\sqrt{3}}{13}$, und der Vertikalabstand $\frac{8\sqrt{3}-7}{13}$. Nach dem Lehrsatz des Pythagoras ist dann der Abstand $CG = \frac{1}{13} \cdot \sqrt{260-104\sqrt{3}}$ $= \frac{1}{13} \sqrt{79,86672...} = \frac{8,93682...}{13} = 0,687447$. Dieser Kreissehne entspricht der Zentriwinkel 40° ter gelmäßigen Neunecks die Sehne bzw. die Seite 0,6840403 entspricht. Der Fehler beträgt rund 5 Promille.

Ein neues, ebenfalls einfaches und sehr gutes Näherungsverfahren für die Konstruktion von Vielecken, deren nächstvorangehendes und nächstfolgendes genau konstruierbar sind, fand vor drei Jahren Bildhauer Gottl. Kreiliger, Willisau, bei der Ausführung des Auftrages, den untersten, ein reguläres Siebeneck bildenden Brunnen in der Hauptgasse seines Heimatstädtchens neu zu erstellen. Kreiliger ging von dem Gedanken aus, das Siebeneck liege mit seinen Maßen irgendwie zwischen dem regelmäßigen Sechseck und dem Achteck. Das Verfahren, das er anwandte und das auch auf das Neun- und Elfeck anwendbar ist, nannte er nicht unpassend » Diagonalisieren « (siehe Fig. 4), und es lieferte ihm einen so guten Wert, daß es ihm schwerfiel, es als bloße Annäherung zu betrachten.

Aus den trigonometrischen Koordinaten der Punkte B und C auf dem Einheitskreise findet man

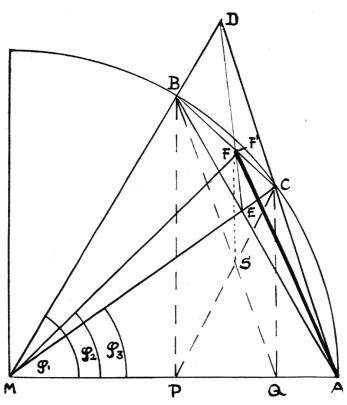


Fig. 4

leicht die Koordinaten der Punkte D und E und des Diagonalpunktes S:

$$\mathbf{D}\left(\frac{\cos\frac{\varphi_3}{2}\cdot\cos\varphi_1}{\cos\frac{2\varphi_1-\varphi_3}{2}},\frac{\cos\frac{\varphi_3}{2}\cdot\sin\varphi_1}{\cos\frac{2\varphi_1-\varphi_3}{2}}\right);$$

$$E\left(\frac{\cos\frac{\varphi_1}{2}\cdot\cos\varphi_3}{\cos\frac{2\varphi_3-\varphi_1}{2}},\frac{\cos\frac{\varphi_1}{2}\cdot\sin\varphi_3}{\cos\frac{2\varphi_1-\varphi_3}{2}}\right);X_s=\frac{\cos\frac{\varphi_1+\varphi_3}{2}}{\cos\frac{\varphi_1-\varphi_3}{2}}$$

Wendet man auf die Dreiecke BDE und CDE die Flächenformeln der analytischen Geometrie an, so findet man unschwer:

BF: CF =
$$\triangle$$
BDE: \triangle CDE $\sin \varphi_1$: $\sin \varphi_3$.

Daraus ergibt sich für den Schnittpunkt der Diagonalen BC und DE:

$$F\left(\frac{\cos\frac{\varphi_1+\varphi_3}{2}}{\frac{\cos\varphi_1-\varphi_3}{2}},\frac{\sin\varphi_1\cdot\sin\varphi_3}{\sin\frac{\varphi_1+\varphi_3}{2}\cdot\cos\frac{\varphi_1-\varphi_3}{2}}\right)$$

Daraus folgt, daß F und S auf derselben Vertikalen liegen und es auf dasselbe hinauskommt, ob das Viereck BDCE oder das Trapez BPQC » diagonalisiert « wird. – Für den Graphiker und Techniker ist nun die Strecke AF = Sehne AF'

$$= \frac{2 \sin \frac{\varphi_1}{2} \cdot \sin \frac{\varphi_3}{2}}{\sin \frac{\varphi_1 + \varphi_3}{2} \cdot \cos \frac{\varphi_1 - \varphi_3}{2}} + \sqrt{2 \sin^2 \frac{\varphi_1 + \varphi_3}{2} + 4 \cos^2 \frac{\varphi_1}{2} \cdot \cos^2 \frac{\varphi_3}{2}}$$

die gesuchte, dem » mittlern « Zentriwinkel φ_2 entsprechende Vieleckseite s_n ; für den Mathematiker aber ist diese $s_n' = 2 \sin \frac{180^{\circ}}{2}$.

Wie nahe aber einander die nach diesen Formeln errechneten Werte kommen, zeigt die folgende kleine Tabelle:

7-Eck: 60°, 45°:
$$s_{7}^{2} = 0.8689594$$

 $\varphi_{7}^{2} = 0.8677676 s_{7}^{2}$: $s_{7}^{2} = 1.001387$; $\varphi_{7}^{2} = 51°30'18''$
 $\varphi_{7}^{2} = 51°25'42''.86$
9-Eck: 45°, 36°: $s_{9}^{2} = 0.6843843$
 $\varphi_{9}^{2} = 40°1'16''$
 $\varphi_{9}^{2} = 40°$
11-Eck: 36°, 30°: $s_{11}^{2} = 0.5635921$
 $s_{11}^{2} = 0.5634643$
 $s_{11}^{2} = 32°44'5''.4$
 $\varphi_{11}^{2} = 32°44'5''.4$

Die Überschüsse von s_n über s'_n sind also '/₇₂₁ bzw. '/₁₉₈₀ bzw. '/₄₄₁₀; somit liegen die Fehler unterhalb der mit Zirkel und Lineal, bzw. Maßstab, noch feststellbaren Grenzen.

Unsere heutige Weltschau, das ist jener Teil der nætürlichen Schöpfung, in die wir Einblick gewannen, ist gegen die frühere Zeit nach Tiefe und Weite mehr als vertausendfacht. Zugleich ist uns Gewißheit geworden, daß einer im eigentlichen Sinne hingebenden selbstlosdemütigen Geisteshaltung die Gedanken des Schöpfers sich offenbaren. Wir nennen diese Offenbarung Naturgesetze, und finden sie in selbstverzichtender Frage. Sie sind, einmal erkannt und soweit sie erkannt sind, als untrüglich befunden worden. Newton sagte: »Der Schöpfer achtet seine Gesetze.«

FRIEDRICH DESSAUER, Seele im Bannkreis der Technik