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SCHWEIZER SCHULE
HALBMONATSSCHRIFT FÜR ERZIEHUNG UND UNTERRICHT

ÖLTEN 1. APRIL 1948 34. JAHRGANG Nr. 23

Ueber die Entstehung der Geometrie
Wir freuen uns, diese wertvolle Arbeit veröffentlichen

zu dürfen. Sie weist nicht bloss den Ursprung

der Geometrie aus alltäglicher Praxis auf, sondern bietet

uns auch einen aufschlussreichen Einblick in die

Entwicklung der praktisch gewonnenen Erkenntnisse und damit

in den Wert von sich entfaltender Kulturtradition.

Heute sind wir dafür besonders dankbar. Der Artikel
dient jedoch nicht bloss der Selbstweiterbildung des

Lehrers, sondern kann auch in der Schule theoretisch

wie praktisch ausgewertet werden. Nn

I. Ueber die Entstehung der Geometrie bei
primitiven Völkern

Wer nach den Anfängen der Geometrie

forscht, erkennt, dass in erster Linie die
Forderungen des praktischen Lebens, wie die

Herstellung von Gegenständen, der Bau von
Wohnstätten, das Abstecken von Feldern usw.,
den Anlass zu geometrischer Messung und

Konstruktion, zur Schaffung der einfachsten

geometrischen Formen, zur Entstehung der
ersten geometrischen Begriffe und Erkenntnisse

gegeben haben. (Es gilt dies übrigens auch für

den frühen Gebrauch der Zahl und des

Rechnens.)

Selbst die ältesten Ueberreste von Gebäuden

bekunden wenigstens ein Streben nach der

Verwendung von Geraden in ihren Grundrissen

und von senkrechten Ebenen als Wänden.

Gewöhnlich sind die Grundrisse rechteckig,

was eine praktische Vorstellung von einem

rechten Winkel und von parallelen Geraden an¬

zeigt. Der rechte Winkel ist schon deswegen
einer der ältesten geometrischen Begriffe, weil

er sich aus der senkrechten Stellung zum
Erdboden und aus der aufrechten Haltung des auf

dem Boden stehenden Menschen ergibt.

Besonders zuverlässige und sprechende

Zeugnisse für die ersten Regungen des Sinnes

für die geometrische Gesetzmässigkeit liefert

die Ornamentik (Verzierungskunst) der
prähistorischen Urmenschen. Schon in der jüngeren
Steinzeit (Neolithikum, etwa 5000—1800 vor
Christus) lässt sich das geometrische Ornament

feststellen. Auf Topfscherben, die bei der

Ausgrabung des Pfahlbaudorfes »Egolzwil II« (bei
Sursee, Kt. Luzern) zum Vorschein kamen, sieht

man z. B. einfache Punkt- und Strichmuster in

paralleler Anordnung. Andere Bruchstücke von
Tongefässen sind mit einzelnen Reihen von
Dreiecken oder Rechtecken verziert, welche

durch Aufkleben von weisser Birkenrinde auf

den schwarzen Ton entstanden waren.

In der auf die Steinzeit folgenden Bronzezeil

(etwa 1800—800 v. Chr.) wurde der geometrische

Charakter der Ornamentik bei den
Pfahlbauern immer ausgesprochener und der Reichtum

an Schmuckmotiven stets grösser. In den

schweizerischen Pfahlbauten der späteren
Bronzezeit erreichte dieser geometrische Stil seinen

glanzvollen Höhepunkt. Diese für uns Schwei-

Vergessen Sie nicht, für die »Schweiber Schule« t(u werben!

Es geht auch hier um unsere Sache!

641



zer besonders interessante Tatsache ergibt sich

mit überzeugender Beweiskraft aus einer neuen
wissenschaftlichen Arbeit einer jungen
Urgeschichtsforscherin aus der Schule von Professor

Vogt in Zürich. Es handelt sich um die noch

ungedruckte Dissertation von Fräulein Dr.

Verena Gessner: »Die geometrische Ornamentik
des spätbronzezeitlichen Pfahlbaukreises der

Schweiz.« In liebenswürdiger Weise hat uns die
Verfasserin das umfangreiche Manuskript (186

Seiten) zur gründlichen Einsichtnahme zur
Verfügung gestellt. Deswegen sind wir in der

angenehmen Lage, an dieser Stelle über einige
wesentliche Ergebnisse ihrer sehr verdienstvollen

Untersuchung, welche das Thema unseres

Aufsatzes betreffen, berichten zu können:

»Diese Arbeit enthält die erste zusammenfassende

Betrachtung der spätbronzezeitlichen

Ornamentik, wie sie von der Pfahlbaukultur
zwischen 1200 und 800 v.' Chr. im schweizerischen

Mittelland ausgeprägt wurde. Anhand der in

grosser Zahl überlieferten, verzierten Geräte

gelang es, die Hauptmotive (rund 60), deren

wichtigste Verwendungsarten und die Grundregeln

der Musterkombinationen festzuhalten.

Die daraus entstehende Ornamentik verkörpert
einen geometrischen, abstrakten, linearen und

flächigen Stil, der sich durch grosse Variationsbreite

der Verzierungskombination auszeichnet.«

(Aus dem Schlusswort, S. 186.)

Die eben erwähnten ca. 60 Hauptmotive
lassen sich in folgenden sechs Gruppen
zusammenfassen:

1. Muster Nr. 1—12:

Motive aus Geraden bestehend.

2. Muster Nr. 13—26:

Motive mit Zickzackbewegung.

3. Muster Nr. 27—39:
Motive mit Dreieckelementen.

4. Muster Nr. 40—50:
Motive mit Bogenelementen.

5. Muster Nr. 51:
Fremde Ornamente (Voluten, Spiralen).

6. Muster Nr. 52—57: Mäander-Motive.

Wir beschränken uns darauf, einige wenige
charakteristische Züge hervorzuheben, die vom
Standpunkt der Geometrie von Interesse sind.

1. Vollständiges Fehlen von naturalistischen

und symbolischen Mustern.—Schon die Grundmotive

lassen erkennen, dass der spätbronze-
zeitliche Stil des Pfahlbaukreises aus lauter

abstrakten, geometrischen Elementen besteht.

Man findet kein einziges naturalistisches Motiv,
keine Sonne, keine Bäume oder sonstige Pflanzen,

keine Tiere oder Menschen. Ferner ist kein

einziges Pfahlbaumuster derart beschaffen, dass

man aus ihm einen Symbolcharakter herauslesen

könnte. Diese Einseitigkeit verleiht dem
Pfahlbaustil eine ausgesprochene Geschlossenheit.

2. Bevorzugung der geradlinigen Motive. —
Beim Betrachten des Motivschatzes fällt auf,

dass er fast keine krummlinigen Muster enthält.
Der Kreis, der Halbkreis, die Bogenreihen und
Wellenlinien, auch «flaue« Zickzackmuster und

der kursiv gezeichnete Mäander sind die einzigen

Motive, die nicht nur aus geraden Linien
bestehen. (In der Pfahlbau-Ornamentik der frühen

Bronzezeit fehlen solche kurvolineare

Verzierungselemente noch ganz.) Das aus Spiralen
oder Voluten bestehende Muster Nr. 51, welches

auf dem Boden eines bronzenen
Hängebeckens aus dem Pfahlbau Corcellettes (bei

Grandson) festgestellt wurde, ist eine einmalige
Erscheinung und muss als völlig fremdes Motiv
erklärt werden 1.

3. Die Symmetrie — ein Haupfgesefz. — Im

spätbronzezeitlichen Pfahlbaukreis ist die
Vorliebe für symmetrische Motive ausserordentlich

5ZSZ5ZSZ
Fig. 1

Schweizerischer Mäander der späten Bronzezeit

1 In bezug auf das Motiv der Spirale stellt der
schweizerische Pfahlbaukreis sozusagen eine Insel dar, die
fast auf allen Seiten — besonders aber im Osten —
von Spiralen führenden Kulturen umgeben ist.
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gross. Ausgesprochen asymmetrische Muster

gibt es hier überhaupt nicht. Selbst der typische
schweizerische Mäander (Fig. 1) besitzt einen

symmetrischen Aufbau, was ihn prinzipiell vom
unsymmetrischen griechischen Mäander (Fig 2)

~P rp rp rp
Fig. 2

Griechischer Mäander

unterscheidet2. Schon die primitiven Menschen

der prähistorischen Zeiten haben also erkannt,

dass eine systematische Anwendung der Längsund

Vertikalsymmetrie einen einfachen Rhythmus

erzeugt, der das schönheitsdurstige Auge

befriedigt.
Wir dürfen die mannigfaltige Verwendung

und schöpferische Kombination von geometrischen

Motiven zur Verzierung von Tongefässen
und bronzenen Geräten noch nicht als

Geometrie bezeichnen. Bevor der Mensch eigentliche

Geometrie treiben kann, muss jedoch ihr

Gegenstand, d. h. müssen wenigstens die
einfachsten geometr. Formen, in seiner

Vorstellungswelt vorhanden sein. Deswegen ist es
interessant zu erfahren, in welcher Weise diese

oder jene geometr. Grundfigur (und damit
allmählich auch ihr Begriff) wahrscheinlich ins

menschliche Bewusstsein eingetreten ist. Aus

der aufschlussreichen Arbeit von Frl. Dr. Gess-

ner lässt sich nun vor allem entnehmen, dass

im spätbronzezeitlichen Pfahlbaukreis das

Grundmotiv des Dreiecks wohl aus der
Zickzacklinie hervorgegangen ist. »Ohne die

Zickzackbewegung ist das Dreieck überhaupt nicht

2 Der Mäander wird im allgemeinen als ein typisches
Ornament der klassischen Antike betrachtet, und fast

überall stösst man auf die Vermutung, dass der
griechische Mäander der älteste sei und der italische,
schweizerische usw. von ihm abgeleitet werden müssen.

Diese Hierarchie lässt sich heute nicht mehr stützen.

Denn nach neueren Forschungsergebnissen tritt der

griechische Mäander erst in der zweiten Hälfte des 10.

Jahrhunderts v. Chr. auf, während er im Pfahlbaukreis

sicher schon lange vor 1000, im 12, oder 11. Jahrhundert

vorkommt.

zu verstehen, bestehen doch die Dreieckreihen

(in welcher Gruppierung das Dreieck am
häufigsten auftritt) aus einer Zickzacklinie mit
abschliessender Waagrechten und füllender Schraf-

fur (Fig. 3). Wie bestimmend die Zickzacklinie

Fig. 3

auch im einzelnen wird, geht daraus hervor,
dass die Schrägstriche immer parallel der einen

Richtung des Zickzacks verlaufen. Dreiecke

ohne Begrenzung durch eine Zickzacklinie sind

äusserst selten, was den starken Zusammenhang
zwischen Zickzacklinie und Dreieckmuster zeigt.
Was lag näher, als die einen Winkel des Zickzacks

auszufüllen, was in einigen Strichen

geschehen war.« (S. 76.)
Das Dreieck tritt aber gelegentlich auch als

selbständiges Stempelmuster auf. Daneben
haben die Pfahlbauer noch viereckige (quadratische

und rhombische) sowie runde Stempel
benützt. Die wichtigsten Vierecke (Quadrat,
Rechteck und Rhombus Raufe) kommen in
der späteren Bronzezeit vor, jedoch meistens
ebenfalls nicht als ursprüngliche Motive, sondern

wie das Dreieck als Ergebnis einer ganzen
Motiv-Entwicklungsreihe. So entstand z. B. aus
der Kombination von zwei Dreiecksreihen (mit
gegeneinander gestellten und sich berührenden

Spitzen) das berühmte Sanduhrmuster (Figur

4), und daraus ergab sich ein Bandmotiv

Fig. 4

Sanduhrmuster — Die schraffierten Flächen um¬
schließen leere Rhomben

von leeren Rauten, die oft fast quadratische
Form annahmen. Ferner erscheint das Rechteck

etwa als Hauptbestandteil von Musfern, die
eventuell als Abart des symmetrischen Mäanders

aufgefasst werden können (Fig. 5).
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Diese wenigen Hinweise, welche auf einwandfreien

und naheliegenden Dokumenten aus

prähistorischen Zeiten beruhen, genügen, um sich

Fig. 5

ein ungefähres Bild von der Entstehung der
ersten geometrischen Vorstellungen im Bewusst-

sein der primitiven Menschen machen zu können.

Es ist gewiss richtig, wenn gelegentlich
bemerkt wird, dass gerade diese Züge des

naivsten geometrischen Schaffens für die

Beurteilung der ursprünglichen Veranlagung des

Menschen von besonderer Bedeutung sind.

Von einer eigentlichen Pflege oder systematischen

Entwicklung der mathematischen

Erkenntnisse kann aber bei jenen frühen

Naturmenschen noch keineswegs die Rede sein.

Dagegen tritt der Anfang einer solchen bei den

ersten Kulturvölkern am östlichen Mittelmeer,
bei den alten Aegyptern und Babyloniern, in

Erscheinung.

II. Altorientalische oder vorgriechische
Geometrie

Das Stromland des Nils und das Zweistromgebiet

zwischen Euphrat und Tigris sind die
Geburtsstätten der mathematischen Kultur, die
heute unsere ganze Zivilisation beherrscht. Diese

Tatsache ist vor allem dem Umstände

zuzuschreiben, dass die alten Aegypter und Baby-
lonier schon sehr früh über eine Schrift verfügten,

Denn die Anfänge mathematischen Denkens

hängen eng mit dem Vorhandensein einer

Schrift zusammen. Die Schriftzeichen — wie

übrigens auch die Sprache — sind ja

bedeutungsvolle Ausdrucksformen, Symbole unserer

Gedanken. Ihre Existenz setzt schon eine
erhebliche Absfraktionsfähigkeit voraus. Die

Entstehung und Entwicklung der Mathematik, die

mit gewisser Berechtigung etwa die »Wissen¬

schaft der Symbole« genannt wird, ist darum

weitgehend an das Aufkommen und Wachstum

einer Schrift gebunden. Dies wird auf eindrucksvolle

Weise durch die altorientalische Kultur

bewiesen, welche ungefähr vier Jahrtausende

vor Christi Geburt umspannt.
Für die ganze vorgriechische Mathematik ist

es eigentümlich, dass sie uns in allen ihren
vorhandenen Texten nicht in allgemeinen Formeln

oder in geometrischen Beweisen entgegentritt,
sondern nur durch zahlenmässig vorgerechnete
Einzelbeispiele. Zu einem tieferen Verständnis
und zu einer restlosen Erfassung der altorientalischen

Geometrie sollte man sich also zunächst

mit der ägyptischen und mit der babylonischen
Rechentechnik auseinandersetzen, was aber im

beschränkten Rahmen dieses Aufsatzes nicht

möglich ist. Wer sich darüber orientieren

möchte, den müssen wir auf die spezielle
Fachliteratur verweisen. Dabei machen wir vor allem

auf das ausgezeichnete, neuere Werk von O.

Neugebauer in Kopenhagen3 aufmerksam, in

welchem (in überaus zuverlässiger Weise) zum
ersten Male eine geschlossene Darstellung der

Geschichte der vorgriechischen Mathematik auf

Grund von sorgfältigen Quellenstudien zu
geben versucht wird.

Die Geometrie der Aegypter.

1. Die Quellen und ihre allgemeine
Charakterisierung.

Unsere Kenntnis der ägyptischen Mathematik
beruht hauptsächlich auf zwei grösseren Texten,

einem heute in Moskau liegenden Papyrus (M)
und einem Papyrus, der jetzt im britischen

Museum in London aufbewahrt und nach seinem

ursprünglichen Besitzer »Mathematischer Papyrus

Rhind« (R) genannt wird. Dazu kommen

noch einige kleine Textfragmente in Berlin,
London und Kairo.

3 O. Neugebauer: Vorlesungen über Geschichte der

antiken mathematischen Wissenschaften. Erster Band,

Vorgriechische Mathematik. Verlag Springer, Berlin

1934. — Dieses Werk wird fortan unter dem abkürzenden

Stichwort »Neugebauer« zitiert.
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Der weitaus grösste Text ist R. Er ist audi

unter dem Namen »Rechenbuch das Ahmes«

(sprich Adimes) bekannt und wurde von Aug.
E. Eisenlohr4 entziffert. Es enthält über 80

Beispiele, Es ist ein grosser Papyrus von 5% m

Länge und 32 cm Höhe. M ist zwar ungefähr

ebenso lang, aber nur 8 cm breit und enthält

etwas über 25 Beispiele. Beide Texte sind relativ

gut erhalten, von M fehlt nur der Anfang.

Es wird allgemein angenommen, dass all

diese in hieratischer Schrift5 geschriebenen Texte

im wesentlichen aus der Zeit des AUittleren

Reiches (2000—1700 v. Chr.) stammer. Doch ist

diese Datierung nicht unbedingt zuverlässig.
»Denn alle derartigen Texte sind immer wieder

abgeschrieben worden, ohne dass uns irgendwelche

Hilfsmittel zur Aufhellung ihrer
Vorgeschichte erhalten wären. Ueber das erste
Entstehen der mathematischen Texte ist demnach

aus dem gegenwärtigen Quellenmaterial nichts

Sicheres zu entnehmen.« (Neugebauer, S. 110.)

Nach den neuesten Ansichten sind diese

Texte von Verwaltungsbeamten, den sog.
Schreibern (wie z. B. Ahmes), für den

Rechnungsbedarf des Verwaltungsdienstes, Abteilung

Staatsbesitzungen und Tempel, niedergeschrieben

worden. Die Texte M und R werden

also nichts anderes gewesen sein als die

Zusammenstellung von Musterbeispielen für die

Durchführung derartiger Aufgaben, die der

Schreiber für sich durchzurechnen hatte, um in

der praktischen Wirklichkeit alsdann solche

Aufgaben lösen zu können. Das Wesentliche ist,

dass es sich dabei sicherlich nicht um spezifisch
mathematisch orientierte Texte handelt, sondern

um etwas, was jeder Schreiber des Verwaltungsdienstes

kennen musste. R beginnt mit den

Worten: »Vorschrift zu gelangen zur Kenntnis
aller dunklen Dinge, aller Geheimnisse, welche
sind in den Dingen.«

4 Ein mathematisches Handbuch der alten Aegypfer
(Papyrus Rhind des British Museum), übersetzt und

erklärt von Aug. Eisenlohr, Leipzig 1877.

5 Es handelt sich um eine kursive Handschrift mit
Bildcharakter (Hieroglyphen).

Wenn man ferner heutzutage zwischen
ägyptischer »Arithmetik« und »Geomefrie«
unterscheidet, so ist die Klassifizierung im Grunde

künstlich und nicht der alten Einstellung

entsprechend. Das zeigt z. B. die Anordnung der

Aufgaben in R. Wir pflegen Volumenberechnungen

zur »Geometrie« zu zählen. Dort sind

aber neben Aufgaben über die Inhaltberechnung

von Speichern unmittelbar Aufgaben
gestellt, welche die Umrechnung gewisser
Hohlmasse in andere verlangen, also Aufgaben, die

einen rein »ariihmetischen« Charakter haben.

Es geht daraus klar hervor, dass nach ägyptischer

Auffassung für die Zusammengehörigkeit
nicht der mathematische Gehalt massgebend

war, sondern nur der rein praktische. Bei der

ganzen angedeuteten Gruppe von Aufgaben
dreht es sich um Dinge, die man bei der

Aufbewahrung von Getreide zu kennen hat. Das

Hinzukommen von geometrischen Regeln ist

dabei eher eine nebensächliche Angelegenheit.

2. Ebene Probleme.

Wenn wir jezt von den einzelnen Problemen

der ägyptischen Geomefrie zu schreiben

beginnen und dabei die ebenen und räumlichen

Fragen deuflich auseinanderhalten, so ist dies

ebenfalls eine ganz unhistorische, moderne

Einteilung, die für uns nur den Zweck der grösseren

Uebersichtlichkeit hat.

»Aegypten sei ein Geschenk des Nils«, sagt
der griechische Geschichtsschreiber Herodot.

Und an einer andern Stelle leitet er die
wichtigste Veranlassung zur Beschäftigung der

Aegypter mit Geometrie aus der Notwendigkeit
her, die infolge der Nilüberschwemmungen
verlorengegangenen Begrenzungen wieder
herzustellen, um jedermann hinterher (zur Vermeidung

von Streitigkeiten) den ihm gehörenden
Grund und Boden möglichst genau wieder
zukommen zu lassen. Tatsächlich ist die Kulfur des

Landes, wie das Land selbst, nicht denkbar

ohne jenen Strom, der das Erdreich aus dem
Hochland im Innern Afrikas herabgeschwemmt
hat. Die alljährlich wiederkehrende Wasserfülle

bringt in gleicher Regelmässigkeit grosse
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Schlammassen mit sich, die sie dort, wo das

Gefälle des Stromes abnimmt und wo das

Flussbett der Ueberflutung offener ist, ablagert.
Auf alle Fälle ist es klar, dass der sehr hohe

Wert der schmalen, fruchtbaren Landstreifen

zwischen der Wüste und dem Flusse zu einer

genauen Feldmessung 6 auffordern musste.

Man wird sich demnach nicht verwundern,

wenn sich aus dem Studium der Texte R und M

die Erkenntnis ergibt, dass die alten Aegypter
den Flächeninhalt von gradlinig begrenzten
Feldstücken ziemlich genau zu berechnen

verstanden haben. Man kann sogar mit einiger
Sicherheit behaupten, dass die Vorschriften für

die Flächeninhalte von Quadrat, Rechteck,

gleichschenkligem Dreieck und gleichschenkligem

Trapez als korrekte Formeln interpretiert
werden dürfen s. Es sind dies die elementaren

Grundfiguren, auf deren Berechnung jede
beliebige Figur mit geraden Grenzen zurückgeführt

wurde.

Ohne Zweifel waren neben den genauen
Vorschriften auch reine Näherungsformeln in

Gebrauch. So gibt es umfangreiche Inschriften

auf einer Tempelwand in Edfu (am Nil, südlich

von Luksor), die Schenkungen von viereckigen
Feldern verzeichnen, deren Seitemlängen a, b,

c, d und deren Inhalt sie angeben. Die Grösse

6 Das griechische Wort »Geometrie« bedeutet

ursprünglich ja nichts anderes als Erdmessung, d. h.

Landmessung.

7 Auffallend ist, dass ein gleichschenkliges Dreieck

(z. B. in Nr. 51 des Texfes R) eigentümlicherweise
nicht auf der Basis stehend gezeichnet wurde, wie wir
es gewohnt sind, sondern liegend, mit der Spitze nach

rechts.

6 Was berechtigt zu dieser Annahme? Es ist in erster

Linie der Umstand, dass die Aegypter die Masszahlen

an die Seiten der aufgezeichneten Feldstücke und in

diese selbst die Grösse des Flächeninhaltes zuschreiben

pflegten. Die Genauigkeit der Inhaltswerte lässt somit

einen Schluss auf die Genauigkeit der angewendefen
Rechenmethode zu.

Wem femer in diesem Aufsatz von einer »Formel«

die Rede ist, so ist dies immer so zu verstehen, dass der

Text selbst in konkreten Zahlen rechnet, aber nach einer

Vorschrift, die man heute durch eine Formel ausdrücken

würde.

des Inhaltes ergibt sidh, wenn man aus den

Seifenlängen den Ausdruck bildet.

Eine Anzahl von Feldern dieser Liste sind
dreieckig. Die Angabe der Grösse erfolgt dann

etwa nach dem folgenden Schema: Die westliche

Seite ist a, die östliche c, die südliche b,
die nördliche »nichts«. Der Flächeninhalt wird

dann aus
3 ^ C

•

-y erhalten. Sind diese

Näherungsrechnungen im allgemeinen auch ungenau
oder gar falsch, so liefern sie doch gut brauchbare

Werfe bei vorsichtiger und geschickter
Auswahl der berechneten Figuren, d. h. wenn

man die erwähnten Näherungsformeln auf

unregelmässige Vierecke von nahezu rechteckiger
Form beschränkt.

Aus den Texten (M und R) folgt, dass auch

die Berechnung der Kreisfläche vorgenommen
wurde. Dazu gab z. B. die Bestimmung des

Querschnittes von zylinderförmigen Getreidespeichern

Anlass. Die dabei angewandte
Methode besteht darin, dass man vom Durchmesser

d seinen 9ten Teil subtrahiert und den
erhaltenen Ausdruck mit sich selbst multipliziert.
Das heisst also, dass man die Kreisfläche ge-

Q
mäss der Vorschrift F (-^-d)2 berechnete. Es

ist dies eine Näherungsformel von geradezu
überraschender Genauigkeit. Denn sie

entspricht einer Approximation von n^(^)2
3,1605...9

Leider lässt uns das erhaltene Textmaterial

vollständig im unklaren, wie man zu dieser Formel

für den Kreisinhalt gekommen ist. Auf
Grund einer Figur, die der Aufgabe Nr. 48 im

Text R beigegeben ist, wird die schwache

Vermutung geäussert10, dass sich dieses Rezept
vielleicht durch Vergleich der Kreisfläche mit
dem Inhalt des umschriebenen Quadrates

ergeben habe, wobei diesem Quadrat die Ecken

abgeschnitten worden wären. Man könnte auch

an eine experimentelle Herleitung denken,

9 Dieser gute Wert für.T ist auch zur Berechnung des

Kreisumfanges verwendet worden.

10 Vgl. Neugebauer, S. 124.
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nämlich durch Vergleich der Höhen, bis zu
welchen dieselbe Wassermenge in einem zylindrischen

und in einem quaderförmigen Behälter

steigt.
Neben der Feldmessung sind es vor allem

auch die grossen Sfe/nbaufen (Tempel, Pyramiden

usw.) der alten Aegypter gewesen, welche

die Erwerbung geometrischer Kenntnisse

bedingt haben. Schon sehr früh entwickelte sich

eine feste geometrische Praxis für den Bau, die

für heilig und unabänderlich galt. Noch heute

ist das Verfahren beim Anlegen von Gebäude-
Grundrissen nicht viel vom altägyptischen
verschieden. Besonders ausgebildete Leute, die

(von den Griechen) Harpedonapten

Seilspanner
11 genannt wurden, widmeten sich mit

der Messchnur dieser Aufgabe.
Zur Konstruktion des rechten Winkels sollen

die ägyptischen Seilspanner die folgenden
Methoden praktiziert haben:

Ein erstes elementares Verfahren für die

Errichtung einer Senkrechten in einem gegebenen
Punkte A einer Geraden besteht darin, dass man
auf der Geraden zwei Punkte B und C so

bestimmt, dass BA AC, und sodann einen

Punkt M der Senkrechten derart, dass BM

CM j>BA wird12. (Fig. 6.)

M

-et— —-o—

3 A

Fig. 6

Nach einer in der Literatur immer
wiederkehrenden Behauptung, für welche die sicheren

textlichen Unterlagen jedoch fehlen, war bei

den alten Aegyptern noch ein zweites Verfahren

in Gebrauch. Den Sei Isparmem soll es näm-

11 »D. h. Männer, die unter Beachtung feierlicher
Gebräuche dafür zu sorgen hatten, dass die Grundrisse

der Tempel richtig zur Sonne lagen.« (Zeuthen, S. 12.)

12 Vgl. J. Tropfke: Geschichte der Elemeniar-Ma-

thematik. Vierter Band (Ebene Geometrie), S. 79.

lieh bekannt gewesen sein, dass ein Dreieck

mit den Seitenlängen 3, 4, 5 rechtwinklig ist.

Sie werden diese Tatsachen wahrscheinlich

durch Versuche wahrgenommen haben. Und
sofern diese Annahme zutrifft, könnte man von
einem empirischen Ursprung des Satzes vor
Pythagoras sprechen. — Man legt also eine

Schnur, in die in gleichen Abständen Knoten

geknüpft sind, in passender Weise um drei
Pflöcke. (Fig. 7.) Die Festlegung des rechten

Winkels wird damit auf eine Längenmessung
zurückgeführt. Vielleicht davon ausgehend,
suchten die ägyptischen Feldmesser überhaupt
alle Messungen im Felde auf Längenmessung
zurückzuführen. Und darum auch der Name:

Seilspannerl

Die Genauigkeit der ägyptischen Messtechnik

ist erstaunlich. Ein Beispiel: Neuere

Forschungen bei der Cheopspyramide (ca. 2300

v. Chr.) haben gezeigt, dass auf einem Weg
von 900 m um die Pyramide herum der Fehler

des Nivellements nur 15 mm beträgt, und

dass sich die grösste Abweichnug vom rechten

Winkel im Grundriss auf 3,3", die kleinste auf

nur 2" beläuft. Wie weit sich diese handwerklichen

Künste auf tiefere mathematische Einsichten

gestützt haben, ist schwer zu beurteilen.

Wir möchten ferner die wichtige Fähigkeit
der ägyptischen Baumeister hervorheben, den

Seitenflächen von grossen Bauwerken (Pyramiden,

aber auch Tempeln und Königshäusern)
eine bestimmte Neigung zu geben. Eine ebene
Wandfläche mit primitiven Hilfsmitteln so her-
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zustellen, dass sie nicht vertikal, sondern in

bestimmter Weise geneigt ist, bedeutet technisch

eine hervorragende Leistung. Das zu diesem

Zweck verwendete Instrument bestand im
wesentlichen aus einem massiven rechten Winkel

13, von dem eine Seite vertikal, die andere

horizontal und senkrecht zum unteren Rand der

Mauer gestellt wird. (Fig. 8.) Diese horizontale

/
-A-'Q(\

A3^piremmixs

d£lle BC-uchatebet

ab
BC

A 3
Fig. B

Seite nannten die Aegypter pir-em-mus
»das Hinausgehen in die Breite«. — Von diesem

Ausdruck stammt sehr wahrscheinlich das

griechische pyramis, woraus dann das Fachwort

»Pyramide« entstand. — Die stehende Kathete

hiess uchatebet »das Suchen der Fussohle«.

Ferner hiess das Verhältnis der horizontalen zur
vertikalen Kathete seqf. Das seqt bestimmt also

die Böschung der Seitenfläche einer Pyramide

oder genauer: es gibt an, um wieviele
Handbreiten die Böschung zurückspringt bei einer

vertikalen Höhe von einer Elle ". Diese

Begriffsbildung wird heute durch die Kotangensfunktion

des Neigungswinkels et (Fig. 8)
ausgedrückt. Da eine altägyptische Elle 7 Handbreiten

fasst, entspricht nämlich das erwähnte Bö-

schungsmass dem Ausdruck k • cotg a, wobei

k 7. (Wir können hier also schon einen

gewissen Anfang von Trigonometrie feststellen.)

In diesem Zusammenhang ist auch die
Tatsache interessant, dass bei fast allen ägyptischen

Pyramiden der Winkel, den die Seitenwand

mit der Grundfläche bildet, wenig oder

13 Die entsprechende planimetrische Figur nannten

die Griechen gnomon.
14 Eine altägyptische Elle misst 52,3554 m.

gar nicht von 52° abweicht. Es wird sich wohl

kaum um einen grossen Zufall handeln.

Vielleicht steckt sogar ein religiöses Motiv dahinter.

Schliesslich ist noch die folgende von unserem

Gesichtspunkt aus ebenfalls zur ebenen

Geometrie gehörende Einzelheit erwähnenswert:

In einer unvollendet gebliebenen
Grabkammer des Vaters von Ramses II. (neunzehnte

Dynastie) ist ein Bild entdeckt worden, aus dem

hervorgeht, wie die alten Aegypter den

Reliefschmuck der Wände vorbereiteten. Sie

überzogen die zu bearbeitende Wand mit einem

regelmässigen Netze von waagrechten und

senkrechten, sich quadratisch schneidenden
Geraden und übertrugen die vorher entworfene

Skizze, die entsprechend enger kariert war, in

vergrössertem Masstab auf dieses Netz —
genau, wie man es heute noch zu tun pflegt.
»Dass in diesen ersten Abbildungen schon eine

allgemeine Vorstellung von der Ähnlichkeif und

eine erste Anlage einer geometrischen
Proportionslehre zu finden ist, liegt auf der Hand, aber
auch nur der erste Anfang. Denn von einer

genauen Einsicht in das Wesen der Vergrösse-
rungsmethode ist diese praktische Anwendung
noch sehr weit entfernt.« (Tropfke, S. 155.)

3. Räumliche Probleme.

Adhnlich wie für die ebene Geometrie
geben die Papyrustexfe mehrfach Beispiele für die

Erledigung der elementarsten Aufgaben, d. h.

für die Berechnung von Würfel-, Quader- und

Zylindervolumen. Dazu gab in erster Linie die

notwendige Bestimmung des Rauminhaltes von

Getreidespeichern Anlass. Man ist ferner

berechtigt anzunehmen, dass auch die richtige
Formel für das Pyramidenvolumen bekannt war.

Das Glanzstück der ägyptischen Mathematik

überhaupt ist aber die exakte Formel für das

Volumen eines Pyramidensfumpfes mit quadratischer

Grund- und Deckfläche. Man trifft sie

in Nr. 14 des Textes M an, und sie lautet:

V y • (a2 -f a • b + b2),

wobei a, b die Kantenlängen der Grund- bzw.

Deckfläche und h die Höhe bedeuten.
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An dieser Formel fällt zweierlei auf: die

symmetrische Gestalt und die mathematische

Korrektheit. Die zweite Eigenschaft ist besonders

überraschend. Wenn nämlich diese Formel

auch korrekt abgeleitet worden ist, hat sie

notwendigerweise Infinifesimalbetrachfungen

verlangt, was über den Rahmen der Elementargeometrie

hinausführen würde.

Es taucht allerdings die Frage auf, ob ein

gerader oder unsymmetrischer Pyramidenstumpf

gemeint ist. Die Figur des Textes spricht
für die zweite Interpretation, wenn auch zu
beachten ist, dass die meisten Figuren der
ägyptischen Texte sehr ungenau gezeichnet sind. Es

gibt aber auch sachliche Gründe für die

Auffassung als unsymmetrischen Körper. Denn es

scheint, »dass auch die Pyramidenstumpfbe-

rechnung nur bautechnischen Sinn haben kann

als Volum- oder besser Gewichtsberechnung
für den Eckblock zwischen zwei geböschten
Flächen«. (Neugebauer, S. 127.) Alsdam wird

man aber im Prinzip einen Körper annehmen

dürfen, wie er in Fig. 9 dargestellt ist, aus der

Fig. 9

sich die obige Inhaltsformel unmittelbar ableiten

lässt. Zu diesem Zwecke denke man sich

den Gesamtkörper aufgebaut aus einem Quader

mit dem Inhalt h. ab (gebildet aus dem

quaderförmigen Innenteil, vermehrt um die
beiden kongruenten seitlichen Prismen) und

einer Pyramide mit der Grundfläche (a — b)2

und der Höhe h. Durch diese Zerlegung ergibt
sich die folgende Rechnung:

V h • ab + y (a — b)2

h • ab + h (y y ab + ^-)

y (a2 + ab + b3).

Abgesehen von der Pyramidenformel, lässt

sich in bezug auf alle in dieser Rechnung
vorkommenden Operationen textlich belegen, dass

sie der ägyptischen Mathematik geläufig
gewesen sind. Wie schon bemerkt, darf man ihr

aber auch die Kenntnis der exakten Inhaltsformel

für die Pyramide zumuten.

Wie aus der Spezialliteratur hervorgeht, hat

in neuerer Zeit das Beispiel Nr. 10 des
Moskauer Papyrus besonderes Interesse geweckt. Es

war nämlich die Vermutung aufgekommen,
dass es sich um die Berechnung der Halbkugeloberfläche

handle. Dies würde den bisherigen
Ansichten über das ganze Niveau der ägyptischen

Mathematik sehr widersprechen. Deswegen

haben verschiedene Autoren (wie Stuve,

Peet und Neugebauer) den betreffenden Text

einer kritischen Analyse unterzogen. Die Ergebnisse

dieser sorgfältigen Untersuchungen lassen

erkennen, dass die erwähnte Vermutung
auf schwachen Füssen steht. Neugebauer neigt
eher zur Annahme, »dass es sich um die

Oberflächenberechnung (Materialverbrauch) — mit
Hilfe einer groben, aber auch konstruktiv
naheliegenden Näherungsformel — für einen jener
kuppeiförmigen Speicher handelt, wie sie uns

aus Aegypten in vielen Darstellungen bekannt
sind«.15

Am Schluss dieser kurzen Darstellung der
wesentlichen Züge der ägyptischen Geometrie
sei der relativen Vollständigkeit halber noch

erwähnt, dass sich in einem zwar aus Aegypten
stammenden, aber ganz späten (3. christlichen

Jahrhundert) griechisch geschriebenen Papyrus,
die — ebenfalls bloss angenäherte — Berech-

15 Neugebauer, S. 136 u. f.
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nung des Inhaltes einer kegelstumpfförmigen
Wasseruhr findet.

Die Geometrie der Babylonier.

1. Geschichtliche Einleitung und die Quellen.

In Mesopotamien, dem Zweistromland
zwischen Euphrat und Tigris, erlebte das babylonische

Urvolk der Sumerer um 3000 v. Chr. eine

Blüte der Kultur. Aus dieser Zeit datiert auch

die »Erfindung« der Keilschrift. Nach der Semi-

tisierung durch das Volk der Akkader von Norden

her, gab es um 2000 v. Chr. einen zweiten

Höhepunkt mit der hervorragenden
Herrschergestalt Hammurapi.

Anfangs dieses Jahrhunderts hat man in

Nippur18 die aus dem 3. Jahrhundert v. Chr.

stammende, sehr reichhaltige Bibliothek des

Baltempels ausgegraben und dort mehr als

25 000 Keilschrifttexte auf Tontafeln zu Tage

gefördert. Diese gewähren einen tiefen Einblick

in die alte babylonische Kultur. Aus den Jahren

2000—200 v. Chr. sind ferner bis jetzt 50
mathematische Texte entziffert worden, in denen

500 Beispiele ausgerechnet sind. Rein äusser-

lich zerfallen sie in zwei grosse Gruppen, die

»Tabellentexte« und die »eigentlich mathematischen

Texte«. Die erste Gruppe enthält Listen

gesetzmässig geordneter Zahlen (Reziproken-

tabellen, Multiplikationstabellen usw). Die

zweite Gruppe betrifft bestimmte mathematische

Aufgaben. Zu ihr gehören insbesondere die

sog. »Wirtschaftstexte«. Das sind meist Listen

von Zahlungen, Inventars und ähnliches.

2. Ebene Probleme.

Zu den Wirtschaftstexten gehört auch eine

Art von Aufzeichnungen, die man als die ältesten

geometrischen Texte bezeichnen kann,

nämlich die sog. »Felderpläne«. Sie haben den

gleicher Typus wie die oben erwähnte

Schenkungsurkunde von Edfu. Denn es sind meist

ziemlich roh gezeichnete Pläne von aneinander-

16 Heute Niffur, alte babylonische Stadt südöstlich

von Babylon (und Bagdad).

stossenden Feldern, auf denen angegeben ist,

wie gross die einzelnen Seiten und welches die
betreffenden Flächeninhalte sind. Die

Zeichnungen geben nur die allgemeinen Lage- und

Gestaltverhältnisse der Felder wieder. Wenn

man die angegebenen Flächeninhalte mit den
Masszahlen der Grenzstrecken vergleicht, so

ergibt sich, dass öfters nur Mittelwerte verwendet

worder sind. Dieses Abschätzen von Inhalten

ist uns auch schon aus den ägyptischen
Katastern bekannt und an sich etwas Naheliegendes.

Diese Näherungsmethode ist auch

noch in sehr viel späterer Zeit beliebt gewesen.

Die babylonischen mathematischen Texte

benützen auch eine Reihe von korrekten Sätzen

über elementare Flächeninhalte wie Quadrat,

Rechteck, Dreieck und Trapez. Man ist erstaunt,
hier sogar die einwandfreie Berechnung der
Höhe zur Basis des' gleichschenkeligen Dreiecks

anzutreffen — und zwar eine Berechnung mit
Hilfe des pythagoreischen Lehrsatzes. Die
Kenntnis dieser wichtigen Beziehung ist textlich

mit Sicherheit nachgewiesen. Darin

unterscheidet sich die babylonische Geometrie
möglicherweise wesentlich von der ägyptischen.

Die mathematischen Texte enthalten ferner

Aehnlichkeitsbetrachtungen, z. B. die Verwendung

einfacher Proportionalitäfen im Dreieck.

Analog wie in Aegypten kommt beim Messen

von Böschungen eine Verhältnisgrösse zur
Verwendung, die ebenfalls unserem Kotangens
des Neigungswinkels entspricht. Nur werden

hier die horizontalen Strecken in Gar, die
vertikalen in Ellen gemessen, wobei 1 Gar 12

Ellen fasst. Und das betreffende Böschungsmass

gibt das Verhältnis des in Gar gemessenen
Rücksprungs zu den in Ellen gemessenen Höhen

an.

Es ist merkwürdig, dass bei den alten Baby-
loniern für die Berechnung der Kreisfläche eine
bedeutend schlechtere Näherungsformel als die
ägyptische in Gebrauch war, nämlich

u2
F wobei u den Kreisumfang bedeutet.

Dies entspricht der Approximation Jt= 3, wie
man durch Einsetzen von u 6r (r Kreis-
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radius) leicht nachprüfen kann. Es ist kaum

begreiflich, dass die Babylonier, welche sonst das

Numerische in staunenswertem Masse

beherrschten, einen derart groben Näherungswert
für st verwendeten. Denn alsdann ist ja der Umfang

des regelmässigen Sechsecks von dem des

umschriebenen Kreises nicht zu unterscheiden,

was einer Verwechslung der Sehne

Sechseckseite) mit dem zugehörigen Kreisbogen

gleichkommt.
In diesem Zusammenhang ist ein Text von

Bedeutung, der sich mit der Flächenberechnung

von symmetrischen Figuren beschäftigt.
Leider werden die Ausrechnungen selbst nicht

gegeben, sondern nur die Aufgaben in kurzen

Worten formuliert, z. B. wie folgt:
»1 (ist) die Länge. Ein Quadrat.

12 Dreiecke (und) 4 Quadrate habe ich

gezeichnet.

Was sind ihre Flächen?«

Aus der zugehörigen Figur 10 (die man mit an¬

dern ähnlichen Figuren, wie z. B. die folgende
Fig. 11, ebenfalls im Text vorfindet) ist leicht

ersichtlich, dass die betreffenden
Flächenberechnungen ohne Schwierigkeiten durchführbar
sind und höchstens die Benützung des Satzes

von Pythagoras für die Quadratdiagonalen
erfordern.

Der wichtigste Teil dieses Textes ist die

Gruppe von Aufgaben, die sich mit Kreisflächen

beschäftigt, vor allem das Beispiel von Fig. 11.

Es wird hier wie in den übrigen Beispielen
verlangt, die Inhalte der einzelnen Teilgebiete, in

die das Quadrat zerlegt wird, zu berechnen.

Aus den vollständig durchgeführten Beispielen
vieler anderer Texte ergibt sich mit Sicherheit,
dass man bei den alten Babyloniern zur Lösung

derartiger Aufgaben durchaus imstande war. Inn

Falle von Fig. 11 verdient das Innengebiet, das

aus der Vereinigung dreier Kreisflächen
besteht, besondere Beachtung. Um seinen Inhalt

zu bestimmen, muss man nämlich vcn der
dreifachen Kreisfläche zwei Kreisbogenzweiecke
subtrahieren (vgl. Fig. 11), d. h. man ist

gezwungen, sich mit der Inhaltsberechnung
solcher Figuren zu beschäftigen.

Es ist nicht uninteressant zu sehen, dass

schon die babylonische Mathematik Aufgaben
gestellt hat, deren methodische Auswertung mit
Quadraturproblemen in Beziehung gesefzt werden

kann. Beispiele wie das eben erwähnte
scheinen ferner zu zeigen — und das ist der

springende Punkt, auf den wir besonders
aufmerksam machen wollten —, dass die rohe

Approximation von Jt durch 3 nicht die einzige
bekannte gewesen sein kann.

Durch einen mathematischen Text, der etwa
der Mitte des 2. Jahrtausends v. Chr. angehören
dürfte, ist schliesslich die Kenntnis einer sehr
bemerkenswerten Beziehung nachgewiesen. Es

handelt sich um eine genaue Vorschrift zur
Berechnung der Länge s einer Sehne in einem
Kreise mit dem Durchmesser d und ihrer
korrekten Umkehrung zur Bestimmung der Höhe
h des von der Sehne abgeschnittenen Segmentes.

Diese beiden Formeln lauten:

s Vd3-(d—2h)2,
h y (d— V d2 — s2).
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Die Richtigkeit der ersten Formel ergibt sich

aus der Figur 12, wenn man berücksichtigt, dass

der Peripheriewinkel im Halbkreis ein rechter

ist, und ausserdem den pythagoreischen Lehrsatz

benützt.

Diese Relation ist auch von geschichtlichem
Interesse. Die antike Trigonometrie operiert
nämlich nicht mit unseren trigonometrischen
Funktionen, sondern mit den Sehnen zum
doppelten Winkel. Der grosse griechische Astronom

Klaudius Ptolemäus (2. Jahrhundert n. Chr.

in Alexandria) z. B. beginnt sein berühmtes
Lehrbuch der Astronomie (»Almagest«) mit
einer sog. »Sehnentafel«, in der die Längen der
Sehnen als Funktion der Zentriwinkel gegeben
werden.

Wir verzichten darauf, hier noch auf einen

weiteren Text einzugehen, der leider einen

expliziten Rechenfehler enthält, sodass eine
sichere Interpretation nicht möglich ist. Es sei

bloss erwähnt, dass dieser Text sich mit der

schwierigen Berechnung der Fläche eines

Kreissegmentes befasst, wobei die Länge des

Kreisbogens und der zugehörigen Sehne als gegeben

vorausgesetzt werden.

3. Räumliche Probleme.

In bezug auf die Probleme des Raumes kann

man zwischen der babylonischen und der
ägyptischen Geometrie keine wesentlichen
Unterschiede feststellen. So trifft man bei den Baby-
loniern ebenfalls korrekte Vorschriften für die
einfachsten Volumenberechnungen (Würfel,
Quader) an.

Die mathematischen Texte enthalten ferner

Aufgaben, die sich mit der Berechnung der

Anzahl von Leuten befassen, die nötig sind,

um gewisse Erdarbeiten auszuführen, wie den

Aushub von Kanälen oder Bauwerksfundamen-

ten, das Errichten von Dämmen oder Wällen.
Im Zusammenhang mit solchen praktischen

Fragen findet man für den Rauminhalt eines

Belagerungswalls mit trapezförmigem Querschnitt
die folgende Formel:

\/ 1 /a ~h b
|

a' + b\ h + h' tT *(2 '
2 ' "

2
" 1

Die Grössen a 1 haben die in Fig. 13

angegebene Bedeutung.

b'

/A/1
z

Fig. 13

Neben exakten Volumenformeln waren auch

Näherungsformeln in Gebrauch, z. B. die
folgende für den Rauminhalt eines Kegelstumpfes:

2 2
1 U, Ug

V —•(— + —)• hv 2 M2 12' n-

Hier bedeutet u, den Umfang des einen
Randkreises mit der Fläche Ft, u2 den von
F2. Mit Rücksicht auf die Approximation von
durch 3 will diese besagen, dass

V=4-(F, + F2)-h
gesetzt ist. Eine entsprechende Näherungsformel

wurde auch für das Volumen des quadratischen

Pyramidenstumpfes verwendet.

Für den zuletzt erwähnten Körper findet man
ausserdem die genaue Volumenformel

v=h-[(^ + }(^y]r
wobei a und b die Kantenlängen der grossen
bzw. der kleinen quadratischen Deckfläche
bezeichnen.
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Zusammenfassend stellen wir fest, dass sich

die Aegypter und Babylonier während der
Jahrtausende vor dem Beginn der griechischen

Kulturperiode selbständig und ganz unabhängig
voneinander ein respektables geometrisches

Gedankengut erworben haben. Es geschah dies

fast ausnahmslos aus rein praktischen
Beweggründen und Bedürfnissen. Wenn es sich auch

nur um eine Sammlung von blossen Erfahrungs-

Die Rechtschreibereform

f. Die Meinung des «Bundes für vereinfachte

Rechtschreibung«,

Arthur Wieland hat in seinem Aufsatz »Die
Fehlerfrage« (»Schw. Sch.« S. 356 ff.) in vortrefflicher
Weise die Psychologie der Fehler umschrieben. In

ebenso vorzüglicher Weise spricht er dann über

die Fehlerbekämpfung. Er gibt Klarheit über die

vielen, vielen Mittel, die es erfordert zur
Fehlerbehandlung, Fehlerverhütung und Fehlervermeidung.

Zwei und eine halbe Druckseite benötigt er,

um alle diese Mittel uns bekannt zu geben, und

ganz ohne eigentlich zu wollen, hält er uns Stück

für Stück die vielen und grossen und beständigen
Mühen vor Augen, die uns Lehrpersonen unsere
Art Rechtschreibung aufbürdet.

Wollen wir da nicht Abhilfe schaffen? Wollen
wir nicht mit einem Schlage 40—50 % dieser
Mühen für so viele Lehrerinnen und Lehrer und für

Millionen geplagter Schulkinder für immer
ausschalten?

Um gleich mit der Türe ins Haus zu treten:
Einziges und sicherstes Mittel ist eine vernünftigere
Rechtschreibung.

Wozu haben wir Deutschsprechenden (mit den

Schweden und den Dänen) allein die Grossschreibung

der Dingwörter und der dingwörtlich
gebrauchten Wörter? Alle andern Sprachen kennen

diese Komplikation nicht. Zirka 20 % der Fehler

und damit auch der unseligen Mühen für Kinder

und Lehrer sind dieser, vielfach aus gelehrter
Wichtigtuerei entstandenen, Grossschreibung
zuzuschreiben. (Statistisch genau bewiesen.) Wenn die

meisten andern Sprachen die Grossschreibung aus

besten Gründen nicht verwenden, warum sollen

wir denn mit dummem Stolz uns damit brüsten?

Wozu haben wir eine Dehnung durch h und ie?

Sagt denn die Verdoppelung der Konsonanten

tatsachen handelt, so haben diese beiden ältesten

Kulturvölker am östlichen Mittelmeer damit

doch die wertvolle Grundlage geschaffen,

auf der später die mehr theoretisch eingestellten

und begabten Griechen eine imposante

geometrische Wissenschaft aufzubauen

vermochten.

Luzerri. Prof. Dr. G. Hauser.

nicht genug, wenn sie die Kürze der Vokale
ausdrückt als Gegenteil der langen Vokale!

Und was vermögen denn unsere tz und ck in

unserer Sprache mehr auszudrücken als ein
einfaches z oder k in den Fremdwörtern und

überhaupt in fremden Sprachen? Das gleiche würde

gelten für kk oder zz. K und z müssen einfach die
Kürze des vorausgehenden Vokals andeuten, denn

Ausnahmen mit langem Vokal sind äusserst selten.

Wer beweist mir das Gegenteil? Ich lasse mich

gerne belehren.
Wozu braucht es denn ein f und ein v und etwa

noch ein ph, wenn alle drei Zeichen für den
gleichen Laut dastehen!

Warum plagen wir die Kinder mit ei und ai

und eu und äu, die jeweils beide gleich gelesen
werden?

Könnte man die i und j nicht auch vereinheitlichen?

C würde vollständig genügen für den Laut ch.

Es gibt ja kein einziges deutsches Wort, welches

das c als eigentliches c in sich hat. Das c ist

immer da in Verbindung mit dem h, ein Doppelzeichen

für einen besonderen Laut. Wäre lacen,

macen, Sacen etwa weniger schön anzusehen als

machen, lachen, Sachen? Und zudem, ob schöner
oder weniger schön, das hat mit dieser Sache

bestimmt nichts zu tun. Wer fragt denn, ob die

heutigen modernen Wohnkasten noch etwas
Poetisches an sich haben? Manches Schöne musste
dem Angenehmen, dem Bequemen, den gesund-
heitfördemden und anderen Faktoren weichen,
obwohl doch gerade auf diesem Gebiete die
Erhaltung des Schönen viel, viel wichtiger wäre als

bei einer Zusammenstellung von Buchstaben zu
Wörtern, deren einziger Zweck sein sollte, die
Sprache so einfach als nur möglich darzustellen,
um nicht eine ganze deutsche Menschheit — weit
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