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Die physikalischen Grundgedanken und ihre Nutzung
im Unterricht*

v.
Der neue Mitspieler war das „Feld".

Zunächst war nicht enthüllt, was alles sich hinter

diesem Wort verbirgt. Faraday beobachtete,

dass die elektrischen Kräfte (und ebenso
die magnetischen), die an irgendwelchen
Körpern unter scheinbarer Fernwirkung
angreifen, nicht nur von dem Abstand abhängig
sind, wie bei Newton in der Massenanziehung

und bei Coulombs elektrischem und

magnetischem Gesetz — sondern dass auch

andere Faktoren der Umgebung von Einfluss

seien. Das sogenannte „Dielektrikum", das

etwa zwischen zwei entgegengesetzt geladene

Metallflächen gebracht wird, entschied

darüber, wie gross die Anziehungskräfte
zwischen den geladenen Flächen seien.
Demnach mussten sich diese Kräfte im

Raum zwischen den Wirkungskörpern
fortpflanzen, und zwar von Ort zu Ort, und durch
die Materie im Zwischenraum beeinflusst
werden — ganz im Gegensatz etwa zur
Kraft zwischen Sonne und Erde, die zeitlos
durch den Raum zu greifen schien und nur

von Massen und Abstand abhängt. Faraday
führte das Modell der Kraftlinien ein, die
den Wirkungsraum zwischen elektrischen und

magnetischen Ladungen erfüllen, und machte
dadurch den Begriff des Feldes förmlich
sichtbar. Wo Kraftlinien sind, ist das Feld,
also überall dort, wo sich Kräfte, die von
Ladungen ausgehen, irgendwie nachweisen
lassen. Das ist eigentlich immer die ganze
Welt, aber in einigen Abständen von den

Ladungen werden die Kräfte so klein, dass

man sie vernachlässigen kann. Und nun

zeigte er in zahlreichen Experimenten, dass

das Feld entscheidet, d. h. die Umgebung

1 Sietie Nr. 7.

einer Ladung und nicht die Ladung selbst in

erster Linie. Seine Gedanken führen bis zu
einer völligen Umkehr: Nicht die elektrische

Ladung erzeugt das Feld, d. h. den
Spannungszustand in der Umgebung, sondern
das Feld ist die Realität. Die Spannungen
darin, quantitativ ausdrückbar in Zahl und

Richtung der Kraftlinien, schaffen da, wo es

endet, jenes Phänomen, das man als
elektrische Ladung wahrzunehmen glaubt. Das

Feld besteht auch, wenn Gase den Raum

erfüllen, und es besteht weiter, wenn man
diese Gase entfernt. Es bleibt auch praktisch

unverändert, wenn man die Molekülenzahl

der Gase auf unter oooooo und, soweit

man kann, darunter verdünnt. Die
Dielektrizitätskonstante wird nicht Null, sondern
sie bleibt 1. Worin also besteht das Feld?

Der Schluss liegt nahe, es müsse ausser der
durch ihre Trägheit erfahrbaren Materie des

Dielektrikums noch etwas da sein, was die
„Spannungen" von Ort zu Ort weiterliefert.
Dieses Postulat führte zur Vorstellung des

Äthers, der lange notwendig erschien und

niemals der Erfahrung sich bot.
Aber das Wichtigste war dies: Es ergab

sich mit voller Sicherheit, dass die
Fortpflanzung der Kräfte im Feld Zeit braucht.

Nicht viel, aber immerhin Zeit. Die Zeit
kommt in Newton's Gesetz der Massenanziehung

nicht vor. Gewiss, später nahm man

an und heute ist man dessen sicher, dass

auch die Gravitationskräfte etwa zwischen

Gestirnen sich mit endlichen Geschwindigkeiten

fortpflanzen. In der Epoche von Faraday

und Maxwell wirkte aber die Entdek-

kung, dass elektrische und magnetische
Kräfte zwar sehr grosse, aber endliche
Ausbreitungsgeschwindigkeiten haben, revolu-
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tionär. Dadurch wurde nicht nur deutlicher,
dass sie kontinuierlich, ohne Lücke in Raum

und Zeit, nichts überspringend, sich ausbreiten,

sondern darin steckte mehr: Hinter dem

neuen Mitspieler, der Realität „Feld",
verbarg sich das geheimnisvolle Newton'sche
Gefäss von Raum und Zeit. Der Versuch mit
dem rotierenden Wassereimer wurde von
neuem aktuell. Auch der nicht von irgendeiner

trägen Materie erfüllte Raum leitet ja
die elektrischen und magnetischen Kräfte!

Ja noch mehr: Die Fortpflanzungsgeschwindigkeit

elektrischer und magnetischer
Kräfte und induktiver Wirkung erweist sich

als identisch mit der bereits gemessenen
Weltraumgeschwindigkeit des Lichtes. Die
Stoffe in irgendeinem Ausbreitungsfeld
ändern die Fortpflanzung. Aber es ist nur eine
additive Grösse, die geändert wird, Der

Äther — Name für die Grundleitfähigkeit
im stoffleeren Raum — ist überall dabei. Zu

seiner Leitfähigkeit 1 fügt sich die
Stoffleitfähigkeit als lineare Grösse. — Neue
Sensation: Die „Weber'sche Zahl": Die
magnetische Feldkraft, die ein fliessender Strom

(das ist eine bewegte Ladung) ausübt, ist, im

gleichen Mass gemessen, um eine Masszahl

verschieden von der elektrischen Feldkraft
einer ruhenden Ladung, und diese Masszahl,
die Weber'sche Zahl, ist genau die

Weltraumgeschwindigkeit des Lichtes und damit
gleich der magnetischen und elektrischen

Feldgeschwindigkeit.
Das anschauliche Denken wird dieser

Dinge zunächst nicht Herr. Aber es offenbart

sich wie bei Leibniz und Newton, so

jetzt durch Maxwell, die Überlegenheit des
mathematischen Logos. Freilich, das von
Leibniz und Newton entdeckte Rüstzeug
muss verbessert werden. Dafür ist von
Lagrange und Poisson vorbereitende Arbeit
geschehen: Die partielle Differenziation. Sie

wurde nötig, als Newton'sche Gedanken
etwa auf elastische und deformierbare Stoffe

angewendet wurden. Denn dabei ergaben
sich Unterschiede in den Richtungen, deren

man durch Erweiterung des Differenzialkal-

küls Herr wurde. Mit der partiellen Differen-

zialgleichung konnte man den neuen
Mitspieler, das „Feld", räumlich und zeitlich
meistern, und Maxwell meisterte ihn damit.
In zwei Gleichungspaaren vermochte er die

ganz neue Erfahrung einzufangen — all das,

was man gewöhnlich Elektrodynamik, die

Optik inbegriffen, nennt; und nicht nur dies,
alle gefundenen und in den nächsten
Generationen zu findenden Einzelgesetze ergeben
sich aus diesen Grundgleichungen,
sozusagen die ganze Elektrotechnik, die nun

riesig zu wachsen begann. Es ist ähnlich,
wie seiner Zeit bei Newton: Aus seinen
Grundgleichungen lässt sich die klassische

Mechanik, die Akustik, die Wärmelehre,
deduzieren. Die Feldgleichungen Maxwell's
enthalten im Kern alle Gesetze der
klassischen Elektrodynamik.

Der neue Partner im fundamentalen
naturgesetzlichen Bestand war also mit reicher
Gabe gekommen. Er hat nicht etwa die
Newton-Welt widerlegt. Alles blieb bestehen, nur

war viel mehr und viel Tieferes dazugekommen.

So gewaltig die Newton'sche Welt war,
sie war ein Teil. Die Frage erhob sich: Um-
fasst die Feldtheorie die Newton'sche Welt
oder bestehen beide nebeneinander? — mit
andern Worten: lässt sich die Gravitation und

die ganze klassische Mechanik feldtheoretisch

deuten? lässt sich das Newton'sche
Gleichungssystem aus dem Maxwell'schen ableiten

Zuerst natürlich versuchte man es

umgekehrt. Maxwell selbst und nachher eine

ganze Reihe grosser Physiker versuchten der
Feldtheorie mechanische Deutung zu geben.
Aber das ging nicht. Ansätze, die Mechanik,
insbesondere die Gravitation feldtheoretisch

zu deuten, schienen aussichtsvoller. Aber sie
sind noch nicht zu Ende.

Heute bietet die Veranschaulichung der
Maxwell'schen Gleichungen keine besonderen

Schwierigkeiten mehr. Man kann sie
ohne Benutzung von partiellen
Differentialgleichungen sinngemäss erläutern unter
Benutzung der Begriffe: Divergenz und Rotation,

wie sie als sogenannte Operatoren von
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der Vektor-Arialysis gegeben werden. Diese

Operatoren lassen sich ohne besondere
mathematische Analyse anschaulich machen,
etwa so wie es Born in seinem Buch

„Die Relativitätstheorie Einsteins" getan hat.

— Wichtig ist noch die Analogie mit dem
Newton'schen Fortschritt: Newton hat zu den
integralen Kepler'schen Bahngesetzen das

differentielle Kraftgesetz entdeckt. Im
Grunde ist der Maxwell'sche Gedanke analog.

Die Newton'sche Betrachtung
überspringt sozusagen den Raum, die
Maxwell'sche gibt den differentiellen Schritt von
Raumpunkt zu Raumpunkt und Zeitpunkt zu

Zeitpunkt, doch nur — für magnetische und
elektrische Kräfte, nicht für die Gravitation.

VI.

Die Krönung der Maxwell-Zeit bilden die
Arbeiten von Heinrich Hertz. Der Weg des
Lichtes und aller andern elektromagnetischen
Wellen klärt sich als einheitliches Feldgeschehen

von wunderbarer Geschlossenheit. Die
Versuche mechanisierender Aethertheorien
sind endgültig abgetan. Was man als

mechanischen Vorgang im Aether deuten wollte,
ergibt sich eindeutig als Feldvorgang im

„physikalisch leeren Raum". Der „physikalisch

leere Raum" hat physikalische
Eigenschaften, obwohl er keine Massenteilchen
enthält, d. h. nunmehr exakt: Nichts, was eine
fundamentale Masseneigenschaft trägt, keine
Beharrung, kein Ausgehen und Münden von
Gravitationskräften. D. h. also auch: Nichts,

was wie ein Molekül oder auch nur ein Elektron

aussehen könnte. Das Wort „Raum"
weicht nun in der Physik sehr häufig dem
Wort „Feld". Ueber das Feld lässt sich

Konkretes aussagen. In ihm ist Raum und Zeit
bereits zusammengeschlossen, da ja alle

Vorgänge im Feld mit einheitlicher, endlicher

Geschwindigkeit (Weg in Zeit) erfolgen.

Die konkreten Eigenschaften des
physikalisch leeren Raumes als Feld sind — wie
seinerzeit in einem Aufsatz in dieser
Zeitschrift dargelegt — diese drei: Er hat eine
bestimmte dielektrische Leitfähigkeit, eine

bestimmte magnetische Leitfähigkeit, aber
seine elektrische oder Strom-Leitfähigkeit
ist 0.

Der Bestand der Grundrealitäten der Physik

war nach Newton: Raum und Zeit gewis-
sermassen als leere Gefässe des Geschehens,
der Massenpunkt als Trägheit, Ausgang und

Angriffsort anziehender Kräfte. Jetzt war der
Bestand nach Maxwell und Hertz: Der
Massenpunkt, wie bei Newton beweglich, träge,
Quelle und Mündung der Gravitationskraft,
und ausserdem das Feld, in dessen

Konzeption Raum und Zeit in den Max-
well'schen Gleichungen formal eingehen, so
dass man sie physikalisch durch den
Feldbegriff präziser erfassen kann. Aber es lag
über diesem Zusammenhang
zwischen Raum, Zeit und „Feld"
noch ein dichter Schleier, und die damalige
Physik war sich nicht bewusst, dass schon vor
geraumer Zeit ein ganz grosser Mathematiker

mit einer genialen Intuition ein Stück

Weg in dieses Geheimnis eingedrungen war.
Mathematiker sagen manchmal, ihre

Wissenschaft arbeite auf Vorrat. Sie erweitere
ihre Gebiete unausgesetzt und oft ohne
Rücksicht darauf, ob ihre in eigener Logik
geltende Strukturerkenntnis sich irgend einmal

mit sinnenhaften Inhalten der Erfahrungswelt

füllen werde, mit anderen Worten, ob

man sie je auf irgend ein Wissensgebiet
werde anwenden können. Aber es ist schon

oft geschehen, dass solche auf Vorrat
geschaffenen Methoden und Teildisziplinen
später Anwendung in der Naturwissenschaft

fanden — so jüngst die Matrizenrechnung
in der Quantenmechanik —. Dabei stellt
sich immer wieder heraus, dass die
mathematische Behandlung physikalisch richtige
und teilweise ganz überraschende Ergebnisse
liefert, das heisst also: Die Anwendung der
sogenannten „leeren" mathematischen Logik
auf physikalische Erfahrungsgegenstände gibt
Resultate, die sich nachher im Experiment
bestätigen.

Was (abgesehen von den vielfältigen
Meinungen der Philosophen) die Mathema-
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t i k über den Raum lehrt, war früh im Grunde
von Euklid 2 für Jahrhunderte formuliert. Die
euklidische Geometrie beruhte auf „Axiomen"

oder, wie man vielleicht besser sagt,
Postulaten. Von ihnen ist im Laufe der Zeit
das 5. Postulat, das Parallelenaxiom oft
diskutiert worden. Nicht etwa, dass man
Geometrie darauf widerspruchsfrei aufbauen
könne — das blieb ohne Zweifel. Man
diskutiert aber, ob dieses Axiom wirklich
unbedingt nötig wäre, und ob es nicht auch

eine oder mehrere logisch ebenso berechtigte

Geometrien im Widerspruch zum
Parallelenaxiom gäbe, eine widerspruchsfreie
Geometrie der gekrümmten Räume. Im
Anfang des vorigen Jahrhunderts beschäftigten
sich eine ganze Reihe von Mathematikern
mit diesem Problem. Der Russe Lobatschew-
sky widmete ihm sein ganzes Forscherleben,
die beiden ungarischen Mathematiker, Vater
und Sohn Bolyai, veröffentlichten die erste

Lösung (1823), der grosse Gauss besass die
nichteuklidische Geometrie, schrieb darüber
1829 an Bessel, aber veröffentlichte in seiner

Lebenszeit nichts, obwohl sie ausgearbeitet
war. Vielleicht spielt als Motiv dieser Zurückhaltung

die geistige Lage der Zeit mit, die

unter dem Eindruck dessen stand, was Kant

über Raum und Zeit lehrte. Wenn der Raum

danach eine Anschauungsform des menschlichen

Geistes ist, so schreibt der menschliche

Geist die Struktur des Raumes souverän

vor, und es kann keinen anderen geben, als

den euklidischen, der dem Menschen a priori
gegeben ist und den er in die Aussenwelt

projiziert. — Wenn aber auch Gauss schwieg,

er hatte einen Schüler, der ihm an Genialität
nicht nachstand. Das war Bernhard
R i e m a n n.

Das menschliche Schicksal
Riemanns ist von ähnlicher Tragik wie das

von Kepler. Sohn eines Landpfarrers, blieb

er sein ganzes Leben von einem tiefen Glau-

2 Euklid selbst spricht nicht von Raum, sondern von
Punkt, Gerade etc. Bei Descartes bringt die Einführung

der Koordinaiendarstellung das „Raumkontinu-
um" zum Ausdruck.
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ben an die göttliche Vorsehung beseelt. Dies

war der Stern seines Erdenwegs, und er hatte
einen Leitstern nötig. In wenigen Jahren

starben ihm seine Angehörigen an Tuberkulose,

von der er sich selbst bedroht fühlte.
Als er es wagt zu heiraten, überfällt ihn einen
Monat nach der Eheschliessung eine
Brustfellentzündung. Er flieht nach dem Süden

und verbringt, geschwächt und den Tod

erwartend, noch drei Jahre meist in Italien.
Als er im Jahre 1866 wieder schwer erkrankt

von Göttingen nach dem Süden zieht, findet
er durch die kriegerischen Ereignisse in Kassel

den Schienenweg gesperrt. Der kranke
Mann reist mit Wagen, erreicht am 28. Juni

1866 den Lago Maggiore und stirbt wie ein

Heiliger am 20. Juli im Garten der Villa Pisoni

in der Nähe von Intra.

Riemanns Arbeit brachte (in seiner Habilitation

und Antrittsvorlesung, der Gauss noch

anwohnte) die nicht-euklidische Geometrie

zu einem vorläufigen Abschluss, d. h. sie
lieferte die geschlossenen Systeme für die zwei
anderen möglichen Fälle, bei denen die
Dreieckswinkelsumme grösser oder kleiner als

2R ist. Diese Arbeiten führen dann weiter
in eine neue Fundamentalgeometrie, die

Differentialgeometrie, in der die drei logisch
möglichen Geometrien eingeschlossen sind.

Das ist heute das allgemein anerkannte
Fundament. Aber das Gewaltigste an der
Gedankenarbeit Riemanns liegt anderswo: Mit der
widerspruchsfreien Mögl ichkeit der
Geometrien mit positivem oder negativem
Krümmungsmass war ja über die
Wirklichkeit noch gar nichts gesagt. Es

konnte ja gut sein und entsprach der
allgemeinen Annahme, dass die Geometrien
der gekrümmten Räume lediglich Gedankendinge

seien ohne Realfundament. (Selbst als

Riemann starb, stand die physikalische
Gedankenwelt noch nicht unter der Herrschaft
der Maxwell'schen Gleichungen, und der

Begriff des Feldes war noch nicht populär.)
In seiner Habilitationszeit wurde Riemann

von dem Gedanken gepackt: Wie wäre es,

wenn die Physik nicht nur im g e o m e -



frischen Raum stattfindet, wie
wir mehrfach sagten, „wie in einem Gefäss",
sondern, wenn die Physik den
geometrischen Raum gestaltet!
Das würde bedeuten, dass die räumlichen
Massverhältnisse durch die Kräfte erst
bestimmt werden, also nicht im „Raum" selbst
ihr Fundament hätten. Was wir vom Raum

erfahren, seine Struktur, das ist eben das

Geometrische, das Maßstäbliche. Wenn nun
der Grund der Massverhältnisse des Raumes,

darin natürlich die Krümmungsmasse
eingeschlossen, nicht in ihm selbst, sondern in

wirkenden äusseren, wie Riemann sagt,
„bindenden Kräften" besteht, dann wird der

Raum zu einem Gegenstand der Physik, und

es gibt nicht eine Geometrie, sondern

beliebig viele, je nachdem die Kräfte dem
Raum eine andere Struktur vorschreiben.
Dies alles zehn Jahre vor der Veröffentlichung

der Maxwell'schen Gleichungen!
Natürlich blieb Riemann von seinen

Zeitgenossen unverstanden und einsam.

Etwa 70 Jahre nachher kam der Physiker
Albert Einstein (1915) auf Grund von
physikalischen Tatsachen und Überlegungen zu
eben diesem Ergebnis in der allgemeinen
Relativitätstheorie. (Schluss folgt.)

Freiburg. Friedrich Dessauer,

Umschau

Unsere Toten
Lehrer Alois Landtwing, /Wenzingen.

Kollege Alois Landtwing weilt nicht mehr
unter den Lebenden. Eine heimtückische Krank-

heit hat den 52jährigen, kerngesunden, kräftigen

Mann in kurzer Zeit gefällt. Nach Betreuung

von zwei Verweserstellen wählte die
Gemeinde Menzingen den jungen AI. Landtwing
als Lehrer an die Mittelschule, welche er nach

einigen Jahren mit der Oberschule vertauschte.
Hier und als Lehrer an der Gewerbeschule war

ei in seinem Element, liebte er doch die Schule

über alles. Sein Unterricht war praktisch, lebensnahe

und interessant. Besonders prächtige
Erfolge erzielte er im Rechtschreiben, in der

Sprachlehre und damit auch im Aufsatzunterricht.

Die Herren Inspektoren erteilten seiner

Schule stets die wohlverdiente erste Note. —
Mit grosser Hingebung hatte er sich auch in

alle Fächer der Handwerkerschule vertieft und

dafür von den eidgenössischen Experten immer

volle Anerkenung geerntet. Diese bedauerten
bei ihren Besuchen jeweils nur das eine, dass

die Gewerbeschule Menzingen so wenig Schüler

zählte.

Alois Landtwing war in glücklicher Ehe mit
einer währschaften Bürgerin von Menzingen ver¬

heiratet. Ein Sohn und eine Tochter entsprossen
dem Lebensbund, der leider nur knapp 25

Jahre dauerte. Als Mensch führte er ein

zurückgezogenes Leben und gehörte nur dem Cäci-
lienverein und dem Männerchor an. Als

Mitglied der Sektion Zug des katholischen
Lehrervereins der Schweiz besuchte er, wenn immer

möglich, die Versammlungen. Der kantonalen
Pensionskasse diente er als gewissenhafter
Rechnungsrevisor. Auch die Einwohnergemeinde
Menzingen übertrug ihm das wichtige Amt
eines Rechnungsprüfers. Ueberall stellte er
seinen ganzen Mann und erfüllte stets die auf
ihn gesetzten Hoffnungen. Die verhältnismässig

wenigen Jahre, welche ihm der Herrgott
schenkte, hat er gut ausgenützt. Den Hinter-
lassenen unsere aufrichtige Anteilnahme und

dem lieben Kollegen die ewige Ruhe! •—ö—

Laurenz Oesch, a. Lehrer, St. Josephen.

Im Alter von 76 Jahren starb, den ältern

Kollegen noch wohlbekannt, a. Lehrer Oesch.

1884 war er nach kurzer Verweserei in Balgach
und Gebertingen nach St. Josephen gewählt
worden, das ihm zur zweiten Heimat werden
sollte. Er stand der Unter-, Mittel- und
Oberschule vor und betreute zeitweise bis zu 100
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