
Zeitschrift: Studies in Communication Sciences : journal of the Swiss Association
of Communication and Media Research

Herausgeber: Swiss Association of Communication and Media Research; Università
della Svizzera italiana, Faculty of Communication Sciences

Band: 4 (2004)

Heft: 2

Artikel: A framework for addressing the quality of UML artifacts

Autor: Kamthan, Pankaj

DOI: https://doi.org/10.5169/seals-790976

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 31.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-790976
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Studies in Communication Sciences 4/2 (2004) 85-114

Pankaj Kamthan*

A FRAMEWORK FOR ADDRESSING THE QUALITY
OF UML ARTIFACTS

The Unified Modeling Language (UML) is a standard language for modeling
the structure and behavior of object-oriented systems. In recent years, there has

been a rapid increase in the use of UML artifacts in a variety of application
areas. As the use of UML becomes pervasive, the quality of UML artifacts as

effective means of communication arises. The aim of this paper is to contribute
to a systematic assessment and assurance of the quality of UML artifacts. A
quality framework for UML artifacts using notions from semiotics, human-

computer interaction, and technical aspects of software diagramming, is

proposed. The goals for quality and mechanisms to address them are identified.
The mechanisms are themselves analyzed with respect to their usefulness in
achieving the quality goals of the artifact. Examples of UML artifacts that
compromise quality, and techniques for improvement, are given.

Keywords: communicability, feasibility, graph drawing, modeling quality,
representation, semiotics.

^Department of Computer Science and Software Engineering, Concordia University,
Montreal, kamthan@cse.concordia.ca



86 PANKAJ KAMTHAN

1. Introduction

Modeling has become an integral activity in software development. After
embracing a variety of notations and languages over the years, the

software industry has now adopted the Unified Modeling Language (UML)
(Booch et al. 2005; Fowler 2003). UML is a semi-formal language for
structural and behavioral modeling that provides diagram types applicable

to a wide variety of domains. The UML has been used for modeling
activities in a software process as well as representing snapshots of product

under development (Lethbridge, Laganière 2001), modeling embedded

systems consisting of software and hardware components (Green,
Edwards 2004), modeling real-time systems (Douglass 2004), modeling
Internet applications (Carlson 2001; Conallen 2003), and modeling
business activities (Eriksson, Penker 2000), to name a selected few.

According to the ISO 8402 Standard (ISO 1994), quality is defined
as the totality of features and characteristics of a product that bear on its

ability to satisfy stated or implied needs. An investigation into of the

quality of UML artifacts is necessary for various reasons. UML has begun
to play an increasingly central role in activities and deliverables of adaptive

software process environments such as Extreme Programming (XP)
(Beck 1999) and the Rational Unified Process (RUP) (Kruchten 2004).
These model-driven approaches create UML artifacts during requirements

and design, and therefore addressing the issue of quality early is

crucial (Lindland et al. 1994; Krogstie 1998; Shanks et al. 2003) from
the point of view of control and prevention of problems that can propagate

into later stages. If left unattended, these artifacts may, for example,
fail to communicate their purpose (Arlow et al. 1998), could be misleading,

or be virtually non-modifiable. This would undermine the basic

philosophy of UML to unify multiple notations that were potentially threatening

interoperability among tools and communicability among
engineers, and can adversely affect further acceptance and growth of UML.

There has been a surge of activity in the last decade in understanding
the notion of quality in modeling. Efforts to approach it in a systematic
manner have led to introduction of frameworks for information quality
(Eppler 2001) in conceptual modeling (Lindland et al. 1994; Krogstie
1998; Shanks et al. 2003) and data modeling (Reingruber and Gregory
1994; Shanks 1999; Moody and Shanks 2003).



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 87

In this paper, we address the issue of quality in UML artifacts based

on the ideas from semiotics, human-computer interaction, and graph
drawing. In doing so, we propose a framework as a first step towards

understanding, assessing, and ensuring the quality of UML artifacts. The
outline of the paper is as follows. Section 2 provides the infrastructure of
the framework. Section 3 considers the application of the framework
with respect to the semiotic levels. Finally, Section 4 concludes with some
recommendations and remarks towards future research.

2. Foundations of a Framework for Quality of UML Artifacts

Semiotics is concerned with the use of symbols to convey knowledge and
forms the basis of many of the information quality frameworks mentioned
previously. According to (Morris 1938/1970), there are three non-mutu-
ally exclusive semiotic levels: semantics (the relationship of signs to what
they stand for), syntactics (the formal or structural relations between
signs), and pragmatics (the relation of signs to interpreters). Further
elaborations to other semiotic levels (namely physical, empirical, and social)
for analyzing symbols (Stamper 1992) with finer granularity have been
discussed in contexts of information quality (Krogstie 2001; Shanks

1999). We do not view any UML-oriented specifics that would require
special treatment of these levels and will therefore restrict ourselves to only
the three basic semiotic levels as in (Lindland et al. 1994; Gurr 1999).

We adopt a goal-driven, realistic ontological view towards modeling
quality: the granularity of entities relevant to a UML artifact is
determined by the goal and is necessarily finite. Then, based on the software

engineering principle of separation of concerns, we have the following
general methodology as the foundation to the quality framework (Figure
1):

1- Given a UML artifact, list the entities directly related to it, and state
relevant relationship types including corresponding semiotic levels of
interest;

2- Identify the quality goal(s) for each of the semiotic level;
3- If a goal from (2) is at a too high level to be addressed directly, decompose

it further into a manageable list of specific criteria;
4- State the mechanism(s) for achieving the criteria. A mechanism can

correspond to one or more criteria.



88 PANKAJ KAMTHAN

Semiotic Level

Quality Concern

Goals
Suitability

Stakeholders
Suitability

Decompose

Pragmatic Quality
Criteria

Domain
SemantesQtia'rtY Artifact Syntax Quanty

yML
Use

Suitability Mechanisms

(a) (b)

Figure 1: A simplified illustration ofthe UML artifact quality framework.

From a high-level, as shown in Figure 1(a), the architecture of the quality
framework can be viewed as a collection of entities and (non-reflexive)

relationship types. At a low-level, illustrated by Figure 1(b), the interest
is in the properties of the main relationship types. We now exclusively
look at these two aspects for the remainder of the section, starting with
the macro-architecture.

2.1. Macro-Architecture of the Quality Framework

In this section, we describe the entities of the framework in detail and then
deal with the quality concern of each of the identified semiotic levels.

2.1.1. Entities

As Figure 1 shows, an artifact is intimately related to the domain, the

modeling language, and the stakeholders. We therefore begin with the
discussion of these entities.

Artifact
An artifact is an abstract, often simplified, representation of some real-

world entity that consists of statements made in a modeling language,
which in our case is UML.



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 89

Domain
A domain is an aspect under study. A UML artifact will usually be targeting

some application area (real-time systems, information systems, and so
forth), which could belong to a problem (requirements, analysis) domain
or a solution (design) domain in software, and could address either the
static (structural) or the dynamic (behavioral) aspect of the system.

UML as a Modeling Language
UML is a standard defined by the Object Management Group (OMG)
where the current adopted version is 2.0. Over the years of use, several

shortcomings of UML have been exposed (Morris and Spanoudakis
2001) that can impact the quality of an artifact based on it; this is
elaborated in the following as necessary. An evaluation of UML with respect
to the semiotic framework of (Lindland et al. 1994; Krogstie 1998) is

given in (Krogstie 2001).
Since its inception in the late 1990s and its roots in software design

domain, the evolution of UML has come a long way. There have been
three noteworthy initiatives during this period that are relevant with
respect to quality of UML artifacts: support for extensibility, meta-mod-
eling, and the movement towards single source (executability).

To accommodate emerging areas where modeling plays a crucial role,
properties of existing diagram types have been reviewed and modified
accordingly, and the number of diagram types has been increased. Action
Semantics UML Extensions, that let an engineer express actions as UML
objects, have provided much needed support for distributed computing
environments. In the case of embedded systems, the introduction of new
diagram types in UML 2.0 has facilitated communication between
software and hardware designers and between system engineers and project
stakeholders. It was also realized within OMG that, at any given point in
time, the default support provided by UML constructs might not be
sufficient for all domains. The introduction of the UML profiling mechanism

has enabled extensions of UML in the form of application-domain-
specific profiles. Some of the profiles of broad interest and applicability,
such as that for enterprise application integration, have been standardized

by OMG.
By acknowledging that UML is only one of the many possible types of

modeling languages, UML has been placed within the context of meta-
modeling as defined by the Meta Object Facility (MOF) that is part of a

higher level of abstraction of the Model Driven Architecture (MDA)



90 PANKAJ KAMTHAN

framework (Kleppe at al. 2003). This has improved interoperability among
tools and fostered design reuse, thereby potentially increasing productivity.

One way of optimizing effort, minimizing redundancy and possibility
of errors, is to have the control relegated to a single source. Given a

UML design artifact, it is possible today to generate source code

(although, being general-purpose, it may need modifications) for certain

programming language bindings. This has been further promulgated
with the proposals such as Executable UML (Mellor and Balcer 2002) for
using tools to directly translate abstract application constructs into
executable entities, thus removing the layer for coding altogether.

Stakeholders

This is the set of participants (people or programs) that have a stake in
the artifact. These participants can be in the (non-mutually exclusive)
roles of producers and consumers, including users. An engineer architect-

ing the artifact and a UML modeler belong to the category of producers.
A project manager, an end-user, and an image Tenderer belong to the

category of consumers.

The entities in the Figure 1 (a) of the framework are nor isolated and are

intimately related to each other in many ways that gives rise to a connected

graph. These relationship types are discussed next.

2.1.2. Relationship Types

The relationship types in the framework that involve the artifact directly
are considered as primary and the ones that impact the artifact indirectly
are considered as secondary (indicated by solid and dashed lines in Figure
1, respectively).

The primary relationship types are Artifact-Syntax, Artifact-
Semantics, and Artifact-Pragmatics.

Artifact-Syntax. This relationship represents the syntactic level of the artifact

and is concerned with the form of symbols. The quality consideration

at this level is the Syntactic Quality.

Artifact-Semantics. This relationship represents the semantic level of artifact

and is concerned with the meaning of symbols. The quality consideration

at this level is the Semantic Quality.



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 91

Artifact-Pragmatics. This relationship represents pragmatic level of artifact

and is concerned with the practical knowledge needed by the artifact
to use UML for communicative purposes. To do that requires choosing
from among the given possibilities in the contextual usage of symbols to
express a single meaning. The quality consideration at this level is the
Pragmatic Quality.

The relevant secondary relationship types are Domain-UML Suitability,
Domain-Stakeholder Suitability, and UML-Stakeholder Suitability.

Domain-UML Suitability. Any evaluation of appropriateness must be
carried out along two lines: (1) the scope of the UML as given by the
normative specification, and (2) the criteria for evaluation. The unification
of UML and aggressive marketing has led to the use of UML in domains
that were never in its scope (the "one-size-fits-all" syndrome). UML has
been heralded (Larman 2002) as a conceptual (domain) modeling
language in software engineering. But without a formal (mathematical)
foundation for its syntax and semantics that is desirable for complex
reasoning tasks and computational tractability, UML is not suitable for such

purpose. Such instances should hardly be seen as weaknesses of UML but
rather as its improper use. However, there are limitations of the use of
UML in domains that are supposed to be within its grasp. For example,
although there is much support for the use of Use Cases with UML
(Rosenberg and Scott 1999), it has been shown that UML graphical
notation alone is not sufficiently expressive in representing complex cases

(Glinz 2000). Furthermore, it is not also readily possible to indicate
universally unique identifiers in UML. Therefore, despite the claims

(Botaschanjan et al. 2004), UML is not powerful enough to entirely
represent the problem domain (and therefore is not a complete requirements
specification language).

Domain-Stakeholder Suitability. Ultimately every UML artifact is

supposed to represent some concept in the domain. Therefore, the
stakeholder knowledge of the domain and conversely the relevancy of the
domain to a stakeholder, are necessary.

UML-Stakeholder Suitability. A stakeholder must have appropriate
knowledge of UML for either producing or consuming the resulting artifact.



92 PANKAJ KAMTHAN

Having examined the entities and the relevant primary and secondary
relationship types from a high-level view, we now focus specifically on
addressing the three levels of quality in the primary relationship types.

2.2. Micro-Architecture of the Quality Framework

The quality consideration of each semiotic level is associated with a goal,
which can often be met in a concrete manner only when addressed at
lower-level criteria. These criteria may be external to an artifact as it
interacts with its environment or internal to an artifact when it is considered

in its own right without the impact of any external influence.
Furthermore, these criteria can be dealt with realistically when there are
certain mechanisms (such as principles, methods, techniques, or tools) in
place. We now look at each of these aspects in depth.

Goals

A project without clear goals will not achieve its goals clearly (Gilb
1988). A goal captures the intent of the artifact with respect to quality. A
goal may or may not be entirely satisfied (at all, or within the stipulated
time within the artifact life cycle) and a feasibility analysis for an acceptable

level of realization may be necessary.

Feasibility Analysis
UML artifacts are often the means to the end (executable software) and
their quality control carries extra cost (in form of time, effort, and

resource commitment) on top of considerations for software quality. We
also need to prioritize and make trade-offs among the criteria and
corresponding mechanisms. Therefore, an economic, organizational, and
technical feasibility analysis (Boehm et al. 2001) is necessary for a realistic

realization of the quality goal. One of the criticisms of widely-used
goal-based measurement programs in organizations such as the Goal-

Question-Metrics (GQM) method (Van Solingen and Berghout 1999) is

that they do not address the issue of feasibility. We view feasibility as an

all-encompassing layer that manifests itself on almost all aspects of the
UML quality framework in order to make it practical.

Criteria
The criteria are manageable quality characteristics and can be divided
into two parts: the internal and external attributes of a UML artifact, as



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 93

in ISO/IEC 9126-1 Standard (ISO 2001). An external attribute is an
extrinsic property of an artifact that can be addressed only on the basis of
how it relates to its environment. An internal attribute is an intrinsic
property of an artifact that can be addressed purely on its own irrespective

of its environment. Often, external attributes can be expressed in
terms of internal attributes (Fenton and Pfleeger 1997). The criteria
could be associated with weights that could represent significance or
priority given by the organization or artifact producer.

The relevant external attributes are User Preference, Clarity, Consistency,
Simplicity, Familiarity, Interoperability, and Standardization.

User Preference. Studies have shown (Purchase et al. 2001) that users, due
their beliefs or otherwise, may prefer one diagram type to the other for
the sake of understanding, even though they may be semantically equivalent

for most purposes (like the UMF Sequence Diagrams and
Communication Diagrams).

Clarity. By clarity, we mean either semantic clarity (sensible use of UMF
notations) or visual clarity (legibility of graphic or readability of text).

Consistency. By consistency, we mean any activity that is not ad-hoc and
depicts coherence. This includes visual coherence and making use of
conventions where necessary.

Simplicity. We can view simplicity as a complement of complexity:
anything that leads to non-determinism (unpredictability) from a human
viewpoint is usually considered as complex.

Familiarity. By taking a subjectivist epistemological position (Shanks
1999), we accept that our understanding of the world depends on our
prior knowledge and experience, and therefore introduce familiarity as

one of the attributes.

Interoperability. The same artifact could be processed and viewed by
different tools. Interoperability requires the artifact to work in all environments

it is supposed to.

Standardization. Standardization, when applied well, is known to
contribute towards quality improvement (Schneidewind and Fenton 1996).



94 PANKAJ KAMTHAN

The relevant internal attributes are UML Primary Notation, UML
Secondary Notation, Size, Structure, and Format.

Primary Notation in UML. The UML defines four kinds of primitive
elements: icons, 2D symbols, paths, and strings. These are used in combination

to create compound structures such as the 13 diagram types that
UML 2.0 defines. An UML artifact essentially extends this notation.

Secondary Notation in UML. The secondary notation (Petre 1995) in

graphical programming is defined as the use of layout and perceptual
cues to clarify information or to give hints to the stakeholder. The UML
secondary elements that affect the comprehensibility of artifacts are color,

directionality, labeling, level of abstraction and refinement, morphology,
positioning, typography, and white space.

Size. By size of a UML artifact, we mean both the area (dimensions) that
a UML artifact occupies and the file size. The former will depend on the

use of the secondary notation (morphology and white space). The latter
will depend on area of a UML artifact and the export format being used.

UML artifacts for similar projects may reuse existing constructs in whole

or in part, verbatim or slightly modified. It will of course be important
that reused constructs blend in well with the newer ones.

Structure. By structure, we mean the geometric structure of a UML artifact.

There are structural patterns such as symmetry and anti-symmetry
that impact the quality of UML artifact. The structure of a UML artifact
will depend on the use of the secondary notation (morphology, positioning,

and white space), and to the extent there is internal reuse and
coupling. The generalization/specialization relationships lead to internal
reuse. Low coupling is a hallmark of "good" design.

Representation Format. In an electronic production of UML artifacts, an
author is usually working with some text (vector) or binary (raster) data
format rendered as a graphic. The nature and choice of a format can

directly impact the quality of a UML artifact during production and

subsequent transmission. Although usually more compact than (uncompressed)

text, images in raster formats such as Graphical Image Format
(GIF) or Portable Network Graphics (PNG), on magnification tend to



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 95

have an incarnation of the "staircase effect" and are non-interactive. From
applications of Gestalt psychology to graph drawing (Di Battista et al.

1999), it is known that humans more easily see smooth continuous
contours than jagged ones. On the other hand, UML artifacts serialized in
vector graphical formats based on Extensible Markup Language (XML)
(Bray et al. 2000), a meta-language that provides directions for expressing

the syntax of markup languages, circumvent the issues of raster
formats and lend themselves to the benefits that are associated with descriptive

markup such as support for metadata, hyperlinking, intimate control
towards printing, and syntax checking.

XML Metadata Interchange (XMI) (Brodsky and Grose 2002) and
Scalable Vector Graphics (SVG) (Ferraiolo et al. 2003) are two XML-
based markup languages that are particularly relevant to UML artifacts.
XMI, an OMG standard and part of MDA, is a serialization format for
UML with the goals of artifact interchange and cross-tool interoperability.

SVG is a mixed raster-vector graphical format with the goal of
providing means for standard graphics on network devices, including desktop

browsers and mobile telephones. (All figures in this paper are based

on SVG.) Both these languages inherit aforementioned benefits ofXML.
XMl-based UML artifacts can also be down transformed into SVG. To a

producer, UML artifacts in SVG could be annotated, ported across
networks, archived, and maintained with relative ease. To a consumer, they
offer legibility (at virtually any level of magnification) and involvability
(sophisticated means of interaction, navigation, and searching on virtually

any platform). The quality of the means of transformation (script,
style sheet, or program) and the resulting markup in SVG graphic is

important in its own right, and beyond the scope of discussion here.

Mechanisms
A mechanism is technical or other means that could help improve the

quality of the UML artifact. The mechanisms themselves are non-neces-
sarily mutually exclusive. They can be classified in various ways: static or
dynamic verification; theoretical or practical; applicable before, during,
and after the first iteration of the artifact production process; applicable
for quality assessment (evaluation) and/or for quality assurance. There is

an inevitable cost involved in the use of any mechanism. Therefore, the

scope and limitations of the mechanisms should be discussed for the sake
of objectivity and to provide a benchmark for feasibility analysis. Tool



96 PANKAJ KAMTHAN

support is necessary to assist some of the mechanisms. We realize that for
appropriate application, the stakeholder (producer) knowledge of the
mechanisms is important in its own right, and will not address this here.

Training in Use ofPrimary Notation. Like the use of any other language,

acquiring the knowledge of UML would require training. Apart from the

publicly available official UML Specifications from OMG, there are
other resources in print (Booch et al. 2005; Fowler 2003) or otherwise
available via electronic means. However, the three main obstacles that
continue to hamper the level of UML training required today are (1) that
there are almost no textbooks that provide good exercises (if at all) to
practice, (2) with the University curricula already crowded, courses
specific to UML are rarely offered in the mainstream, and (3) professional
training is often centered around expensive venues in large cities and the

cost tends to be beyond the budget of an average student.

Training in Use ofSecondary Notation. The producers of UML artifacts
need to be trained in the basics of interface design (Shneiderman and
Plaisant 2005), information design (Jacobson and Wurman 1999), and

interaction design (Preece et al. 2002), which are the mechanical, analytical,

and conceptual parts of artifact design, respectively, to get a detailed

understanding of the UML secondary notation. We provide one view of
appropriate use of the secondary notation:

- Color. By associating different colors with constructs in a complex fig¬

ure, a stakeholder can be informed of the semantic similarity and
differences between the constructs with respect to both their structure
and behavior. For example, use of color in UML Class Diagrams for
Java has been reported to improve the user understanding of the overall

design (Coad et al. 1999). Any use of color, however, should take

into account the variations in the interpretation of primary colors by

computer monitors, contrast between background and foreground,
the way people with color vision deficiency view an image (Rigden
1999), and the possibility that diagrams may be printed on a black
and white printer.

- Directionality. Directionality in UML constructs is critical, especially
when representing the progression in time, movement across space,
and to illustrate hierarchy. For example, an arrow in a

generalization/specialization relationship points upward from the spe-



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 97

cialized case to the generalized case to show prominence to the latter.
The normative versions of the UML Specifications are in English. The
cultures where English is the primary language of use, people usually
tend to read from left to right and from top to bottom, and to ease

readability long phrases and multiple lines of text need to reflect that.

Inevitably, this depends on the positioning of UML constructs.
- Labeling. Use of application domain terminology in text labels makes it

easier for a non-technical stakeholders or users new to an author-
defined UML extension to become familiar with the artifact. A naming

convention, such as use of camel case, could be followed consistently.

- Level ofAbstraction and Refinement. Not all UML constructs are appropriate

for exposure to all stakeholders at all times. For example,
software macro-architecture using UML Package Diagrams may be much
more accessible to a stakeholder interested but not directly involved in
design, than the use of UML Class Diagrams. Also, following the
well-known 7 +/- 2 principle of short-term memory (Miller 1956),
diagrams that are structurally complex could be split into multiple
parts, where only the relevant parts are exposed.

- Morphology. The morphology or shapes of nodes and vertices in a UML
artifact have an impact on how the diagram as a whole is perceived by
the user. It is known in graph drawing (Di Battista et al. 1999) that
presence of crooked nodes and zigzag vertices are aesthetically
unpleasing and cognitively ineffective. In general, users also associate

significance with the size of nodes and vertices in a diagram (Comber
1993), which therefore need to be consistent and semantically
meaningful.

- Positioning. Humans associate positioning of graphical constructs to
spatial and temporal relationships. The legibility and stakeholder
interpretation of a UML artifact are affected by relative proximity of
its nodes and vertices. Structural patterns in relationships such as

symmetry and anti-symmetry are visual cues for familiarity and need to be

preserved. The proper placement of a text label that is suppose to
belong to one node is also important to reduce any ambiguity on part
of the reader when placed between two nodes. UML modelers and

image Tenderers in general use the top-left corner of the drawing canvas

as the point of origin and reference for their coordinate system
and, for the sake of clarity and familiarity, the UML artifacts need to
reflect that.



98 PANKAJ KAMTHAN

- Typography. The choice and the sequence of characters in the use of text
(annotation and labels) affect readability. For example, the characters
in a name like OOlll are hard to distinguish and therefore difficult to
read. The choice of fonts used for annotation and labeling depends on
a variety of factors (serif versus sans-serif, amount of kerning, font
size, and so forth) that are important for legibility. Fonts specifically
designed for presentation on paper may in general be hard to read on
a computer screen.

- White Space. One of the traits of any diagramming style is the introduction

of white space at appropriate places. In UML artifacts, white

space can be added between nodes, between nodes and vertices, and
between labels and boundaries of UML constructs for visual clarity.
Shape and positioning of nodes and vertices, and the use of white

space complement each other.

The lessons of UML training usually culminate in some form of guidance

such as guidelines, frequently asked questions, or patterns. The
UML secondary notation is the basis of several style guidelines (Ambler
2003) and patterns (Evitts 2000) specific to UML diagram types. We
therefore briefly discuss the utility of these two instruments.

Guidelines. Guidelines have a successful history in streamlining production

efforts, and in providing a basis for comparison. The classical guidelines

from graph drawing that determine a "good" graph (such as

minimizing crossings, optimizing area, minimizing the number of the vertex
lengths, keeping vertex length uniform, minimizing bends), also apply to
UML artifacts. Guidelines could also serve as a checklist with respect to
which the quality of UML artifacts could be evaluated, however, to be

effective, the guidelines need to provide an ordinal scale, that is, a

spectrum (instead of the often Boolean, yes or no) of conformance levels.

Guidelines seem to be more useful for those with an expert knowledge
than for a novice to whom they may seem very general to be of much
practical use.

Patterns. Patterns (Alexander 1979; Lethbridge and Laganière 2001;
Larman 2002) are reusable entities of knowledge and experience aggregated

by experts over years of "best practices" in solving recurring problems

in a domain. Formally, a pattern expresses a relationship between a

certain context, a recurring problem, and a proven solution. Patterns are



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 99

relatively more structured than guidelines, illustrated by examples and

non-examples (anti-patterns), and provide better opportunities for sharing

and reuse. Since patterns are restricted by their context, they are
specific, and tend to provide concrete solutions that are broadly applicable.
There are certain caveats in the pattern approach. According to the
COCOMO II cost estimation model (Boehm et al. 2001), reuse comes
with a cost of adaptation to new contexts. Before it is documented for
public use, pattern discovery requires considerable experience with the
domain and its validation needs acceptance of a broader community.

Metadata. Metadata, such as in form of annotation, can provide further
explanation on items that are not immediately obvious. Annotating
UML artifacts using the UML Note construct can be particularly useful
when UML constructs that may not be common or known to the user
(such as when UML extensions are being used for the first time), or when
stakeholders involved do not have the necessary technical knowledge. By
including expressions in Object Constraint Language (OCL) (Warmer
and Kleppe 2003), a formal language for UML that is part of MDA and
allows software engineers to write constraints and queries over object
models, such notes can also add to the intent and semantics of the
diagram. These notes could, for example, include the details of pre- and
post-conditions of Use Cases in OCL; something that is not possible via
UML graphical notations alone.

Pair Modeling. Complex, large-scale artifacts in traditional engineering
are usually crafted not by an individual but by a team of architects. To
that regard, and inspired by the idea of Pair Programming (Beck 1999;
Williams and Erdogmus 2002), we introduce the notion ofpair modeling

where two people participate in crafting a UML artifact. Part of pair
modeling can also be viewed as an informal, lightweight monitoring of
UML artifacts: every item being drawn (or text being written) is under
scrutiny by the partner during the creation process. Since stakeholders
from both early and later phases have a stake in producing a "good" artifact,

such an activity tends to be cooperative rather than confrontational.
The authors applied this cost effective technique with students from

academia and industry, resulting in better mutual cooperation and

improved productivity. However, for pair modeling to be successful, both
the partners need to have a similar level of experience with the application

domain and with UML itself.



100 PANKAJ KAMTHAN

Refactoring. UML artifacts may need to evolve for various reasons such as

discovery of impurities (symptoms of problems or "smells") or obsolescence

(due to changes in UML Specification or that in the parent software

objectives). Refactoring is a technique of transforming the internal structure

of software for the sake of understandability and maintainability,
while preserving its observable behavior (Fowler et al. 1999). Refactoring
methods are transformations that provide a systematic way of eradicating
the undesirable smells from an artifact while preserving its semantics

(observable behavior). In the last decade, refactoring has been extensively
applied to the context of source code, and more recently to UML artifacts

(Sunye et al. 2001). Refactoring is beginning to have support among
UML modelers. However, an issue that remains largely unaddressed in
UML refactoring is formally proving the invariant properties of the
refactoring methods. It is not always easy to demonstrate the business benefits

to management who are usually more inclined towards addition of new
features. Often the smell-refactoring methods mapping is not clearly stated.

In cases when the UML artifacts are bound to the source code, any
refactoring must also take into account any change propagation on
modification of the UML artifact and make commitments towards relationship

management throughout the software process.

Inspection. Inspection (Ebenau and Strauss 1994) is a rigorous form of
auditing based upon peer review that, when practiced well, can help in
error prevention in UML artifacts. Inspections have proved to be an
effective technique in improving the overall quality of UML Class

Diagrams (Conradi et al. 2003). However, there are issues of the cost-
benefit ratio and the dependency of adoption based upon organizational

process maturity. There is an initial cost overhead, as each participant
needs to be trained in the structured review process and there are logistics

of checklists, forms, and reports involved. In some process maturity
models such as the Capability Maturity Model (CMM) (Paulk et al.

1993), adoption of inspections amounts to achieving at least Level 3, to
which a considerable number of organizations do not qualify today.

Testing. Testing is a dynamic verification technique that can ameliorate
the tedium involved in human-oriented examinations such as reviews
and inspections. For example, dynamic testing of UML design artifacts
in which behavioral models are executed can reveal defects at the design
level before they are implemented (Trong 2003). Executable UML lends



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 101

itselfwell to testing. The drawbacks of testing UML artifacts are that not
all aspects can be tested automatically and that the test suites and
harnesses necessary for a thorough testing are not available today.

Measurement. Measurement can provide a means for quantitative evaluation

of quality. There are direct and indirect measures for UML that
apply to an artifact as a whole as well as to specific diagram types and
individual constructs (Chidamber and Kemerer 1994; Harrison et al.

1998; Genero et al. 2002; Kim and Boldyreff 2002; Rufai 2003). These
metrics give an assessment of structural complexity of a UML artifact,
such as, the number of nodes (classes, states, Actors, Use Cases, Packages,
and so forth) and vertices (associations), amount of internal reuse or the
lack thereof (inheritance, polymorphism) or degree of coupling; behavioral

complexity by counting the number of associations in a Use Case

Diagram, messages in a UML Sequence Diagram, entry/exit actions and
transitions in a UML State Machine Diagram.

The use of metrics to get informed about quality criteria faces some
obstacles. The main challenge in the use of metrics is that improvement
m one measure can lead to deterioration in another. In absence of
weights of significance associated with each metric (which should not be

prescribed apriori by the producer of the artifact) we cannot always make
a unique informed decision. For example, if reducing the number of
nodes in a diagram means distributing them over more than one
diagram, then it cannot be trivially concluded that we have reduced the
overall complexity. Most of the metrics are introduced and used on
empirical grounds, and are not formally validated against the representational

theory of measurement (Fenton and Pfleeger 1997). Not all metric

suites provide a precise measurement scale. For non-trivial artifacts,
manual calculations using metrics are tedious and require tool support.
However, support for metrics in UML modeling tools is not widespread.

Tool Support for Automation and Modeling. UML syntax-sensitive tools or
modelers can assist in successfully realizing the other mechanisms of achieving

semiotic goals in practice. The public availability ofUML Specifications
has allowed tool builders that may not be members of OMG to enter the
arena and there are several UML modelers in use today. An authors expertise

of crafting UML models is ultimately only as good as the tool being
deployed. (This is a significant departure from programming where the
source code does not have to be bound closely to any specific editor.)



102 PANKAJ KAMTHAN

However, as some surveys have shown (Robbins 1999, Krogstie
2001), there are stark differences between commercial and non-commercial

tools with respect to their features (conformance to official definition
and versions of UML (Eichelberger 2003), implementation of layout
algorithms (Purchase et al. 2001), flexibility in altering properties of
UML constructs, available import/export formats, support for guidelines,

patterns, automatic refactoring, and metrics). This can directly or
indirectly affect the quality of a UML artifact. In a recent empirical
evaluation of UML modeling tools based on Software Usability
Measurement Inventory (SUMI) (Kirakowski 1993) at our institution, it
was concluded that high-end commercial tools tend to provide a high
degree of user satisfaction. The choice of the modeler being used is therefore

crucial. Apart from the features and ergonomics of the modeler, a

justified choice must also include considerations of sustainability of the
modeler and its degree of neutrality with respect to the artifact

import/export format. One of the challenges faced today in the use of
most UML modelers is that they do not provide support for other
artifacts that are created independently using different means.

With the details of the quality framework in place, we can now
address the specifics of applying it to the three levels of semiotics.

3. Addressing Semiotic Quality of UML Artifacts

In this section, we discuss how the entities of the micro-architecture
manifest themselves. Lor each semiotic level, the corresponding goal(s)
are given and the scenarios when the goals are not complied with are
described. The criteria and applicable mechanisms to realize the goals are
then elaborated. Table 1 (a)-(c) together summarize the treatment of quality

of UML artifacts with respect to the syntactic, semantic, and
pragmatic semiotic levels. In that order, the view of quality, and to a certain

extent the degree of difficulty of dealing with it, moves in three orthogonal

directions: from internal (artifact with no environment) to external

(artifact in presence of environment), from single to multiple at a given
time, and from non-dynamic (static or constant) to dynamic (variable).

3.1. Syntactic Quality

Syntactic quality is a measure of how well an artifact accommodates its

contract with a single constant entity - the UML. The goals, criteria, and



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 103

mechanisms that we now describe are driven by this static internal view
(Table 1(a)).

Table 1(a): Detailed Outline of the UML Quality Framework: Syntactics.

Goals Criteria Mechanisms

Correctness

External Attributes
UML-Stakeholder
Suitability
Simplicity
Interoperability
Standardization

Internal Attributes
Primary
Notation
Format

Quality Assurance

Training in Use of
UML
Pair Modeling

Quality Evaluation

Inspection
Measurement
o Metrics

Tool
Support

Feasibility Analysis

Goals. There is only one goal for syntactic quality of a UML artifact:
syntactic correctness (Lindland et al. 1994). This means that all statements
m the artifact should be according to the syntax as defined by the UML
Specification it claims to conform to. The corresponding violations of the

syntax will lead to a syntax error caused either by morphological errors or
due to syntactic incompleteness. Morphological errors can occur, for
example, if UML constructs overlap or if elements from different
versions of UML are included in an artifact or if extension mechanisms
(stereotypes, tagged values, or constraints) are incorrectly used or if there
is a datatype mismatch. Syntactic incompleteness can occur, for example,
if one of the nodes at the end of an association is non-existent or if the
datatype value in an attribute of a UML Class Diagram is missing. The
origin of many of these errors is that UML visual syntax is weak with
respect to syntactic disjointness and syntactic differentiability (Morris,
Spanoudakis 2001).

External Attributes. The UML-stakeholder suitability discussed above is

obviously a relevant attribute. It is easier to introduce and detect errors
m a complex diagram with many constructs; hence simplicity is a

relevant attribute. For example, it is useful to split large Use Cases into multiple

sub-Use Cases. With respect to the syntax, interoperability and
standardization are somewhat related. Although all syntax must conform to
the standard UML definition, it is possible to produce a syntactically correct

UML artifact that is not interoperable with any of the UML modelers

and therefore would not be of much use from the viewpoint of a

consumer.



104 PANKAJ KAMTHAN

Internal Attributes. The UML primary notation and format are relevant
internal attributes. With respect to the UML primary notation, there

must be a match between any construct used and the version of UML to
which the artifact claims conformance. The format itself has no direct
bearing on correct syntax, but when errors occur, then some formats may
be easier to deal with than others.

Mechanisms. There are three syntactic mechanisms: error prevention,
error detection (and location), and error correction. Error prevention is

primarily useful for morphological errors and detection is useful for
syntactic incompleteness. Any mechanism deployed must be feasible. There
is no substitute for proper training in UML for error prevention. Static

or dynamic verification techniques could be used for syntax checking.
Pair modeling can help in error prevention, while inspections can help in
error detection and subsequent correction in UML artifacts. Error
prevention and detection is readily possible with the use of a UML modeler

that provides dynamic checking of syntax. (This would not be possible

if the model was being crafted using an ordinary illustration or drawing

program.) Automatic error correction with a modeler is possible for
only trivial cases such as when the modeler knows that there must be a

unique association missing between only two given constructs (say, an
Actor and a Use Case). It should be noted that direct manual authoring
of markup is verbose and prone to error. However, if the underlying
format of a UML artifact is serialized in XML, error correction (with a
regular expressions-based pattern matching script running under a shell

environment along with human input) on the command line is possible
in most cases. This can be particularly convenient and efficient compared
to modeler-based correction if identical errors in several models need to
be corrected. In some cases, such as spelling or grammatical error in a

UML Note construct, human intervention may be the only option as

modelers do not normally process purely natural language text. A simple
indirect measure such as the syntax error ratio or error cost (Cost per
Number of Errors Detected) can help determine the effort required for
error correction.

3.2. Semantic Quality

Semantic quality is a measure of how well an artifact accommodates its

contract with a single variable entity - the domain that it represents. The



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 105

goals, criteria, and mechanisms that we now describe are driven by this
dynamic external view (Table 1(b)).

Table 1 (b): Detailed Outline ofthe UML Quality Framework: Semantics.

Goals Criteria Mechanisms

Validity and
Completeness

External Attributes
Domain-UML
Suitability
Clarity
o Semantic

Clarity
Consistency
o Visual

Coherence

Familiarity

Internal Attributes
Primary
Notation
Secondary
Notation
Size

Structure

Quality Assurance

Training in Use of
UML
Training in Use of
Secondary Notation
Metadata

o Annotation
Pair Modeling

Quality Evaluation
Checklist

Inspection
Measurement

o Metrics

Tool
Support

Feasibility Analysis

Goals. There are two complementary goals for semantic quality of a UML
artifact: semantic validity and semantic completeness (Lindland et al.

1994). Validity means that all statements made by the artifact are correct
and relevant to the domain under study; an artifact containing an
extraneous statement will result in a non-validity. Completeness implies that
the artifact contains all the statements about the domain that are correct
and relevant; an artifact that contains an incomplete statement according
to the domain will result in non-completeness. Validity indicates necessity

while completeness indicates sufficiency with respect to the domain.
Both the goals are open-ended and can be achieved in their entirety in
only but trivial cases. A main source of non-validity is attempts to retrofit

UML constructs to concepts in the domain for which they are not
suitable. As discussed in Section 2.1.2, it is difficult to be semantically
complete in UML for problem domains due to its limited expressive
power. Therefore, a feasibility constraint (Lindland et al. 1994) must be

applied to the goals for them to be realistic.

ExternalAttributes. The domain-UML suitability discussed above is

obviously a relevant attribute. Semantic clarity is necessary in the use any
combination of constructs and in the text being used. For example, the
text included in a UML Note construct should make sense with respect
to the domain. Consistency is necessary for both validity and completeness.

Familiarity from past projects can help avoid similar errors.



106 PANKAJ KAMTHAN

InternalAttributes. The UML primary and secondary notation, artifact
size, and structure are the relevant internal attributes. With respect to
primary notation, for example, a UML Class Diagram representing a

desk having an attribute legs with a negative value would be a semantic

error. An appropriate choice of diagram types for representing structural

and behavioral aspects along with their suitable level of abstraction

and refinement is necessary. Colors if used can indicate semantic
similarities and differences between concepts, and labels must attempt
to capture domain terminology. Size is relevant as, for example, in a

hierarchy of UML Class Diagrams, the diagram with the largest dimensions

could signify the main class. Aspects of (in)dependency of
objects, message passing, and so forth, are often captured in relationships,

giving an artifact a structure that can help identify certain
semantic errors. For example, a UML Sequence Diagram that consists
of only requests and no responses would result in a semantic error with
respect to most domains.

Mechanisms. Training in both the use of UML primary notation and the

secondary notation is required. At any given time, a UML artifact must
avoid domain co-occurrrence, that is, try to represent only one of problem

or solution domain. Pair modeling can help prevent such semantic

errors and inspection can help correct them. Proper use of domain-specific

annotations can encapsulate intent and can also help highlight
semantic errors. There are modelers that can perform consistency checking,

albeit only at a basic level as they tend to be domain-neutral.

3.3. Pragmatic Quality

Pragmatic quality is a measure of how well an artifact accommodates its

contract with respect to multiple variable entities - the stakeholders. The
goals, criteria, and mechanisms that we now describe are driven by this

dynamic external view (Table 1(c)).



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 107

Table 1(c): Detailed Outline of the UML Quality Framework: Pragmatics.

Goals Criteria Mechanisms

External Attributes Internal Attributes Quality Assurance
Domain-UML- Secondary Training in Use of
Stakeholder Notation UML
Suitability Size Training in Use of
User Preference o External Secondary Notation
Clarity Reuse Metadata

o Semantic Structure o Annotation

Comprehension Clarity o Internal Pair Modeling Tool
o Visual Clarity Reuse Refactoring Support

Consistency o Coupling Quality Evaluation
o Visual Format Checklist

Coherence Inspection
Simplicity Measurement

Familiarity o Metrics
Interoperability
Standardization

Feasibility Analysis

Goals. There is only one goal for pragmatic quality of a UML artifact:
comprehension by stakeholders (Lindland et al. 1994). Despite the
claims (Dong and Yang 2003), knowledge represented using UML is
neither automatically nor directly accessible to humans by the mere fact that
the artifacts are graphical in nature (Gurr and Tourlas 2000). The goal of
comprehension is open-ended. For a non-trivial artifact, it is not realistic
that each stakeholder will be able to comprehend each statement made
by the artifact in its entirety at all times. This motivates the adoption of
feasible comprehension (Lindland et al. 1994). A comprehension is feasible

if the cost of reducing the misunderstood statements in an artifact
does not exceed the drawbacks of retaining them. "We also note here that
comprehension is (ISO 2001) a necessary prerequisite for quality factors
bke learnability, maintainability, satisfiability, and usability.

External Attributes. The triad of domain-UML-stakeholder suitability is
a relevant attribute. Users may prefer one diagram type to the other for
the sake of understanding. The significance of clarity, consistency, and

simplicity towards understanding are well-known in cognitive psychology.

Familiarity can improve comprehension by reusing knowledge. For
example, a stakeholder in a role of non-technical participant will be more
comfortable with names such as RegisteredUser rather than design
°r implementation-specific ID-123. Interoperability is necessary as

same artifacts could be processed and viewed by different tools.
Standardization reduces unpredictability on part of stakeholders.



108 PANKAJ KAMTHAN

InternalAttributes. The UML secondary notation, size, structure and the
format being used are the relevant internal attributes. Much of the
discussion on secondary notation in Section 2.2 applies and, along with size

and format, is important for clarity and simplicity. The external reuse of
the constructs has a direct impact on familiarity for a stakeholder that

may have already interacted with these constructs in the past. High
coupling usually leads to a complex structure that in turn can have negative
impact on comprehension.

Mechanisms. Training in both the use of UML primary notation and the

secondary notation is required for the producers to make proper use of
the latter. Non-technical stakeholders and consumers would need training

in the UML primary notation but could be helped further with proper
annotations for unfamiliar terminology. The style guidelines of

(Ambler 2003) and patterns of (Evitts 2000) can serve as a basis for a

checklist against which an informal pragmatic quality evaluation can be

carried out. Pair modeling and inspection (where feasible) can tackle

most internal attributes. Refactoring aims to improve structure with the

goal of increasing comprehension but obviously applies only to the existing

base of artifacts. Some UML modelers also have internally
implemented their own set of style guidelines and refactorings that can be

applied (semi)automatically. The object-oriented metrics for coupling of
(Chidamber and Kemerer 1994; Harrison et al. 1998) have been
implemented in some modelers.

3.3.1. Example

Figure 2 illustrates two artifacts with UML Class Diagrams where one is

a pragmatic quality improvement over the other. There are several
pragmatic quality issues in the artifact in Figure 2(a). There is no rationale for
differences in node sizes or their positioning. The color variations are

unjustified. Node 1 label has low visibility on a low-to-medium resolution

computer monitor and on a black and white printer. The relationships

are unclear (whether nodes 1 and 2, or nodes 3 and 4 are related).
It is inconvenient to place text labels on vertices (1,4) and (3,2) as they
are non-horizontal.

Figure 2(b) can be viewed as a result of a sequence of simple refactoring

methods (Consistent Node Size, Consistent Color, and Use Grid
Architecture) of 1(a). The background of nodes in (b) has been set to a



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 109

uniform color different from its surroundings (white on paper) but at a

very different value from that of the labels.

(a) (b)

Figure 2: Thepragmatic quality issues ofthe artifact in (a) are ameliorated in (b).

4. Conclusion

UML artifacts are organizational assets in software process environments
that embrace them and must strive for high quality to be useful for their
target stakeholders. In conclusion, we make the following recommendations

to an organization that values the production and long-term viability

of UML artifacts.

For any software project, domain engineering is a must, and it helps
decide the suitability (if at all) and the extent of UML use: it is always
the underlying domain that should drive the deployment of any modeling

language and UML is not a silver bullet. Unfortunately, this aspect is

often ignored (Offen 2002) and a rush to production leads to a myriad
of issues later in the process.
If the UML artifacts are central to an organization, they must be treated

accordingly. When they are significant in number, their production
process should be systematically planned. This is possible by setting up a

sub-process within the process of the target product and is no different
from other artifacts such as software process documentation. As a prerequisite,

the producers of UML artifacts must be trained in both the
fundamentals of UML and its secondary notation.

It is worthwhile investing in a UML modeler that provides facilities
rhat help carrying out the mechanisms for targeting semiotic quality. For
the sake of longevity, it is crucial that the life of a UML artifact is not tied
to that of a modeler.



110 PANKAJ KAMTHAN

Since criteria are not all equal in all situations and there are no perfect
mechanisms, a feasibility analysis prior to any decisions is necessary. One
possible approach in this case is to prioritize the criteria based on
organizational needs and adopt mechanisms based on that. Fortunately, not all
mechanisms are needed simultaneously in the production process.

There are two problem areas that emanate from this work. The
integration of UML artifacts in a larger context of a generic software
documentation environment based on XML holds promise. For example,
some of the deficiencies of UML towards representing requirements can
be compensated by the use of formal specification languages (Alagar and

Periyasamy, 1998). This would give rise to heterogeneous documents
that consist of diagrams, mathematical expressions, tables, and so forth,
in descriptive markup. The issue of the quality of resulting markup itself
then eventually arises. The limitations of UML such as towards conceptual

data modeling or reactive systems have led to the introduction of
other visual languages such as Object Role Modeling (ORM) (Halpin
1998) and Use Case Maps (UCM) (Buhr 1998) for modeling software.

Addressing quality of artifacts in these languages would be of interest. We

anticipate these as future research directions.

Acknowledgements

The author would like to thank Olga Ormandjieva and Hsueh-Ieng Pai

(Concordia University, Montreal, Canada) for early impetus, and the
reviewers for their detailed comments and helpful suggestions on this

paper.



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 111

References

Alagar, V.S. & PERIYASAMY, K. (1998). Specification of Software Systems. New York:
Springer-Verlag.

Alexander, C. (1979). The Timeless Way of Building. Oxford: Oxford University Press.

Ambler, S.W. (2003). The Elements of UML Style. New York: Cambridge University
Press.

Arlow, J.; Emmerich, W. & Quinn, J. 1998) Literate Modelling - Capturing Business

Knowledge with the UML. First International Conference on the Unified Modeling
Language («UML» 1998). Mulhouse, France. London: Springer Verlag.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Uppler Saddle
River, USA: Addison-Wesley.

Boehm, B.W et al. (2001). Software Cost Estimation with COCOMO II. Uppler
Saddle River, USA: Prentice Hall.

Booch, G.; JACOBSON, I. & Rumbaugh, J. (2005). The Unified Modeling Language
Reference Manual. Second Edition. Uppler Saddle River, USA: Addison-Wesley.

BOTASCHANJAN, J.; PlSTER, M. & RUMPE, B. (2004). Testing Agile Requirements
Models. Journal ofZhejiang University Science 5/5: 587-593.

Bray, t. et al. (2004). Extensible Markup Language (XML) 1.0 (Third Edition). W3C
Recommendation. Cambridge, USA: World Wide Web Consortium.

Britton, c.; Kutar, M.; Anthony, S. & Byarker, T. (2002). An Empirical Study of
User Preference and Performance with UML Diagrams. Proceedings ofSymposia on
Human Centric Computing Languages and Environments. Arlington, USA.
Washington: IEEE Computer Society.

Brodsky, S. & GROSE, T. (2002). Mastering XMI: Java Programming with the XMI
Toolkit, XML and UML. Hoboken: John Wiley & Sons.

Buhr, R.J.A. (1998). Use Case Maps as Architectural Entities for Complex Systems.
IEEE Transactions on Software Engineering 24/12. Washington: IEEE Computer
Society: 1131-1155.

Carlson, D. (2001). Modeling XML Applications with UML. Uppler Saddle River,
USA: Addison-Wesley.

Chidamber, S. R. & Kemerer, C. F. (1994). A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering 20/6. Washington: IEEE
Computer Society: 476-493.

Coad, P.; Lefebvre, E. & Deluca, J. (1999). Java Modeling in Color with UML:
Enterprise Components and Process. Uppler Saddle River, USA: Prentice Hall.

Comber, T. (1993). The Importance of Text Width and White Space for Online
Documentation. Honours Thesis. School of Multimedia and Information
Technology. Southern Cross University, New South Wales, Australia.

Conallen, J. (2003). Building Web Applications with UML. Second Edition. Uppler
Saddle River, USA: Addison-Wesley.

Conradi, R. et al. (2003). Inspection of UML Diagrams using OORT - An Industrial
Experiment. European Conference for Object-Oriented Programming (ECOOP
2003). Darmstadt. New York: Springer-Verlag.

Da Silva, P.P. & Paton, N. (2003). Improving UML Support for User Interface Design:
A Metric Assessment of UMLi. ICSE 2003 Workshop on Bridging the Gaps between



112 PANKAJ KAMTHAN

Software Engineering and Human-Computer Interaction. Portland, USA.
Dl Battista, G.; Eades, P.; Tamassia, R. & Tollis, I.G. (1999). Graph Drawing:

Algorithms for the Visualization of Graphs. Uppler Saddle River, USA: Prentice-Hall.

Dong, J. & Yang, S. (2003). Extending UML to Visualize Design Patterns in Class

Diagrams. Fifteenth International Conference on Software Engineering and

Knowledge Engineering (SEKE 2003). San Francisco. New York: ACM Press.

DOUGLASS, B.P. (2004). Real Time UML: Advances in the UML for Real-Time

Systems. Uppler Saddle River, USA: Addison-Wesley.
Ebenau, R.G. & Strauss, S.H. (1994). Software Inspection Process. New York:

McGraw-Hill.
Eichelberger, H. (2003). Nice Class Diagrams Admit Good Design? Proceedings of

the 2003 ACM Symposium on Software Visualization. San Diego. New York: ACM
Press: 159-216.

Eppler, M.J. (2001). The Concept of Information Quality: An Interdisciplinary
Evaluation of Recent Information Quality Frameworks. Studies in Communication
Sciences 1/2: 167-182.

ERIKSSON, H.-E. & Penker, M. (2000). Business Modeling with UML: Business

Patterns at Work. Hoboken, USA: John Wiley & Sons.

EviTTS, P. (2000). A UML Pattern Language.Town: Macmillan Technical Publishing.
Fenton, N.E. & PFLEEGER, S.L. (1997). Software Metrics: A Rigorous & Practical

Approach. Toronto: International Thomson Computer Press.

Ferraiolo, J.; FUJISAWA, J. & Jackson, D. (2003). Scalable Vector Graphics (SVG) 1.1

Specification. W3C Recommendation. Cambridge, USA: World Wide Web
Consortium.

FOWLER M. et al. (1999). Refactoring: Improving the Design of Existing Code. Upper
Saddle River, USA: Addison-Wesley.

FOWLER, M. et al. (2003). UML Distilled: A Brief Guide to the Standard Object
Modeling Language. 3"1 Edition. Upper Saddle River, USA: Addison Wesley.

Genero, M.; Miranda, D. & Piattini, M. (2002). Defining and Validating Metrics
for UML Statechart Diagrams. Sixth ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE 2002). Malaga.
New York: Springer-Verlag

Gilb, T. (1988). Principles of Software Engineering Management. Upper Saddle River,
USA: Addison-Wesley.

Glinz, M. (2000). Problems and Deficiencies of UML as a Requirements Specification
Language. Proceedings of the 10th International Workshop on Software Specification
and Design (IWSSD-10). San Diego. Washington: IEEE Computer Society.

Green, P. & Edwards, M. (2004). Enhancing UML to Support the Specification of
Behavior for Embedded Systems-on-a-Chip. Presentation at the UML-SoC
Workshop 2004. Theme: UML for SoC Design. San Diego. Washington: IEEE.

Gurr, C. (1999). Effective Diagrammatic Communication: Syntactic, Semantic and

Pragmatic Issues.Journal ofVisual Languages and Computing. 10/4. Cambridge, UK:
Academic Press: 317-342.

Gurr, C. & Tourlas, K. (2000). Towards the Principled Design of Software

Engineering Diagrams. Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000). Limerick. Washington: IEEE Computer
Society: 509-518.



A FRAMEWORK FOR ADDRESSING THE QUALITY OF UML ARTIFACTS 113

Halpin, T.A. (1998). A Comparison of UML and ORM for Data Modeling.
Proceedings of 3rd IFIP WG8.I International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD'98). Pisa. Hershey, USA:
IDEA Group.

Harrison, R.; Counsell, S. J. & Nithi, R. V. (1998). An Evaluation of the MOOD
Set of Object-Oriented Software Metrics. IEEE Transactions on Software
Engineering 24/6. Washington: IEEE Computer Society.

ISO. (1994). ISO 8402:1994. Quality Management and Quality Assurance —
Vocabulary. Geneva: ISO.

ISO. (2001). ISO/IEC 9126-1:2001. Software Engineering—Product Quality — Part
1: Quality Model. Geneva: ISO.

Jacobson, R.E. & Wurman, R.S. (1999). Information Design. Cambridge, USA:
MIT Press.

KlM, H. & BOLDYREFF, C. (2002). Developing Software Metrics Applicable to UML
Models. Sixth ECOOP Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE 2002). Malaga. New York: Springer-Verlag.

Kirakowski, J. (1993). Software Usability Measurement Inventory (SUMI). Human
Factors Research Group, University College Cork, Cork.

Kleppe, A.; Warmer, J. & Bast, W. (2003). MDA Explained, The Model Driven
Architecture: Practice and Promise. Upper Saddle River, USA: Addison-Wesley.

Krogstie, J. (1998). Integrating the Understanding of Quality in Requirements
Specification and Conceptual Modeling. ACM SIGSOFT Software Engineering
Notes 23/1, New York: ACM Press: 86-91.

Krogstie, J. (2001). Using a Semiotic Framework to Evaluate UML for the
Development of Models of High Quality. In: SlAU, K. & Halpin, T. (eds). Unified
Modeling Language: Systems Analysis, Design and Development Issues. Hershey,
USA: IDEA Group.

KRUCHTEN, P. (2004). The Rational Unified Process: An Introduction. Third Edition.
Upper Saddle River, USA: Addison-Wesley.

KARMAN, C. (2002). Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. 2"d Edition. Upper Saddle River, USA:
Prentice Hall.

Lethbridge, T.C. & LaganiÈRE, R. (2001). Object-Oriented Software Engineering:
Practical Software Development using UML and Java. New York: McGraw-Hill.

Lindland, O.I.; SlNDRE, G. & S0LVBERG, A. (1994). Understanding Quality in
Conceptual Modeling. IEEE Software 11/2: 42-49. Washington: IEEE Computer
Society: 42-49

Mellor, S.J. & BalCER, M.J. (2002). Executable UML: A Foundation for Model-
Driven Architecture. Upper Saddle River, USA: Addison-Wesley.

Miller, G.A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information. The Psychological Review 63.
Washington: American Psychological Association: 81-97.

Moody, D.L. & Shanks, G.G. (2003). Improving the Quality of Data Models:
Empirical Validation of a Quality Management Framework. Information Systems
28/6. Amsterdam: Elsevier: 619-650.

Morris, C.W. (1938/1970). Foundations of the Theory of Signs. International
Encyclopedia of Unified Science 1/2. Chicago: Chicago University Press.



114 PANKAJ KAMTHAN

MORRIS, S. & Spanoudakis, G. (2001). UML: An Evaluation of the Visual Syntax of
the Language. Proceedings of the 34th Annual Hawaii International Conference on
System Sciences (HICSS-34).Washington: IEEE

Offen, R. (2002). Domain Understanding is the Key to Successful System
Development. Requirements Engineering 7/3. New York: Springer-Verlag: 172-175.

PAULK, M.C. et al. (1993). Capability Maturity Model, Version 1.1. IEEE Software
10/4. Washington: IEEE Computer Society: 18-27.

PETRE, M. (1995). Why Looking Isn't Always Seeing: Readership Skills and Graphical
Programming. Communications ofthe ACM 38/6. New York: ACM Press: 33-44.

PrEECE, J.; ROGERS, Y. & Sharp, H. (2002). Interaction Design: Beyond Human-
Computer Interaction. Hoboken, USA: John Wiley & Sons.

PURCHASE, H.C. et al. (2001). Graph Drawing Aesthetics and the Comprehension of
UML Class Diagrams: An Empirical Study. Australian Symposium on Information
Visualisation, Sydney 9. New York: ACM Press: 129-137.

Reingruber, M. & Gregory, W. (1994). The Data Modeling Handbook: A Best-Practice

Approach to Building Quality Data Models. Hoboken, USA: John Wiley & Sons.

RiGDEN, C. (1999). The Eye of the Beholder: Designing for Colour-Blind Users. British
Telecommunications EngineeringJournal 17. Hoboken, USA: John Wiley & Sons.

ROBBINS, J. (1999). Assessing UML and Usability. Presentation at Bay Area Roundtable
(BART). Irvine Research Unit in Software. Information and Computer Science.

University of California, Irvine, USA.
Rosenberg, D & Scott, K. (1999). Use Case Driven Object Modeling with UML: A

Practical Approach. Upper Saddle River, USA: Addison-Wesley.
Rufai, R. (2003). New Structural Similarity Metrics for UML Models. Masters Thesis.

King Fahd University of Petroleum & Minerals. Dhahran.
SHANKS, G. (1999). Semiotic Approach to Understanding Representation in

Information Systems. Proceedings of the Information Systems Foundations

Workshop. Department of Computing, Macquarie University, Australia.
Shanks G; Tansley, E. & Weber R. (2003). Using Ontology to Validate Conceptual

Models. Communications of the ACM 46/10. New York: ACM Press: 85-89.
Shneiderman, B. & Plaisant, C. (2005). Designing the User Interface: Strategies for

Effective Human-Computer-Interaction. Upper Saddle River, USA: Addison-Wesley.
Schneidewind, N.F. & Fenton, N.E. (1996). Do Standards Improve Product

Quality? IEEE Software 13/1. Washington: IEEE Computer Society: 22-24
SUNYE, G. et al. (2001). Refactoring UML Models. Fourth International Conference on

the Unified Modeling Language (UML 2001). Toronto. New York: Springer-Verlag.
Trong, T.T.D. (2003). A Systematic Procedure for Testing UML Designs. l4'h

International Symposium on Software Reliability Engineering (ISSRE 2003).
Denver. Washington: IEEE Computer Society.

Van Solingen, R. & Berghout, E. (1999). The Goal/Question/Metric Method: A
Practical Method for Quality Improvement of Software Development. New York:
McGraw-Hill.

Warmer, J. & Kleppe, A. (2003). The Object Constraint Language: Precise Modeling
With UML. Second Edition. Upper Saddle River, USA: Addison-Wesley.

Williams, L. & Erdogmus, H. (2002). On the Economic Feasibility of Pair

Programming. Fourth Workshop on Economics-Driven Software Engineering
Research (EDSER-4). Orlando, FL. New York: ACM Press.


	A framework for addressing the quality of UML artifacts

