Zeitschrift: Tec21

Herausgeber: Schweizerischer Ingenieur- und Architektenverein

Band: 142 (2016)

Heft: 12-13: Natur - Gefahr - Risiko

Rubrik: Panorama

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BRÜCKENSICHERUNG IN BERN

Fangnetz im Gleichgewicht

Schnetzer Puskas Ingenieure und Rolf Mühletaler Architekten haben für Bern Sicherungsnetze für die Kirchenfeldund Kornhausbrücke geplant und mit der Stadt ausgeführt.

Text: Clementine Hegner-van Rooden

Das Fangnetz an der Kirchenfeldbrücke als kontinuierliches Band: Im weitmaschigen Edelstahlseilnetz (Maschen: 180×313 mm; 3 mm Drahtseile) sind die Maschen hülsenlos zusammengeflochten. Einzelne Netzteile (parabelförmiges Schnittmuster) sind mit Verpresshülsen auf der Baustelle zusammengefügt worden und können künftig ausgetauscht werden.

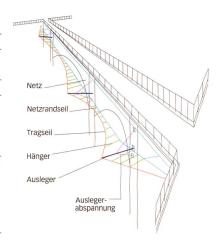
ie Aare zieht eine Schlaufe um die Berner Altstadt, die seit 1983 zum Welterbe der UNESCO zählt, und formt so den typischen Charakter der Halbinsel. Hatte es zu Beginn nur die Untertorbrücke gegeben, waren ab dem 19. Jahrhundert weitere Brücken erforderlich. Denn die Stadt wuchs über die Halbinsel hinaus, und die verschiedenen Stadtteile sollten erschlossen werden. Am Schlaufenhals spannen die Kirchenfeld- und die Kornhausbrücke über den Fluss.

Die etwa 37 m hohe Kirchenfeldbrücke ist seit 1883 in Betrieb (Entwurf: Ingenieur Moritz Probst und Jules Röthlisberger von der Metallbaufirma Gottlieb Ott& Cie in Bern). Sie verbindet die Altstadt mit dem Kirchenfeldquartier und ist 229 m lang, besteht aus zwei gelenklosen 87 m weit gespannten Fachwerkbogen aus Schweisseisen, einem Pfeiler in der Talmitte und den Widerlagern an den Talhängen. Darauf aufgeständert ist die Fahrbahn. Die Brücke steht unter Denkmalschutz, und weil

sie einen guten Aussichtspunkt mit Blick auf das Bundeshaus bietet, ist sie eine Touristenattraktion.

Die 355 m lange Kornhausbrücke wurde 15 Jahre später eröffnet (Entwurf: Ingenieur Paul Simons, Theodor Bell & Cie. AG aus Kriens und Gutehoffnungshütte in Oberhausen). Sie verbindet die Altstadt mit dem Breitenrainquartier und dem nördlichen Teil Berns. Zwischen zwei markanten Kämpferpfeilern spannt ein gelenkloser 115 m weiter Gitterbogen. Auf Bogen und Pfeilern

ist die Fahrbahn aufgeständert. Beidseits des Bogens schliessen ein bzw. vier kleinere 34 m weit gespannte Zweigelenkbögen und jeweils ein Balkenrandfeld an.


Sowohl die Kirchenfeld- als auch die Kornhausbrücke gelten als Anziehungspunkte für Suizide. Um vorzubeugen, liess die Stadt deshalb 2009 provisorische, 2.80 m hohe Sicherheitsnetze montieren. Sie waren vertikal und nur partiell angebracht und genügten den ästhetischen und denkmalspezifischen Anforderungen nicht. Die Direktion für Tiefbau, Verkehr und Stadtgrün beauftragte ein Projektteam, eine definitive Lösung zu finden. Das Ingenieur-Architekten-Team Schnetzer Puskas Ingenieure und Rolf Mühlethaler konstruierte Netze, die den gestellten Ansprüchen gerecht werden. Für die Verankerungen waren die Brückeningenieure Bächtold & Moor und die Ingenta zuständig.

Seit Ende November 2015 sind nun horizontale Netze angebracht, die die Sicht auf die und von

der Brücke offen lassen und zugleich die sicherheitsspezifischen Anforderungen erfüllen. Horizontale Sicherheitsnetze sind eine wirksame Präventionsmassnahme gegen Brückensuizide, wenn sie denn mindestens 3 m unter der Fahrbahn bzw. 4 m unter der Geländeroberkante montiert werden. 1 Das Projektteam ordnete die Netze beidseits der Kirchenfeldbrücke entsprechend auf 3 m Tiefe ab Oberkante Fahrbahn an. Bei der Kornhausbrücke sind die Netze in einer Tiefe von 1.6 m montiert; gestalterische und städtebauliche Aspekte begründen diesen Kompromiss zwischen Gestaltung und Anforderung an die Suizidprävention.

Optisch und statisch im Gleichgewicht

Die Netzkonstruktionen beider Brücken sind konstruktiv ähnlich. Sie unterscheiden sich im Detail und passen sich an die gegebenen Spannweiten sowie an die bestehende his-

Schematische Netzkonstruktion inklusive Bezeichnung der Tragelemente.


torische Brückenkonstruktion an. Das Ingeniöse an der Konstruktion ist, dass alle Bauteile tragend mitwirken – auch das Netz. Dieses ist grundsätzlich über seinen inneren Rand am Brückenuntergurt fixiert und aussen über Hänger am Tragseil befestigt. Das Tragseil mit einem Nenndurchmesser von etwa 31 mm

Zeitloses Design, maximale Wärmedämmung, nicht sichtbare Motoren und optimaler Lichteinfall: Ein VELUX Flachdach-Fenster vereint Funktionalität und Ästhetik in einem und fügt sich perfekt in jede Architektur ein. Die geprüfte Durchsturzsicherheit ohne störende Schutzgitter sorgt für Sicherheit auf hohem Niveau. Mehr Lichtblicke für mehr Tageslicht finden Sie auf velux.ch/flachdach

14 Panorama TEC21 12-13/2016

Kräftedreiecke am Ausleger unter Eigenlast (links) und unter Eigen- und Nutzlast (rechts): Die auskragenden Ausleger haben eine flache Neigung von ca. 18 bzw. ca. 30° bezüglich der Horizontalebene, die der Abtragung von vertikalen Kraftkomponenten dient. Mittels zweier Abspannseile werden die Ausleger an die Brücke rückverankert. Durch die Seilvorspannung werden die Stützpunkte des Tragseils (Abrollsattel) überwiegend mit einer horizontalen Kraftkomponente belastet. Theoretisch ist also nur ein Abspannseil nach unten erforderlich. Die Abspannungen gegen oben sind in der Endlage immer Nullstäbe. Sie stellen die Lage der Ausleger während der Bau- und der Endlage sicher und erhöhen die Steifigkeit des Systems bei Winderregung und bei einem Ereignis, für das es ausgelegt ist.

ist ein vollverschlossenes Seil mit einer charakteristischen Bruchkraft von 916 kN. Die inneren Lagen sind feuerverzinkt, die äusseren Zink-Aluminium-beschichtet (galfanverzinkt). Das Tragseil ist an den Brückenwiderlagern verankert. Es hat einen Durchhang in der horizontalen Ebene und stützt sich über Abrollsattel auf geneigte Stahlstützen, die als Ausleger wirken und an den Brückenpfeilern befestigt sind.

Die Stützung des Tragseils an den Brückenpfeilern widerspiegelte das statische Konzept der Brücke selbst. Das statische System der neu hinzugefügten Seilkonstruktion unterstützt so architektonische und städtebauliche Anforderungen und verflicht sich mit der historischen Bausubstanz.

Anfangs- und Endgeometrie

Um den relativ komplexen Bauvorgang der Seilkonstruktion zu vereinfachen, waren die Mitarbeiter von Schnetzer Puskas Ingenieure aus Basel erfinderisch. Die Tragelemente sind in ihrer Länge und Lage so aufeinander abgestimmt, dass sie im Bauzustand lose montiert und

zusammengefügt werden können. Mit ihrer Verschiebung in die Endlage «fallen» sie genau ins Kräftegleichgewicht: In einem ersten Schritt liessen die Ingenieure die Endverankerungen in den Widerlagern und die Verankerungen der Hänger und Ausleger an der Brücke installieren. Die Ausleger wurden an der vorgängig montierten Auslegerverankerung zunächst vertikal befestigt. Danach zog man die Tragseile über die Abrollsattel der Ausleger. Die Seile waren vorab im Werk unter kontrollierter Temperatur vorkonfektioniert, d.h. genau

Das Tragseil wird über die Spitze der Ausleger mit Abrollsattel geführt.

Die feuerverzinkten Beschläge und Seilverbindungen sind schlank ausgebildet.

TEC21 12-13/2016 Panorama 15

<u>Bauherrschaft</u> Tiefbauamt der Stadt Bern

<u>Seil- und Tragkonstruktion</u> Schnetzer Puskas Ingenieure, Basel

<u>Architektur</u> Rolf Mühlethaler, Bern

Brückeningenieure Ingenta, Bern Bächtold & Moor, Bern

<u>Drahtseiltechnik</u> Jakob, Trubschachen

auf ihre künftigen Belastungen, Dehnungen und Anschlüsse dimensioniert, abgelängt und markiert worden. Die Eigenlasten aller Konstruktionselemente wie Seile, Netze und selbst Beschläge spielten für die Endgeometrie eine massgebende Rolle und waren genau zu ermitteln.

An das Tragseil schloss man die Hänger an und an diese wiederum die Netze inklusive der Netzrandseile. Sobald auch der Innenrand des Netzes am inneren Randseil befestigt war, konnte man die Konstruktion in die Endposition ablassen. Mit diesem Vorgang dehnten und spannten sich die Seile und das Netz, und die Gesamtkonstruktion gelangte in ihr stabiles Gleichgewicht.

Nichtlineare Bemessung

Die Netze besitzen in Feldmitte einen vertikalen Durchhang von 1/60. Dieser ergibt sich aus den Eigenlasten der Seil- und Netzkonstruktion. Die aus diesem Durchhang resultierende Horizontalkraft ergibt die Kraft, die das Tragseil in horizontaler Ebene vorspannt. Die Berechnung der Verformungen und der Seilkräfte erfolgte nichtlinear. Aus einer Anfangsgeometrie ermittelten die Ingenieure iterativ die erwünschte Gleichgewichtsgeometrie im Endzustand. Dabei arbeiteten sie mit einem globalen Sicherheitskonzept, führten die statischen Berechnungen also mit Gebrauchslasten durch. Die Teilsicherheitsfaktoren für ständige und veränderliche Lasten teilten sie erst bei der Bemessung der Seilelemente durch den entsprechenden Faktor. Dadurch ist der Ausnutzungsgrad nicht ganz ausgeschöpft.

Es entsteht eine effiziente Seilkonstruktion, die inklusive Netze als ganzheitliches statisches System funktioniert, präventiv gegen Suizidversuche wirkt, unter Umständen Leben retten kann und zugleich den gestalterischen, städtebaulichen und denkmalpflegerischen Anforderungen genügt. •

Clementine Hegner-van Rooden,
Dipl. Bauing. ETH, Fachjournalistin BR
und Korrespondentin TEC21,
clementine@vanrooden.com

Anmerkung

1 Suizidprävention bei Brücken: Follow-Up, Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Strassen, Forschungsprojekt AGB2009/014 auf Antrag der Arbeitsgruppe Brückenforschung (AGB), April 2014.

Ihr Spezialist für Tief- und Spezialtiefbau. Baugruben, Pfähle, Anker, Erdbau, Wasserbau. jms-risi.ch

