Zeitschrift: Tec21

Herausgeber: Schweizerischer Ingenieur- und Architektenverein

Band: 136 (2010)

Heft: 23: Badenerstrasse 380

Artikel: Low Ex-Zero (E)Mission

Autor: Altenburger, Adrian

DOI: https://doi.org/10.5169/seals-109619

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

LOW EX-ZERO (E) MISSION

2. HAUPTSATZ THERMODYNAMIK 1

Der 2. Hauptsatz der Thermodynamik befasst sich vor allem mit den Gleichgewichtzuständen von Systemen und den Prozessen, die Zustandsänderungen zwischen Systemen ergeben. Das Wort Gleichgewicht bedeutet, dass der Zustand eines Systems unverändert bleibt, während es von anderen Systemen isoliert ist.

1. Zustandsprinzip

Wie bekannt ist, bezieht sich der Gleichgewichtszustand eines Systems auf die Werte von Energie, Zwang und Partikelzahlen in ebendiesem System. Das Zustandsprinzip besagt, dass die Werte jeder Eigenschaft eines Systems in einem Gleichgewichtszustand nur durch eine Funktion der Werte von Energie, Zwang und Partikelzahl beschrieben werden können

2. Reversible und irreversible Prozesse

Wenn ein System und seine Umwelt Zustandsänderungen erfahren können und das System fähig ist, seinen ursprünglichen Zustand wieder zu erreichen, wird dies ein reversibler Prozess genannt. Wenn ein System von seinem ursprünglichen Zustand zu einem festen Gleichgewichtszustand übergeht, ohne Beeinflussung der Umwelt, so wird dies ein irreversibler Prozess

3. Unmöglichkeit eines Perpetuum mobile 2. Art Ein System in einem festen Gleichgewichtszustand kann keine Arbeit verrichten, sondern nur aufnehmen. Wenn ein System in einem festen Gleichgewichtszustand Arbeit verrichten könnte, würde es in einen Nicht-Gleichgewichtszustand wechseln, ohne Beeinflussung der Umwelt. Diese unmögliche Annahme ist der Grundsatz des Perpetuum mobile 2. Art. Es ist eine Maschine, die Arbeit aus einem Gleichgewichtszustand verrichtet.

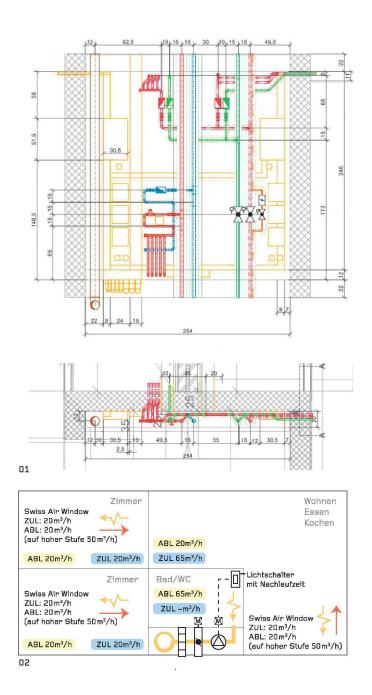
4. Gemeinsamer Gleichgewichtszustand

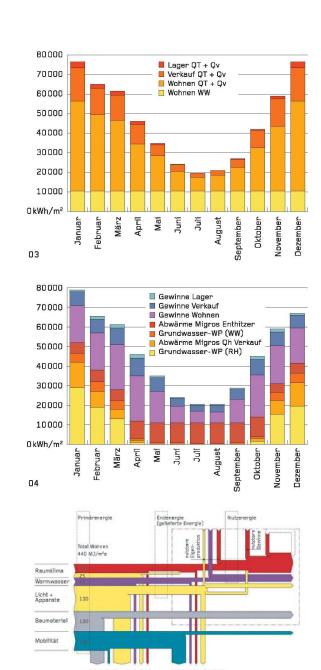
Wenn sich 2 Systeme A und B in einem gemeinsamen Gleichgewicht befinden, befinden sich beide auch in einem festen Gleichgewichtszustand. Weiter, wenn der Zustand eines der Systeme geändert wird, wenn A und B verbunden sind, ändert der Zustand des zweiten Systems

5. Definition der Entropie

Die Entropie liefert den Wert, wie viel thermische Energie zur Verrichtung von Arbeit vorhanden ist. Dies bedeutet: je weniger Entropie, desto weniger Energie steht zur Verfügung. Der 2. Hauptsatz besagt, dass die Entropie nicht von alleine abnehmen kann. Als Folgerung dieses Satzes gilt, dass eine Maschine nur Arbeit verrichten kann, wenn Wärme abgeführt wird. Mit anderen Worten: Eine Maschine funktioniert nur, wenn sie gekühlt wird.

Nebst dem Anspruch, einen 2000-Watt-kompatiblen Neubau mit Zielwert A gemäss SIA-Effizienzpfad zu realisieren, wurde zusätzlich zur klassischen Energiebetrachtung, bei der die Reduktion der benötigten «kWh/m²a» im Fokus steht, auch der hochwertige Anteil der Energie, die Exergie zur Deckung des Bedarfs, so weit als möglich reduziert und mit einem CO_-freien Betrieb sichergestellt. Diese «Mission LowEx-ZeroEmission» verlief beim Gebäude an der Badenerstrasse 380 erfolgreich.


Diese erweiterte Betrachtung bedingte ein durchgängiges «LowEx-ZeroEmission-Konzept». Für die Amstein+Walthert AG als Gesamtplaner der Energie- und Gebäudetechnik und der Kälin & Müller AG als Fachplaner Elektro/Gebäudeautomation war klar, dass die exergetische Optimierung im Sinne der konsequenten Anwendung des 2. Hauptsatzes der Thermodynamik nur durch den Einsatz einer anergetisch hochwertigen und erneuerbaren Wärmequelle in Kombination mit einer effizienten Wärmepumpe generiert werden kann. Es ging also nicht primär darum, die Wärmedämmung der Gebäudehülle über eine über das ökonomisch nachhaltige Mass hinausgehende Lösung zu maximieren, sondern eine bauphysikalisch genügend gute Konstruktion zu realisieren, die ein Heizsystem zur Wärmeabgabe mit raumtemperaturnahen Heizwassertemperaturen zulässt und gleichzeitig den Komfortanforderungen genügt.

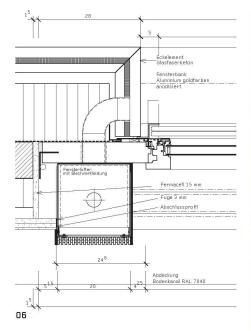

ANERGIE IN FORM VON GRUNDWASSER UND ABWÄRME

Als Wärmequelle kann am Standort des Neubaus das Grundwasser in rund 25 m Tiefe mit einer Temperatur von ca. 10-12°C genutzt werden. Die «Veredelung» des Grundwassers auf die erforderliche Heizwassertemperatur von max. 40°C (Vorlauf auf Lufterhitzer bei -10°C Aussentemperatur) erfolgt über eine Elektromotorwärmepumpe (max. 160kW), die mit einer Jahresarbeitszahl (JAZ) von > 5.5 betrieben werden kann. Die Auslegung der monovalenten Wärmepumpe erfolgte so, dass der gesamte Wärmeenergiebedarf (Raumheizung und Warmwasser) abgedeckt werden kann. Solange die prozessbedingt anfallende Abwärme aus der gewerblichen Kühlung der Migros im Erdgeschoss anfällt, wird sie im Sinne der Substitution der Grundwasserwärmepumpe zur direkten Deckung des Migroseigenen Wärmebedarfs eingesetzt und, falls darüber hinaus vorhanden, auch zusätzlich für den Wärmeenergiebedarf der Wohnungen in den Obergeschossen verwendet. Bei der Wärmeversorgung ging es also primär darum, die «netto gelieferte Energie» in Form von Strom (CO_a-freier Labelstrom und gebäudeeigene Fotovoltaik auf dem Flachdach) zu reduzieren, um eine hohe energetische Effizienz zu erreichen. Ein für die Zukunft sicherlich nicht unerheblicher Mehrwert bildet die Tatsache, dass beispielsweise bei einer Verdoppelung der Energiepreise die Energiekosten mit diesem Konzept gegenüber z.B. einer Pelletsheizung um einen Faktor 5.5 gedämpft verteuert werden. Nebst der hohen energetischen Effizienz ist somit also auch die ökonomische Sensitivität gegenüber konventionellen Wärmeerzeugungssystemen erheblich reduziert.

DEZENTRALE LUFTERNEUERUNG - INDIVIDUELL UND INTEGRIERT

Die kontrollierte Lufterneuerung erfolgt nur für die Untergeschosse (Lager, Parking) und das Erdgeschoss (Migros) mittels zentraler Zu- und Abluftanlagen. Die Wohnungen in den Ober-

- **01 Modularer Medienschacht in den Treppen-**häusern (Plan, Schema und Diagramme: Amstein+Walthert AG)
- 02 Raummodul Lufterneuerung Wohnung mit dezentralen Fenstergeräten
- 03 Monatlicher Wärmeenergiebedarf pro Nutzung
- **04** Monatliche Wärmeenergiedeckung pro System
- 05 Energieflussdiagramm mit Zielwert A gemäss SIA-Effizienzpfad


(Schema: SIA D 0216, Anhang A, Abb. A/1)

geschossen verfügen über dezentrale, fensterintegrierte Zu-/Abluftgeräte (Swiss Air Window), welche die Zimmer individuell und bedarfsabhängig (Stufenschaltung) mit der notwendigen Frischluft versorgen, ohne den schlanken Holzbau mit räumlich aufwendigen Massnahmen zur Zu- und Abluftkanalführung unnötig zu belasten. Die Nasszellen verfügen über Einzelventilatoren mit einer bedarfsabhängigen Steuerung (Lichtschalter mit Nachlaufzeit), und die Küchen, die bei konventionellen Abluftanlagen prozessbedingt einen unnötig hohen Frischluftbedarf generieren würden, werden konsequent über Umluftgeräte mit integrierten regenerierbaren Filtern betrieben. Die Luftverteilsysteme und Komponenten der Lufterneuerung wurden zur Reduktion des Förderstrombedarf gemäss SIA 382/1 auf die Kategorie SFP 1 nach EN 13779 mit entsprechend tiefen Druckverlusten und hohen Wirkungsgraden ausgelegt.

05

EFFIZIENTES FACILITY MANAGEMENT

Die Gebäudetechnikplanung wurde nebst der nachhaltigen Ausrichtung der Systeme in Bezug auf die Aspekte der Ökologie auch hinsichtlich eines kostengünstigen Betriebs,

07

06 Horizontalschnitt Fenster mit integrierter Lüftungsanlage, Mst. 1:10 (Plan: Pool Architekten)

07 Ausbauzustand: Gipsschalen bilden die Wandflächen, im Boden davor verlaufen Medienkanäle. Neben der Fenstertür ist das Holzpaneel des Lüftungsgeräts sichtbar (vgl. S. 32, Abb. 10) (Foto: Henzi & Micciché photography, Zürich)

d.h. eines effizienten Facility Managements, konsequent in der interdisziplinären Planung implementiert. Um eine einfache Zugänglichkeit der Anlagen und Komponenten auch ausserhalb der Technikzentralen zu gewährleisten, ist die Medienversorgung der Wohnungen möglichst Kompakt und modular angeordnet. Die Lösung wurde durch einfache, aber in der Planungsphase bewusst akribische Koordinationsarbeit in den Medienschächten der Treppenhäuser und mit konsequent peripher verlaufenden Elektrokabel- und -steckdosenkanälen in den Unterlagsböden gefunden, die auch die Flächenheizung aufnehmen. In den Medienschächten sind alle beweglichen und somit wartungsbedingten Anlageteile pro Wohnung in modularer Bauweise integriert. Nebst der einfachen Zugänglichkeit ausserhalb des Wohnungsperimeters ist mit der Modularität auch eine effiziente, weil reduzierte Ersatzteilhaltung möglich – auch das ein oft unterschätzter Aspekt, der sich im Gegensatz zur energetischen Effizienz noch nicht sehr stark in der Baukultur niedergeschlagen hat.

Anmerkung 1 http://library.thinkquest.org Adrian Altenburger, dipl. HLK-Ing. HTL / MAS Arch. ETH, adrian.altenburger@amstein-walthert.ch