Zeitschrift: Tec21

Herausgeber: Schweizerischer Ingenieur- und Architektenverein

Band: 129 (2003)

Heft: 9: Computersimulationen von Murgängen

Artikel: Computersimulierte Murgänge: physikalische und numerische

Simulation von Murgängen

Autor: Schatzmann, Markus / Vollmöller, Peter

DOI: https://doi.org/10.5169/seals-108723

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

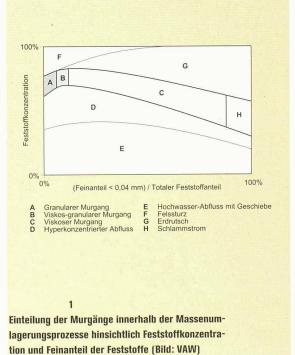
Download PDF: 13.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Computersimulierte Murgänge

Physikalische und numerische Simulation von Murgängen

Murgänge sind ein bislang wenig erforschtes
Phänomen im Bereich Naturgefahren. Sie entstehen
meistens in schwer zugänglichen Regionen, über
deren Beschaffenheit häufig nur unzureichendes
Wissen vorhanden ist. Sehr komplex sind insbesondere die physikalischen Wechselwirkungsprozesse,
die bei der Entstehung und während eines Murganges ablaufen. Bislang konnten Murgänge deshalb nur diagnostisch beurteilt werden. Seit den
90er-Jahren werden Computersimulationsmodelle
erprobt, die Daten für eine realistischere Vorhersage von Murgangereignissen liefern sollen. Damit
rückt eine verbesserte Gefahrenzonenplanung in
greifbare Nähe.


Im Alpenraum haben in den letzten 25 Jahren viele Menschen und Tiere durch Murgangereignisse ihr Leben lassen müssen. Die im Zusammenhang mit Murgängen anfallenden mittleren jährlichen Kosten (Schaden, Schutzbauten) belaufen sich auf 100 Millionen Franken. Bei grösseren Murgängen in den Alpen werden Geschiebemengen bis zu 100 000 Kubikmetern talwärts transportiert. Die Fliessgeschwindigkeiten bewegen sich zwischen 1 und 15 m/s. Dabei können auch grössere Felsblöcke verfrachtet werden.

Entstehung, Fliessdynamik und Ablagerungsverhalten von Murgängen sind bislang wenig erforschte Prozesse. Die Ursache liegt zum einen sicherlich darin, dass Murgänge meistens in schwer zugänglichen Regionen entstehen, über deren geologische, geomorphologische und klimatische Strukturierungen nur unzureichendes Wissen vorhanden ist. Zum anderen sind die physikalischen Vorgänge und stattfindenden Wechselwirkungsprozesse (so beispielsweise turbulente Verwirbelungen, Stösse zwischen Steinen, Reibungseffekte zwischen Steinen und zwischen Steinen und Wasser) sehr komplex. Für eine physikalische Beschreibung müssen die Parameter Geologie, Geomorphologie, Topographie, Klima und Vegetation berücksichtigt werden.

Murgänge

Murgänge sind ein heterogenes Gemisch aus Wasser, Sedimentmaterial unterschiedlicher Korngrössen (Ton-Blockfraktion) sowie organischen Materialien. Die Masse von Murgängen wird durch ein Transportmittel oder einen Träger Wasser, Eis oder Luft - unter Einfluss der Gravitationskraft befördert. Im Gegensatz dazu steht die Bewegung der Masse, wie zum Beispiel Felsstürze oder Erdrutsche ohne nennenswerte Trägermittel (Bild 1). Des Weiteren gehören Murgänge zur Klasse der mehrphasigen Strömungen, die sich durch Parameter wie Materialzusammensetzung der festen Phase, Feststoffkonzentration und Charakteristika der fluiden Phase beschreiben lassen. Diese bestimmen das Erosionsvermögen, die Bewegungsart und das Ablagerungsverhalten auf einer gegebenen Topographie. Dementsprechend komplex gestalten sich die physikalischen Vorgänge, die zu einem Murgang führen und die während eines Murgangs ablaufen.

Um Siedlungen und Infrastrukturbauten vor Murgängen zu schützen, kann man entweder Wildbachgerinne ausbauen, lokale Schutzdämme und Rückhaltebecken errichten oder – wo möglich – die Gefahrenzone meiden.

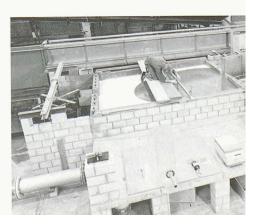
2 Murgangablagerung in Fully (VS) im Oktober 2000 (Bild: Bundesamt für Wasser und Geologie, BWG)

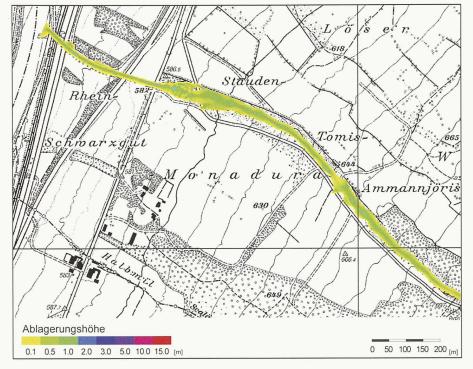
Vorhersage von Murgängen

Eine bessere Kenntnis dieser Vorgänge bei Murgängen ist besonders wichtig für die Beurteilung der Murganggefahr und damit für die Gefahrenzonenplanung. Bisher kann man erst auf Erfahrungswerte zurückgreifen; man weiss, wo schon Murgänge entstanden sind, aber man weiss nicht, wo sie noch kommen können, in welcher Mächtigkeit und wie weit sie dabei fliessen würden. Die derzeitige Murgang-Forschung zielt deshalb darauf ab, in naher Zukunft über die diagnostische Beurteilung von Murgangereignissen hin zu realistischen Vorhersagen zu kommen.

An der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) der ETH Zürich werden Entstehung, Fliessdynamik und Ablagerungsverhalten von Murgängen auf zwei verschiedene Weisen erforscht: mittels der physikalischen sowie der numerischen Modellierung. Bei der physikalischen Modellierung werden Murgänge im Labor experimentell nachgebildet (Bild 3). Zu diesem Zweck unterhält die VAW eine in der Neigung zwischen 10° und 40° verstellbare 11 Meter lange Rinne zur Vermessung idealisierter Murgänge.¹ Dazu gehören verschiedene Messsysteme zur Bestimmung der Fliesseigenschaften von Korn-Wasser-

Mischungen, die teilweise zusammen mit dem Institut für Lebensmittelwissenschaften der ETH Zürich unterhalten werden. Unter idealisierten Bedingungen liefert die physikalische Modellierung Erkenntnisse über die Phänomenologie von Murgängen und lässt qualitative und – je nach Murgangtyp – auch quantitative Ausagen über die charakteristischen Eigenschaften zu (Abflusshöhen und Ablagerungsmächtigkeiten).


Numerische Simulation


Demgegenüber lassen sich mit numerischen Simulationen physikalische Parameterbereiche bestimmen und Sensitivitätsstudien durchführen. So sollen in Zukunft die Gefahrenkarten durch Simulationen verbessert und Zonen mit ungenügendem Schutz erkannt werden. Mithilfe solcher Simulationen können auch Schutzmassnahmen überprüft und optimiert werden.

Für die Untersuchung der Wirkungsweise eines Geschiebesammlers bei Trimmis (GR) sowie der Wirkungsweise einer Gerinneerweiterung in Albinen (VS) wurden Berechnungen mit einem numerischen 2 D-Modell durchgeführt,² welches auf einem rheologischen Modellansatz beruht. Als Eingabeparameter mussten dabei die Murgangvolumina und Abflüsse

3

Physikalische Modellierung von Murgängen an der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) der ETH Zürich: Ausbreitungsversuche zur Kalibrierung von Modellfluiden (Bild: VAW)

Numerische Simulationen mit dem Modell von O'Brien und Julien (1993) an der Maschänserrüfe bei Trimmis (GR): Ablagerungshöhen eines grösseren Murgangs oberhalb der Einmündung in den Rhein und im Bereich der Verkehrsträger (SBB, RhB, Nationalstrasse A 13, Hauptstrasse) (Bild: VAW)

basierend auf Beobachtungen abgeschätzt werden. Des Weiteren wurden Annahmen über das rheologische Verhalten des Murgangs gemacht. Diese stützten sich sowohl auf Feldbeobachtungen als auch auf Modellannahmen. Nachdem einige bedeutende, für diesen Modelltyp notwendige Kalibrierungen vorgenommen worden waren, lieferten die Simulationen Resultate über den Ablagerungsort und die Ablagerungshöhe, die mit den natürlichen Beobachtungen weitestgehend in Übereinklang standen (Bild 4).

Sehr wichtig bei der Durchführung numerischer Simulationen ist die Erstellung einer optimalen Modelltopographie. Nur in seltenen Fällen reichen die Basisdaten, die beim Bundesamt für Landestopographie erhältlich sind. Normalerweise müssen für den Gerinne- und den Ablagerungsbereich in einem Gefahrengebiet ergänzend lokale topographische Aufnahmen durchgeführt werden, um diese spezifischen Bereiche mit genügender Genäuigkeit abzubilden. Ein zentraler Schritt ist jeweils die Transformation der topographischen Daten in ein Modellgitter mit der der Fragestellung entsprechenden Auflösung, wo sowohl Geographische Informationssysteme (GIS) wie auch andere mathematische Programme zur Anwendung kommen können.

Da der Unterschied zwischen numerischen Resultaten und wirklichen Ereignissen häufig noch sehr gross ist, liegt das Hauptaugenmerk der Murgangforschung an der VAW in der Verbesserung des Verständnisses der Physik des Murgangs und der Ausarbeitung der dazugehörigen Modelle.

Markus Schatzmann, dipl. Kulturingenieur ETH, und Peter Vollmöller, Dr. rer nat, dipl. Physiker, arbeiten beide als wissenschaftliche Mitarbeiter an der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie VAW der ETH Zürich Gloriastrasse 37–39, ETH Zentrum, 8092 Zürich

Literatur

- C. Tognacca: Beitrag zur Untersuchung der Entstehungsmechanismen von Murgängen. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie. Nr. 164. ETH Zürich, 1999.
- J.S. O'Brien, P.Y. Julien und W.T. Fullerton: Twodimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119(2): 244–261, 1993.

3rd International Conference on Debris-Flow Hazards Mitigation - Mechanics, Prediction and Assessment

Vom 10. bis zum 12. September 2003 findet im Kongresszentrum in Davos die dritte internationale Konferenz zum Thema Murgänge statt. Informationen dazu finden Sie unter: www.wsl.ch/3rdDFHM