Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 118 (2000)

Heft: 5

Artikel: Spezialanwendungen von faserverstärkten Polymeren

Autor: Scherer, Josef

DOI: https://doi.org/10.5169/seals-79872

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Josef Scherer, Brunnen

Spezialanwendungen von faserverstärkten Polymeren

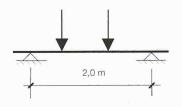
Anhand von Versuchen konnte nachgewiesen werden, dass eingeschlitzte CFK-Lamellen das Tragverhalten des Stahlbetonbalkens gegenüber nur oberflächig verklebten erhöhen. Im Weiteren werden bessere Verankerungsmöglichkeiten bei engen Raumverhältnissen und Resultate aus Umschnürungsversuchen an Druckbauteilen vorgestellt.

Das Verbundverhalten von oberflächig aufgeklebten CFK-Lamellen (kohlenstofffaserverstärkter Kunststoff, CFK) wurde im Rahmen von verschiedenen Zulassungsverfahren eingehend untersucht. CFK-Lamellen werden durch Klebeverbund schubfest an die Zugzone des Biegebauteils angeschlossen. Bei Vorliegen eines gesunden Betontraggrunds tritt das Versagen des Klebeverbunds ausserhalb der Klebefuge, nämlich im lamellennahen Betonbereich ein. Versuche zeigten, dass durch einen normal wirkenden Anpressdruck die Tragfähigkeit des Klebeverbunds beträchtlich gesteigert werden kann. Anpressdrücke am Lamellenende sind in der Praxis jedoch kaum wirtschaftlich realisierbar. Um den Klebeverbund am Lamellenende zu verbessern, wurden verschiedene Ansätze überlegt und entsprechende Untersuchungsprogramme ausgeführt. Beispielsweise wurden Umwicklungen mit Karbontüchern (C-Sheet) untersucht, die im Stegbereich der Biegebalken verankert werden. Bei Platten ist diese Möglichkeit nicht gegeben. Die TU München führte ein interessantes Prüfprogramm mit eingeschlitzten CFK-Lamellen aus, das verschiedene Impulse zu neuen Verankerungsmöglichkeiten am Lamellenende aufzeigt. Das Prüfprogramm sowie die neuen Verankerungsmöglichkeiten werden im Beitrag vorgestellt. Zusätzlich werden Anwendungsmöglichkeiten von eingeschlitzten Lamellen sowie umschnürten Drucksäulen aufgezeigt. Re-

Schweizer Ingenieur und Architekt

sultate anlässlich von Grossversuchen an der Technischen Universität Gent sowie Bemessungsansätze für mit faserverstärkten Polymeren (FRP) umschnürte Drucksäulen werden erläutert.

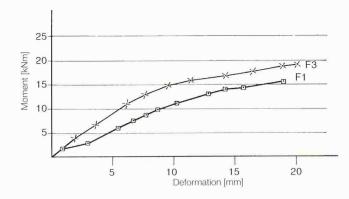
Umwicklung des Lamellenendes mit faserverstärkten Polymeren


An der Technischen Universität Lissabon wurden mehrere Versuchsbalken aus Stahlbeton (Bild 1) von 2 m Stützweite mit CFK-Lamellen auf Biegezug nachverstärkt. Die CFK-Lamellen wurden schlaff mit einem Abstand von 5 cm zu den Auflagern geklebt. Die Moment-Durchbiegungskurve F1 wurde mittels Biegeversuchen ermittelt. Danach wurden die Versuchsbalken mit den aufgeklebten CFK-Lamellen zusätzlich am Lamellenende je mit einem unidirektionalen Karbontuch (C-Sheet) umwickelt. Das Karbonband von 300 mm Breite wurde mit Epoxidkleber von Hand auflaminiert. Die Moment-Durchbiegungskurve F, zeigt, dass die Bruchlast des Biegebalkens infolge der Umschnürung am Lamellenende um rund 20% gesteigert werden konnte.

Eingeschlitzte CFK-Lamellen

Im Verfahren werden mit einer Standardbetonfräse Schlitze von etwa 3 mm Breite und je nach Bedarf von 10 bis 25 mm (genügende Betonüberdeckung vorausgesetzt) Tiefe in den Betontraggrund eingeschnitten (Bild 2). Die Schlitze werden mit einem für CFK-Lamellen systemgeprüften Epoxidkleber verfüllt. Danach wird die Einschlitz-Lamelle hochkant in den Kleber eingepresst (Bild 3). Das Verfahren eignet sich besonders für Verstärkungen auf der Betonoberfläche (Negativ-Moment) bzw. zum Einschlitzen von Vertikalbewehrungen in Druckbauteilen zur Erhöhung des Knickmoments.

In Verbundversuchen wurden an der TU München eingeschlitzte mit oberflächig aufgeklebten CFK-Lamellen verglichen (Bild 4). Das Verbundverhalten der eingeschlitzten CFK-Lamelle entspricht dem Verbundverhalten eines einbetonierten gerippten Betonstahls. Trotzdem ist die Steifigkeit des Verbunds im unteren Lastbereich grösser als die der oberflächig geklebten CFK-Lamelle. Bei einer Verankerungslänge von 25 cm konnte mit der eingeschlitzten Lamelle im Vergleich zur aufgeklebten Lamelle mit gleichem Querschnitt die dreifache Kraft verankert werden.


Diese Versuchsergebnisse stehen im Einklang mit zahlreichen durchgeführten Untersuchungen, die gezeigt haben, dass das Verbundverhalten von auf die Beton-

Kennwerte der C-Sheet-Umwicklung: E-Modul: 640 kN/mm² Zugfestigkeit: 2 650 N/mm² Bruchdehnung: 0,4% Gewicht (unidirektional): 400 g/m² Breite C-Sheet-Band: 300 mm

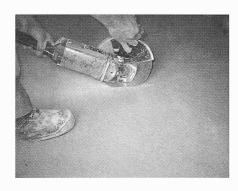
F3: mit C-Sheet-Umwicklung

Versuchsbalken mit aufgeklebter CFK-Lamelle und C-Sheet-Umwicklung

oberfläche geklebter Bewehrung sehr spröde ist. Die im Klebeverbund bis zum Bruch möglichen Relativverschiebungen zwischen CFK-Lamelle und Betonkörper liegen im Bereich von unter 0,3 mm. Die möglichen Verschiebungen einbetonierter Rippenstähle liegen dagegen im Bereich von 1 mm. Damit ist der Verbund einbetonierter Betonstahlbewehrung deutlich duktiler. Dies führt zu Kraftumlagerungen zwischen aufgeklebter CFK-Lamelle und einbetoniertem Rippenstahl bei nachträglich verstärkten Betonbauteilen. Diese Art des Klebeverbunds lässt damit nur eine verhältnismässig geringe Krafteinleitung in die Lamelle zu. Diese Krafteinleitung ist zudem stark von der vorhandenen Betonqualität, insbesondere von der Oberflächenhaftzugfestigkeit abhängig.

Dagegen ist der Verbund eingeschlitzter CFK-Lamellen wesentlich tragfähiger. Das Verbundverhalten ist im Gebrauchslastniveau steifer, auf Bruchlastniveau hingegen weitaus duktiler als bei oberflächig geklebten Lamellen.

Verschiedene Versuchsbalken aus Stahlbeton wurden am Dreipunktbiegeversuch mit einer Stützweite von 2,5 m geprüft (Bild 6). Es wurden jeweils eine CFK-Lamelle 50/1.2 oberflächig aufgeklebt oder zwei CFK-Lamellen 25/1.2 eingeschlitzt.

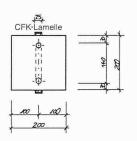

- Bei Versuchsbalken A1 und B1 erfolgte das Versagen durch Abschälen der CFK-Lamelle
- Bei Versuchsbalken A2 erfolgte das Versagen durch einen Zugbruch der eingeschlitzten Lamelle
- Bei Versuchsbalken B2 mit geringer Schubbewehrung aus Stahl erfolgte ein Schubversagen im Beton.

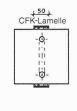
Die Moment-Durchbiegungskurve der Versuche A1 und A2 ist in Bild 7 dargestellt. Bei gleicher Steifigkeit konnte die Bruchlast am Versuchsbalken A dank der Einschlitzlamelle mehr als verdoppelt werden. Dies ist auf die hohe Ausnutzung der CFK-Zugfestigkeit zurückzuführen.

Die Moment-Durchbiegungskurve der Versuche B1 und B2 ist in Bild 8 dargestellt. Das Last-Verformungsverhalten des Versuchsbalkens B ist mit Ausnahme der Tatsache, dass der Balken mit der eingeschlitzten CFK-Lamelle eine wesentlich höhere Bruchlast erreichte, nahezu identisch.

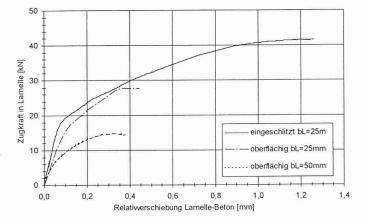
Eingeschlitzte CFK-Lamellen bieten somit im Vergleich zu oberflächig aufgeklebten Lamellen folgende Vorteile:

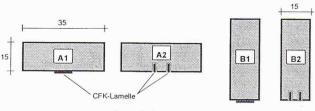
- Da grössere Kräfte verankert werden können, wird die Lamelle besser ausgenützt; dies manifestiert sich in geringeren Lamellenquerschnitten
- Die Qualität des Traggrunds (Oberflächen-Zugfestigkeit) ist von untergeordneter Bedeutung. Einschlitzla-




2 Einschlitzen des Traggrunds mit der Fräse

Einpressen der Lamelle in den mit Epoxidkleber verfüllten Schlitz

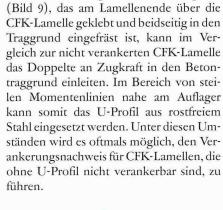

4 Querschnitte der Versuchsbalken mit aufgeklebten und eingeschlitzten Lamellen




5
Das wesentlich duktilere Verhalten der eingeschlitzten Lamelle
zeigt sich sehr deutlich (bL meint die Lamellenbreite)

6 Querschnitte der Versuchsbalken mit aufgeklebten und eingeschlitzten Lamellen

Querschnitte der Versuchsbalken

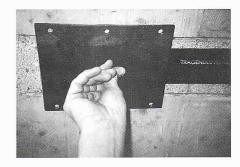


50,00
50,00
40,00
10,00
20,00
Durchbiegung Balkenmitte [mm]

Mit eingeschlitzter Lamelle (A2) erhöht sich die Bruchlast auf über das Doppelte

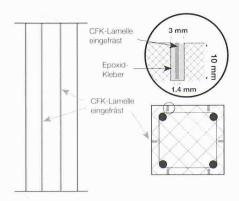
Auch beim Versuchsbalken B zeigt die eingeschlitzte Variante (B2) das klar bessere Verhalten

- mellen können auch in schlechte Traggründe (Mauerwerk) Kräfte einleiten
- Einschlitzen ist oft preiswerter als das Ausgleichen und Aufrauhen für oberflächig geklebte Lamellen
- Die Einschlitzlamelle ist gegen mechanische Beschädigung geschützt.
 Das Verhalten im Brandfall ist günstiger, Brandschutzmassnahmen werden massgeblich preiswerter ausfallen.


Die Erkenntnisse aus der Untersuchung

der eingeschlitzten Lamellen führten zu

Weiterentwicklungen. Ein Stahlprofil


8

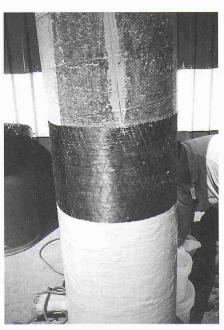
Schweizer Ingenieur und Architekt

In eingefräste Schlitze eingelassenes U-Profil zur Endverankerung der Lamelle

10 Druckbauteil mit eingeschlitzten CFK-Lamellen

Eingeschlitzte CFK-Lamellen und umschnürte Bauteile

Bei der konventionellen Betoninstandsetzung wird die Betonüberdeckung durch einen Reparaturmörtel ersetzt. Zusätzlich wird mit geeigneten Massnahmen wie Imprägnierung, Hydrophobierung, starrer oder elastischer Beschichtung oder mit dem Auftrag eines Alkalidepots beispielsweise aus Spritzbeton die Korrosion der Stahleinlage möglichst gestoppt bzw. verzögert. Da die korrodierte Stahleinlage oftmals nicht ergänzt wird, muss eine reduzierte Tragfähigkeit des Bauteils nach der Instandsetzungsmassnahme in Kauf genommen werden. Mit FRP können die korrodierten Stahleinlagen ergänzt und die Tragfähigkeit des Originalbauteils wieder hergestellt werden. Die Instandsetzung mit FRP-Bewehrungsersatz folgt dem vorgestellten Konzept:


- Entfernen abgeplatzter Betonteile
- Bei unzulässig hoher Chloridkonzentration im Beton wird ein Korrosions-Inhibitor aufgetragen
- Herkömmliche Betoninstandsetzung mit mineralischen Mörteln
- Neu: Ersatz der korrodierten Stahleinlagen durch FRP

Schlussbeschichtung des Bauteils.

Die korrodierte Vertikalbewehrung wird durch eingeschlitzte CFK-Lamellen (Bild 10) ersetzt. Danach wird das Druckbauteil mit Karbontüchern (C-Sheet) umwickelt (Bild 11). Das C-Sheet mit einem E-Modul von 240 kN/mm² kann in Streifen oder vollflächig appliziert werden.

Anlässlich von Versuchen an Zylindern (Ø 150 / H 300 mm) wurde untersucht, ob vertikal eingeschlitzte CFK-Lamellen einen Einfluss auf die Zylinderdruckfestigkeit haben. Die Zylinder wurden teilweise mit einer C-Sheet-Lage (200 g/m²) umwickelt. Die Resultate zeigen deutlich, dass vertikal eingeschlitzte CFK-Lamellen nicht als Druckbewehrung eingesetzt werden können. Die eingeschlitzte CFK-Lamelle dient als zusätzliche Biegezugbewehrung (Verbesserung des Knickmoments). Die

11 Mit Karbontüchern umwickelte Rundstütze

Untersuchungserge	Intersuchungsergebnisse			
Schema	Bezeichnung	Druckfestigkeit [N/mm²]		Steigerung der Druckfestigkeit
		Einzelwerte	Mittelwerte	gegenüber der 0-Probe [%]
	0-Probe	39.6 52.5	45.9	2 (
	Probe einlagig umwickelt mit C-Sheet 240 GPa (200 g/m²)	63.9 63.6	63.8	+ 39.0
	Probe mit 3 Einschlitzlamel- len 10/1.4	39.2 46.4	42.8	- 6.8
	Probe mit 3 Einschlitzlamel- len 10/1.4 und umwickelt mit C-Sheet 240 GPa (200 g/m²)	59.4 66.9	63.2	+ 37.7
0	Probe mit 4 Einschlitzlamel- len 10/1.4	43.4 49.2	46.3	+ 0.9
(27)	Probe mit 4 Einschlitzlamel- len 10/1 4 und umwickelt mit	61.8	61.2	+ 33.3

Bemerkungen

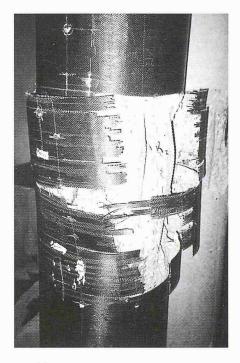
Die Proben wurden mit einer Belastungsgeschwindigkeit von 0.6 N/mm²s belastet.

12
Resultate aus Druckversuchen mit eingeschlitzten Lamellen und/oder Umschnürung

Erhöhung der Druckfestigkeit erfolgte nur bei den Proben, die mit FRP umwickelt worden waren (Bild 12).

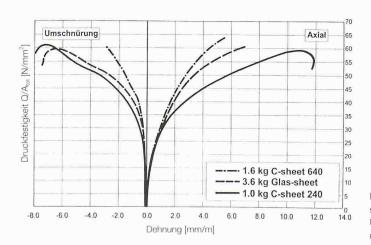
Grossversuche an mit FRP umschnürten Rundsäulen

In Grossversuchen an der Technischen Universität Gent wurden 90 Drucksäulen von 2 m Höhe und einem Durchmesser von 400 mm mit unterschiedlichen FRP-Systemen umwickelt. Danach wurde die Erhöhung der Druckfestigkeit infolge der FRP-Umwicklung geprüft (Bild 13). Bild 14 zeigt eine bis zum Bruch belastete Rundsäule mit geborstener Umwicklung.

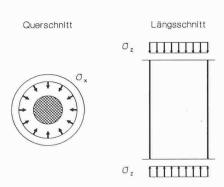

Um eine identische Steigerung der Druckfestigkeit zu erzielen, waren folgende Fasermengen in der Umschnürungsrichtung notwendig:

- C-Sheet 240 kN/mm²: 1,0 kg C-Fasern
- C-Sheet 640 kN/mm²: 1,6 kg C-Fasern
- Carbon/Glas-Hybrid (Gewebe):2-3 kg Fasern
- Glas-Sheet (Gewebe): ~4 kg G-Fasern (3,6 kg in Umschnürungsrichtung)

In einer weiteren Versuchsreihe wurden die Drucksäulen mit dem C-Sheet umwickelt und nur im Verankerungs-Überlappungsbereich mit Epoxidharz verklebt. Die Restoberfläche der Drucksäule wurde ohne Klebestoff (wasserdampfdurchlässig) ausgebildet. Die Steigerung der Druckfestigkeit für die voll- bzw. teilverklebten Drucksäulen ergab mehr oder weniger dieselben Resultate.


Bemessungsansatz zur Umschnürung von runden Drucksäulen

Im Gegensatz zu auf Biegung beanspruchten Bauteilen, deren Bemessung im Allgemeinen mit Hilfe der Plastizitätstheorie erfolgt, die eine grosse Verformbarkeit der Bewehrungselemente voraussetzt, beruht die Verstärkung von Stützen und Pfeilern mit einer nachträglich äusserlich aufgebrachten Umschnürung im Wesentlichen darin, dass die Umschnürung infolge der Dehnungsbehinderung in Querrichtung des Betons einen mehrachsigen Druckspannungszustand erzeugt; dadurch lässt sich die Belastbarkeit einer


14
Geborstene Umwicklung an einer Rundsäule
nach Druckversuch bis zum Bruch

Stütze wesentlich erhöhen. Diese Zunahme der Belastbarkeit ist dabei um so grösser, je höher die Querdruckspannungen werden, was wiederum voraussetzt, dass die Verformbarkeit der Umschnürungselemente gering ist. Für eine solche Anwendung sind kohlefaserverstärkte Elemente sehr geeignet, da sie neben anderen günstigen Eigenschaften einen hohen Elastizitätsmodul sowie eine linear-elastische Verhaltensweise bis zum Bruch besitzen. Was somit bei Verstärkungen biegebeanspruchter Bauteile mit diesem Werkstoff eher als nachteilige Eigenschaft anzusehen ist, kann hier sogar zum Vorteil gewendet werden.

13 Darstellung der Resultate verschiedener Umschnürungsmaterialien

15 Darstellung des triaxialen Spannungszustands in den beiden Ebenen x und z

der Druckfestigkeit einer Rundstütze

gemäss Formel (3)

Im Bemessungskonzept wird von einer Rundstütze ausgegangen, die von einem unidirektionalen C-Sheet lückenlos umwickelt ist. Wird eine solche Stütze durch eine Normalkraft N belastet, dann entsteht eine vertikale Spannung σ_z, und infolge der Querdehnungsbehinderung des Betons der Stütze durch die Umwicklung wird auch eine horizontale, allseitig gleichmässig wirkende horizontale Druckspannung σ_x erzeugt. Die grösste Spannung σ_x , die im C-Sheet auftreten kann, wird wie folgt berechnet:

$$\sigma_{x} = \frac{f_{FRP} \cdot t_{FRP}}{r} \tag{1}$$

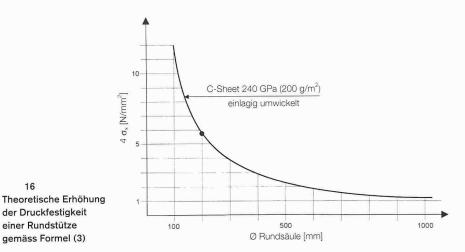
f_{FRP} Zugfestigkeit der C-Faserumwicklung $[N/mm^2]$

 $t_{FRP}\,$ Dicke der C-Faserumwicklung [mm]

Radius der Stütze [mm]

Bild 15 zeigt den Querschnitt durch eine Betonstütze, die unter einer vertikalen Belastung steht und von einem C-Sheet vollständig umwickelt ist. Die Betondruckfestigkeit bei behinderter Querdehnung kann bei Stahlbetonstützen bis zum folgenden Grösstwert anwachsen:

$$f_{c,FRP} = f_c + 4 \cdot \sigma_x \tag{2}$$


fc.FRP Betondruckfestigkeit bei behinderter Querdehnung [N/mm²]

Einachsige Betondruckfestigkeit [N/mm²]

Horizontale Druckspannung infolge der C-Faserumwicklung [N/mm²]

Die zugehörige Längsstauchung ε_{cc} der Stütze kann wie folgt berechnet werden:

$$\epsilon_{cc} = \epsilon_{co} \cdot \left[1 + 5\left(\frac{f_{c,FRP}}{f_c} - 1\right)\right], \text{ mit } \epsilon_{co} = \frac{f_c}{60} \tag{3}$$

Die Bemessungstabelle (Bild 16) zeigt die theoretische Erhöhung der Druckfestigkeit einer Rundsäule in Abhängigkeit einer C-Sheet-Umwicklung gemäss dem vorgenannten Bemessungsansatz. Die Druckfestigkeit einer Rundsäule des Durchmessers 400 mm, die mit fünf Lagen C-Sheet (240 kN/mm²) umwickelt wird, kann laut Bemessungsmodell um $5 \times 5.7 \text{ N/mm}^2 =$ 28,5 N/mm² erhöht werden.

Anlässlich der Grossversuche an der TU Gent resultierte für eine 2 m hohe Rundsäule des Durchmessers 400 mm eine mittlere Steigerung von 22 N/mm² (Bild 17). Die theoretisch ermittelten Werte liegen somit rund 30% höher als die im Grossversuch vorgefundenen Resultate, was am Summanden $4\sigma_x$ liegt. Dieser theoretische Wert muss für praktische Anwendungen zwischen 2,5 und 3σ_x liegen.

Schluss

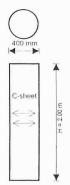
FRP bietet in der Bauwerksnachverstärkung interessante Anwendungsmöglichkeiten. Eingeschlitzte CFK-Lamellen weisen ein wesentlich besseres Tragverhalten auf als oberflächig verklebte Lamellen. Typische Einsatzgebiete von eingeschlitzten Lamellen sind die Verstärkung des negativen Moments von Durchlaufträgern oder Platten bzw. die Nachverstärkung des Knickmoments einer Drucksäule. Mit eingeschlitzten U-Profilen aus rostfreiem Stahl am Lamellenende kann massgeblich mehr Zugkraft in den Traggrund eingeleitet werden. Die U-Profile bieten sich somit als Endverankerungen von CFK-Lamellen an.

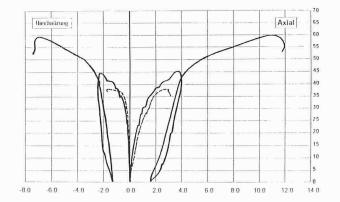
Die Bruchlast von mit CFK-Lamellen verstärkten Balken kann, falls die Lamellenenden mit C-Sheets umwickelt sind, erhöht werden. C-Sheet-Umschnürungen eignen sich besonders, um Druckbauteile zu verstärken. Die theoretisch ermittelten Bemessungsansätze wurden anhand von Versuchen überprüft.

Adresse des Verfassers:

Josef Scherer, Ing. HTL, S&P Clever Reinforcement Company AG, 6440 Brunnen

Literatur:


Ripper T.: Biegezugversuche mit umschnürten Balken. Techn. Universität Lissabon,


Zilch K., Blaschko M.: Verstärkung mit eingeschlitzten CFK-Lamellen. TU Darmstadt und Universität für Bodenkultur Wien, 1998

Ladner M.: Bemessungsansätze für die Nachverstärkung von Druckelementen mittels FRP. Fachveranstaltung TFB Wildegg, 3/1999

Taerwe L., Matthys S.: Verstärkung von Betondruckbauteilen mit verschiedenen Verbundmaterialien. Gent 1998/99

S&P-Labor: Druckversuche an FRP-verstärkten Zylindern, Brunnen, V-S-H 99200818,

	Bruch	%
 Referenzsäule	38 N / mm²	100
5 Lagen C-sheet 240 GPa 200 g/m²	60 N / mm²	157

Versuchsresultate: Drucksäule mit fünf Lagen C-Sheet (240 kN/mm2) umwickelt