Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 118 (2000)

Heft: 36

Artikel: Unsicherheiten mit neuen Verfahren begegnen: wirtschaftlicher

Dammbau an der Reussmündung im Kanton Uri

Autor: Bächli, Ralph

DOI: https://doi.org/10.5169/seals-79967

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

763

Ralph Bächli, Zürich

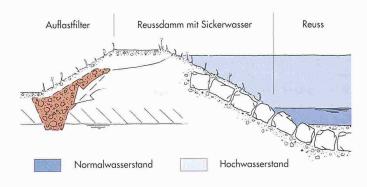
Unsicherheiten mit neuen Verfahren begegnen

Wirtschaftlicher Dammbau an der Reussmündung im Kanton Uri

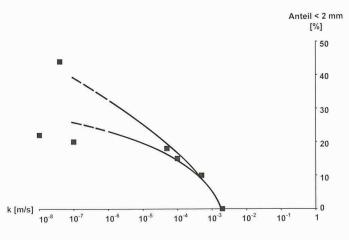
Die Reussdämme im Mündungsgebiet zum Urnersee wurden gegen Ende des letzten Jahrhunderts mit den dazumal sehr einfachen technischen Hilfsmitteln in einem sumpfige Überschwemmungsgebiet geschüttet. Möglichkeiten von Material und Technik waren begrenzt, sodass die Situation vor dem Hochwasser 1987 den Sicherheitskriterien nicht mehr genügte.

Zur Zeit des Baus der Reusdämme gab es kaum die Mittel, das Schüttmaterial angemessen zu verdichten. Aus wirtschaftlichen Gründen war es auch nicht möglich, die notwendigen Kubaturen über eine grössere Strecke zu transportiert. Die so entstandenen Dämme entsprachen den neuen Sicherheitsvorstellungen nicht mehr und eine Sanierung, insbesondere des Abschnittes See bis Amsteg, drängte sich auf

Um Genaueres über die innere Struktur der Dämme zu erfahren wurden seit 1991 die Resultate von rund 40 in die Dämme abgeteuften Kernbohrungen ausgewertet. Die Auswertungen zeigten einen sehr heterognen Aufbau der Dämme mit kleinräumigen Abfolgen von Kies- und Sandschichten, die teilweise schlecht verdichtet schienen.


Für das Sanierungskonzept ergab sich somit folgende Problematik: Die inhomogene, nur schwerlich bestimmbare Grundsubstanz eines kilometerlangen Bauwerks musste kostengünstig, ökologisch und mit geringen Risiken saniert werden.

Schnell wurde klar, dass der Ersatz des gesamten Schüttmaterials durch geotechnisch optimales Material ausser Betracht fiel. Vielmehr musste von der bestehenden Substanz ausgegangen werden. Unkenntnisse über die innersten Bereiche des Dammes, materialbedingte Schwachstellen oder nicht erkannte Inhomogenitäten mussten abgedeckt und die differenzierten Schutzgradbestimmungen beachtet werden.


Drei Sanierungstypen wurden definiert. Der weitaus grösste Teil der Uferbereiche konnte einer Teilsanierung unterzogen werden: Wie bei einer Betonsanierung musste hier nur die äusserste Schicht

Klassischer Dammbau bei der Dammverschiebung unterhalb Brücke Seedorf

Querschnitt durch Damm mit Auflastfilter

Korrelation zwischen Kornverteilung und Durchlässigkeitswert

Brechen von Steinen und Aussieben zu Auflastfiltermaterial

des Dammes neu erstellt werden, der Kernbereich wurde belassen. Gewisse Abschnitte erlaubten eine markante Dammverschiebung, was aus gestalterischer Sicht sehr erwünscht war. Schlussendlich gab es aber auch Dammbereiche, deren Totalsanierung wegen Schwachstellen im Fussbereich oder infolge massiver Durchwurzelung unausweichlich war (Bild 1 und 2).

Geotechnische Dimensionierung

Durch das Entlastungsventil, welches bei einem Hochwasserereignis unter anderem Wasser auf die Nationalstrasse abführt, waren bei der Dimensionierung auch unübliche Lastfälle abzudecken. Der Damm kann während einer Hochwasserentlastung auch auf der Luftseite einer Strömung ausgesetzt sein. Für die Berrechnung massgebend war hier, dass ein schnelles Absenken des Wasserspiegels die Stabilitätsverhältnisse am luftseitigen Dammfuss vermindert.

Bei der Berechnung der Böschungsstabilität spielte die Annahme des inneren Sickerlinienverlaufs eine massgebende Rolle. Mit Hilfe einer Modellierung können wir heute instationäre Verhältnisse, das heisst zeitliche Veränderungen der Sickerlinie bei Auftreten einer kurzzeitigen Hochwasserwelle, zuverlässig berechnen. Hochwasser in Alpentälern sind im Gegensatz zu solchen in grossen Ebenen immer mit intensiven und langdauernden Regenfällen verbunden. Die Dämme werden dabei intensiv durchnässt und das Schüttmaterial ist vor Ansteigen des Wasserspiegels bereits gesättigt. In einem solchen gesättigten Material gleicht sich die Sickerlinie sehr schnell dem stationären Zustand an. Daher wurde bei der Bemessung vom stationären Zustand, einer ungünstigen Annahme, ausgegangen. Daneben waren auch weitere Nachweise zu erbringen wie innere Dammerosion, Ufererosion, Auftrieb und Kolkerscheinungen.

Schweizer Ingenieur und Architekt

Der Lastfall einer plötzlichen Absenkung des Wasserspiegels auf der Luftseite ist für einen Damm ungewöhnlich. Konsequenzen ergaben sich daher bei der Gestaltung des luftseitigen Fussbereiches, der sich zwingend zusammen mit dem Absinken des äusseren Wasserspiegels entwässern muss. Bei einer zeitlichen Diskrepanz hätte sich die Sickerlinie oberflächennah in Böschungsrichtung eingestellt und hätte damit die Stabilität in unzulässigem Masse reduziert. Die erforderliche Entwässerung wurde mit der Durchlässigkeit des oberflächennahen Materials erreicht. Die Luftseite wurde mit einem zwei Meter dicken und auf das Absinken des Spiegels angepassten Auflastfilter abgedeckt.

Der Auflastfilter verhindert nun auch, dass Feinanteile ausgespült werden können. Unsicherheiten wie Unkenntnisse des innersten Bereiches des Dammes, materialbedingte Schwachstellen oder nicht erkannte Inhomogenitäten lassen sich so umgehen.

Geeignetes Material für den Auflastfilter

Die Anforderungen an den Auflastfilter sind gegensätzlich. Einerseits muss er eine definierte Durchlässigkeit aufweisen und selbst im verdichteten Zustand durchlässiger sein als das anstehende Material (nicht zu feinkörnig), andererseits aber auch die Filterkriterien gegenüber dem anstehenden Material gewährleisten (nicht zu grobkörnig). Um möglichst viel vom vorhandenen Material wieder zu verwenden, wurde der Auflastfilter aus dem bestehenden Dammmaterial gewonnen.

Wie hat aber ein Kiesmaterial von genau definierter Durchlässigkeit von k=10⁻⁴ m/s auszusehen? Ausgehend von der Kornverteilung von Kiesen wurden diverse Formeln und Erfahrungswerte herangezogen. Dabei zeigte sich ein äusserst breit gestreutes, für die Praxis unbrauchbares Band von Resultaten. Zudem ist die Durchlässigkeit stark abhängig von der vorhandenen Verdichtung. Um die entstandenen Fragen zu klären, führten wir gemeinsam mit dem Institut für Geotechnik der ETH Zürich Versuche durch. Das Resultat ist eine praxistaugliche Schnellbeurteilung der Durchlässigkeit von verdichteten Kiesen in Abhängigkeit von der Kornverteilung (Bild 3).

Ausführung des Auflastfilters

Dem Grundsatz folgend, das vorhandene Dammschüttmaterial wieder zu verwenden, wurde gemeinsam mit der ausführenden Arbeitsgemeinschaft nach Aufbereitungslösungen gesucht. Der Anteil an kiesigem Schüttmaterial war verhältnismässig gross. Das Schüttmaterial verfügt jedoch über einen grossen Sandanteil, was die Durchlässigkeit stark vermindert. Ausgehend von der Beziehung Sandanteil zu Durchlässigkeit, wie sie die Versuche gezeigt hatten, wurde die Aufbereitungsanlage konzipiert.

Aufgrund des stellenweise sehr hohen Anteils an Blöcken mit Durchmesser grösser als 200 mm musste das Material gebrochen werden. Die dazu verwendete Anlage konnte auch das Zerkleinern der Reussbollen aus dem alten Uferschutz bewerkstelligen. Nach dem Brechen wurde das Material mittels Förderband über ein Sieb mit Lochdurchmesser von 8 mm geführt. Durch den Umstand, dass das Material immer in erdfeuchtem Zustand angeliefert

765

5 Verlegearbeiten von Dichtungsmatten

kam, klebte stets ein Teil des Feinanteiles an den grösseren Körnern. Nach dem Siebdurchgang war folglich nur ein Teil der Körner kleiner 8 mm ausgesiebt. Durch Regulieren der Förderbandgeschwindigkeit konnte der Unternehmer den gewünschten Anteil an Körnern kleiner als 2 mm einfach steuern.

Mit dieser Methode konnte man Auflastfiltermaterial aus dem bestehenden Dammmaterial in einem Arbeitsgang herstellen. Ein Mischen mit Zuschussmaterial war nicht mehr erforderlich, und im Gegensatz zum Mischprozess an der Einbaustelle konnten die Qualitätskontrollen einfach vorgenommen werden. Das ausgesiebte Material zeigte eine ideale Kornverteilungskurve für einen hochwertigen Sand. Es wurde im Kernbereich des Dammes wieder eingebaut und erwies sich als sehr gut verdichtbar. Ausschussmaterial musste nie abgeführt werden (Bild 4).

Das nachträgliche Abdichten von undichten Dämmen

Der rechtsufrige Reussdamm in Attinghausen weist im Gegensatz zu anderen Bereichen entlang der Reussdämme eine dichte Wohnbebauung in geringer Entfernung zum Gewässer auf. Der Grundwasserspiegel befindet sich im Normalfall wenige Dezimeter unter den Kellerböden, die nur knapp über dem Niveau der Reusssohle liegen.

Die äusserst lang andauernden Niederschläge im Frühling 1999 liessen den Grundwasserspiegel auf Rekordmarken anschwellen. Dazu trat ein weiteres durch den Neubau des Uferschutzes bedingtes Phänomen auf. In die Sohle und an das Ufer eines Flusses wird laufend Feinmaterial eingeschwemmt. Es kommt daher mit der Zeit zu einer Kolmatierung, einer in-

tensiven Abdichtung der äussersten Schicht. Durch den Neubau des Uferschutzes wurde diese dichte Schicht zwangsläufig aufgerissen. Die Folge war eine verstärkte Infiltration von Reusswasser in das Grundwasser, was zusammen mit einem hohen Grundwasserspiegel in Attinghausen zu Wasseraufstössen in den Kellern führte.

Schweizer Ingenieur und Architekt

Während eines Hochwassers würde sich die Kolmatierung auf natürliche Weise wieder ausbilden und die Wasseraufstösse zum Verschwinden bringen. Dieser Prozess bedarf aber mehrere Hochwasser in einer ungewissen Zeitspanne – eine für die betroffenen Anwohner unzumutbare Situation. Daher musste nach einer Lösung gesucht werden, die mit verhältnismässigem Aufwand umzusetzen war.

Zunächst wollte man sich über den Verlauf des Sickerwasserspiegels quer zum Damm Klarheit verschaffen. Piezometer wurden gesetzt und deren Wasserspiegel in Relation zur jeweiligen Abflusskote in der Reuss gebracht. Die rechnerischen Simulationen, die an den gemessenen Werten geeicht wurden, bestätigten den fehlenden Druckabbau in der oberflächennahen Uferschicht. Um den ursprünglichen Zustand wieder zu erreichen gab es verschiedene Möglichkeiten: Injektionen, oberflächliches Abdichten oder Verlängern des Sickerweges durch Einbau beispielsweise einer Spundwand. Injektionen wurden aus Umweltschutzgründen verworfen und weil die Erfolgsquote bei verhältnismässigem Volumeneinsatz fraglich ist. Ein Verlängern des Sickerweges hätte aufgrund der vorhandenen Geologie eine über 15 m lange Dichtwand erfordert. Oberflächliches Abdichten dagegen versprach den besten Erfolg und erwies sich auch als die günstigste Methode.

Nachdem das Wasser auf die rechte Gerinneseite gedrängt und eine Baupiste geschüttet worden war, wurde der Blocksatz weggeräumt, eine Dichtungsmatte von der Sohle bis knapp unter die Dammkrone verlegt und mit Sand überschüttet. Anschliessend wurde der Uferschutz wieder aufgebaut. Als Dichtungsschicht wurde eine Bentonitmatte ausgewählt, bei der Bentonitpulver in Geotextilien eingeschlossen ist. Bentonit stellt einen natürlichen Baustoff dar, der sich aus sehr feinkörnigen Tonmineralien zusammensetzt. Er quillt bei Wasserzutritt stark auf und dichtet ab (Bild 5).

Folgerungen

Mit dem gewählten Konzept der luftseitigen Auflastfilter wurde eine Sanierungsmethode für alte Flussdämme gefunden, die sich kostengünstig, ökologisch und mit geringen Projektrisiken realisieren lässt. Der Wasserabfluss auf der Luftseite, Unsicherheiten betreffend dem innersten Bereich des Dammes, materialbedingten Schwachstellen und nicht erkannten Inhomogenitäten wurden mit dieser Sanierung abgedeckt. Zudem berücksichtigte dieses Vorgehen differenzierte Schutzbedürfnisse.

Adresse des Verfassers:

Ralph Bächli, dipl. Bauing. ETH, Basler & Hofmann, Ingenieure und Planer AG, Forchstrasse 395, 8029 Zürich

Bilder

Irène Elber, Altdorf und Zürich