Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 114 (1996)

Heft: 6

Artikel: Kausalitäten bei Lärmimmissionen

Autor: Trefzer, Karl / Rosa, Ercolino

DOI: https://doi.org/10.5169/seals-78913

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ASIC-Artikelreihe Karl Trefzer, Ercolino Rosa, Basel

Kausalitäten bei Lärmimmissionen

Die Errichtung eines Energieleitungsstollens, der in Basel West eine Bahnanlage unterquert, führte zu Lärmklagen aus der weiteren Nachbarschaft. Den tieffrequenten und angeblich wesentlich erhöhten Bahnlärmimmissionen wurde ein direkter Zusammenhang mit dem Ingenieurbauwerk unterstellt. Mit Hilfe parallel durchgeführter Lärmund Schwingungs- (Körperschall-) messungen bei gleichzeitiger Durchführung an mindestens zwei Messorten konnte gezeigt werden, dass erstens zwischen dem Stollen und den beanstandeten Immissionen kein Zusammenhang besteht und damit zweitens, dass eine eventuelle Immissionserhöhung eine andere Ursache haben muss.

Nach Beendigung der Bauarbeiten beanstandeten etliche Anwohner aus der weiteren Nachbarschaft bei den zuständigen Behörden eine sehr starke Zunahme von tieffrequenten Bahnlärmimmissionen. Sie wurden in direkten Zusammenhang mit der Erstellung eines Energieleitungsstollens, welcher das Trassee der SNCF in Basel nördlich des Tunneleinganges beim Kannenfeldplatz unterquert, gebracht (1).

Bei den beanstandeten Immissionen handelt es sich, klar differenzierbar vom Umgebungslärm, um sekundären Luftschall, d.h. um in Räume abgestrahlten Körperschall, der von der Bahn angeregt wird und durch den Boden und das Fundament in die Baustruktur eindringt (2). Dadurch werden auch Raumeigenfrequenzen angeregt, was im übrigen eine sehr häufige Erscheinung ist. Kleine abgestrahlte Intensitäten können dabei bei fehlender Dämpfung extrem verstärkt werden (3).

In einem exemplarischen Fall liegen die hör- und spürbaren Immissionen bei 34 Hz. Dieser Wert ergibt sich auch bei der Berechnung der Eigenfrequenzen für den orthogonalen Raum mit starren Wänden, mit den Kartenlängen $l_1 = 9,6$ m, $l_2 = 3,8$ m, $l_3 = 2,6$ m, der Schallgeschwindigkeit c und den Werten n_1 bis n_3 von 0 bis 3 nach:

$$f_n = c/2 \left[(n_1/l_1)^2 + (n_2/l_2)^2 + (n_3/l_3)^2 \right]^{1/2}$$

Je nach Raumelement und Zugslänge treten Schalldruckpegel von 80 dB(lin) und mehr nahezu minutenlang auf.

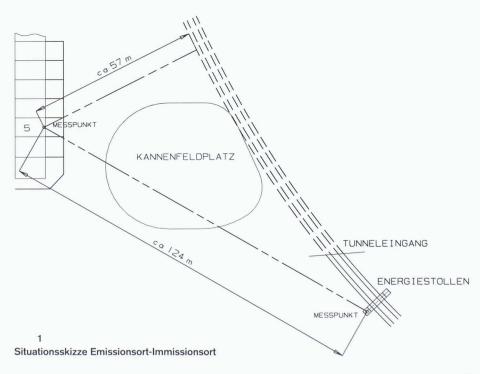
Arbeitshypothesen

Lärm-Vorhermessungen wurden keine durchgeführt, so dass die Lärmklagen eine besondere messtechnische Untersuchung der Emissions- und Immissionssituation erzwangen. Dabei stellte sich die Frage nach zu erwartenden eindeutigen Resultaten für die beiden vorerst hypothetischen Fälle:

Immissionen und damit deren Zunahme stehen in direktem Zusammenhang mit dem neuen Energieleitungsstollen.

Sowohl Immissionen als auch deren Zunahme stehen in keinem Zusammenhang, zumal die Höhe der Immissionen vom Zustand der Geleise, des Trassees und vom Rollmaterial bestimmt wird und die Immissionen selber von der Nähe der Bahnlinie zu den Liegenschaften beeinflusst werden. Der Bahntunnel spielt dabei die Rolle eines Verstärkers.

Messtechnische Erwartungsresultate


Die Ausbreitungsgeschwindigkeit des Körperschalls in Beton beträgt 3400 m/s. Für die Schallübertragung vom Energiestollen über das bestehende Betonkanalnetz bis zum erwähnten exemplarischen Immissionsort (ca. 120 m) benötigt ein Körperschallereignis damit 0,04 s.

Zugunsten der ersten Hypothese müssten damit die folgenden, messtechnisch zu ermittelnden Fakten sprechen:

Züge, die den Stollen Richtung Tunnel überfahren, müssten gleichzeitig ein Körperschallsignal beim Stollen sowie ein Körper- und Luftschallsignal am Immissionsort auslösen (Differenz zwischen den Körperschallsignalen: 0,04 s). Nach dem Überfahren des Energiestollens von Zügen aus dem Tunnel müssten die Signale am Stollen und am Immissionsort gleichzeitig abklingen.

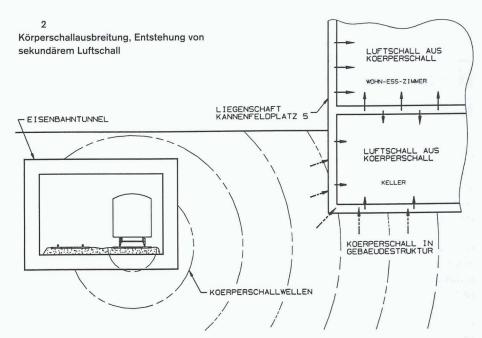
Zugunsten der zweiten Hypothese müssten die folgenden, messtechnisch zu ermittelnden Fakten sprechen:

Bei Zügen, die den Stollen Richtung Tunnel überfahren, sollte wohl am Stollen

ein Signal auftreten, nicht aber gleichzeitig am Immissionsort. Dieses tritt erst bei der Einfahrt des Zuges in den Tunnel auf. Bei Zügen mit 40 km/h nach 1,8 s und bei Zügen mit 60 km/h nach 1,2 s (Strecke Stollen bis Einfahrt Tunnel 20 m).

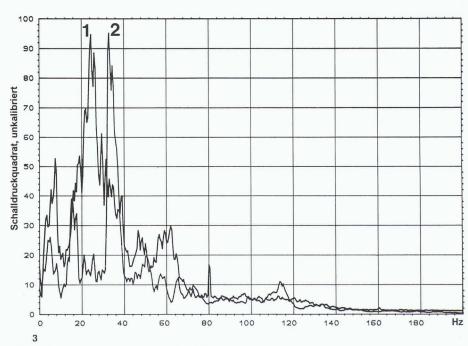
Ein Schallsignal sollte daher sein Maximum etwa 80 m vom Energiestollen entfernt (kürzeste Distanz Immissionsort-Bahntrassee), erreichen, und zwar bei Zügen mit 40 km/h nach ca. 7,2 s und bei Zügen mit 60 km/h nach ca. 4,8 s.

Beim Befahren des Tunnels von Zügen aus der Gegenrichtung treten am Immissionsort Schallsignale auf. Ihr Maximum erreichen sie beim Durchfahren des Ortes der kürzesten Distanz Immissionsort-Bahntrassee. Die Schallsignale am Immissionsort klingen vor dem Signal beim Energiestollen ab.

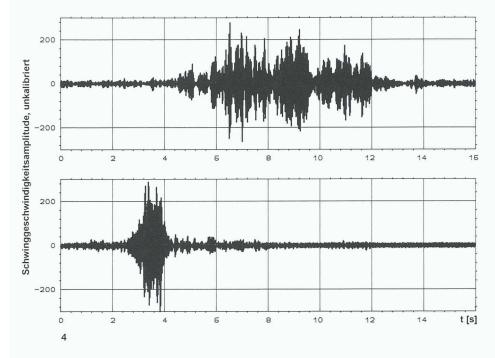

Messtechnische Ergebnisse

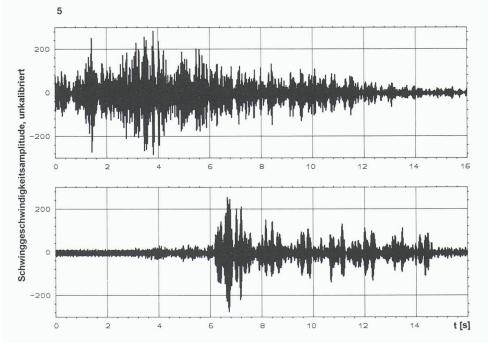
Um die Gültigkeit nur einer möglichen Hypothese zu bestätigen, wurden beim Energiestollen ein Schwingungsaufnehmer mit Messgerät und Kabel zum Immissionsort sowie eine gleiche Messkette und ein Mikrofon mit Messgerät am Immissionsort eingerichtet. Am Immissionsort wurden sämtliche Signale mittels Zweikanalschreibern registriert und mittels Zweikanal-Bandgeräten zur Auswertung im Labor aufgezeichnet. Die Resultate zeigen sich wie folgt:

Züge, die den Energiestollen Richtung Tunnel überfahren, verursachen am Immissionsort keine sofortigen Schallsignale. Körper- und Luftschallsignale treten gegenüber dem Signal am Stollen erst um Sekunden verzögert auf (4). Gleichzeitig mit dem Körperschallsignal tritt auch das Luftschallsignal am Immissionsort auf, d.h., es tritt ebenfalls verzögert gegenüber dem Körperschallsignal am Energiestollen auf.


Bei den erfassten Zugvorbeifahrtsereignissen konnten grob folgende Zeitverschiebungen gemäss nebenstehender Tabelle vom Überfahren des Energiestollens bis zum eindeutigen Heraustreten der Körperschallimmission aus dem schwankenden Grundgeräusch am Immissionsort (Überfahren des Stollens bis Eintritt in den Tunnelportalbereich) sowie vom Überfahren des Stollens bis zum Eintreten eines ersten Maximalwertes vom Körperschall am Immissionsort (Überfahren des Stollens bis Durchfahrt kürzeste Distanz Immissionsort-Tunnel) festgestellt werden:

Züge aus der Gegenrichtung verursachen am Immissionsort Körperschall-


KOERPERSCHALL: GEMESSEN MIT PIEZOOUARZ-BESCHLEUNIGUNGSAUFNEHMER
UND MESSGERAETEKETTE


LUFTSCHALL: GEMESSEN MIT MIKROFON UND MESSGERAETEKETTE

Frequenzspektrum des Körperschalls, der auf das Fundamentmauerwerk am Immissionsort einwirkt, Kurve 1. Frequenzspektrum des sekundären Luftschalles am Immissionsort, Kurve 2

Zugsart	Zeitverzug vom Überfahren des Stollens bis zum eindeutigen Anstieg des Körperschalls am Immissionsort in Sekunden	Zeitverzug vom Überfahren des Stollens bis zum ersten Maximum des Körperschalls am Immissionsort in Sekunden
Lok	1,8; 1,6; 1,5; 1,5	5,0; 5,5; 4,5; 4,0
Personen	1,5; 1,7; 1,8; 1,5	4,0; 6,0; 5,0; 7,5
Güter	1,6; 1,7; 1,8; 1,8; 1,6; 1,7	6,0; 5,5; 5,0; 7,0; 7,0; 5,0

4 Lokomotive, Fahrtrichtung Stollen – Tunnel. Obere Grafik: Körperschallsignal am Immissionsort, untere Grafik: Körperschallsignal am Energiestollen

5 Personenzug, Fahrtrichtung Tunnel-Stollen. Obere Grafik: Körperschallsignal am Immissionsort, untere Grafik: Körperschallsignal am Energiestollen

signale, deren Maximum vor dem Überfahren des Energiestollens auftritt. Das Schallsignal am Immissionsort klingt vor demjenigen am Energiestollen ab (5).

Fazit

Die messtechnischen Ergebnisse zeigen eindeutig das Zutreffen der zweiten Hypothese auf. Ein Zusammenhang zwischen dem Ingenieurbauwerk und den Immissionen bzw. dem Bauwerk und eventuellen Zunahmen von Bahnlärmimmissionen muss ausgeschlossen werden. Eine Ursache der Immissionen liegt unter anderem in unverschweissten Schienenstössen und eine Zunahme der Immissionen in einer zunehmenden Verriffelung der Schienen. Die vermutete Kausalität zwischen Bahnlärmimmissionen und Energieleitungsstollen aber kann einem psychoakustischen Effekt zugeschrieben werden.

Adressen der Verfasser: *Karl Trefzer*, Dr. phil. II/SIA/ASIC, *Ercolino Rosa*, dipl. Ing. ETH/ SIA/ASIC, Trefzer+Rosa, Akustik und Schwingungstechnik, St.Alban-Ring 206, 4020 Basel