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George Herrmann, Davos

Euler'sche Knickformel
Gut 250 Jahre ist es her, dass Euler
seine Knickformel entwickelte und
publizierte. Im Lichte des heutigen
Wissens wird sie hiermit nochmals
kurz dargestellt und gewürdigt.

Imjahre 1944 veröffentlichte Dr. Fritz Stüs-
si, Professor für Stahlbau an der ETH
Zürich, einen Aufsatz [l] in der Schweizerischen

Bauzeitung unter dem Titel «200

Jahre Euler'sche Knickformel". In seiner

Darstellung verwies Stüssi auf die grosse
Bedeutung dieser Knickformel für die
Entwicklung der Festigkeitslehre und der
Baustatik, die so nebenbei in einem Anhang
(Additamentum I) «Über die elastischen
Kurven- zu seinem grundlegenden Werk
über Variationsrechnung [2] veröffentlicht
wurde. Diese Bedeutung für das Inge-
nieurwesen war für Stüssi Grund genug,
an die Entstehung der Euler'schen Knickformel

zu erinnern.

Ein solches Nachskizzieren der
Überlegungen Eulers macht den Hauptteil des

Beitrags von Stüssi aus. In seiner Arbeit
bezieht er sich auf eine Euler'sche
Publikation aus dem Jahre 1757 [3], in welcher
eine andere (und einfachere) Herleitung
der berühmten Formel aufgezeigt w ird.
Ergänzend erwähnt Stüssi einige nachfolgende

Entwicklungen des Knickproblems,
speziell die 150 Jahre später erfolgten
Versuche von L. von Tetmajer und die

Erweiterung auf den unelastischen Bereich von
Engesser und von Karman.

1994 wurde die Euler'sche Knickformel

250 Jahre alt, und es schien mir
reizvoll, daran zu erinnern. Es schien mir
ferner angebracht, in diesem Zusammenhang
einige Entwicklungen der letzten Jahre zu
erwähnen, welche auf der Euler'schen
Knickformel basieren und welche Stüssi
1944 nicht darlegen konnte.

Zunächst sollten wir jedoch die
eigentliche Euler'sche Knickformel vor

Von dor Tragkraft dor 8ftulen.

37. Was vorher aber die erste Art bemerkt worden ist,
kann dazu dienen, die Tragfähigkeit der Säulen za bestimmen.
AB (Fig. 13) sei eine vertikal über der Basis A stehende 8*nle;

sie trage das Gewicht P. Die Säule sei so beschaffen, daß
sie nicht gleiten kann. Ist das Gewicht P nicht zn groß, so
ist höchstens eine Verbiegnng der Säule zn befürchten. In
diesem Falle kann die Sänle gleichsam als mit Elastizität
begabt angesehen werden. Es sei die absolnte Elastizität der
Sänle Ek1, ihre Höhe 2f= a JB. Wir haben vorher in
Nr. 25 gesehen, daß die Kraft, welche erforderlich ist, nm
diese Säule in noch so geringem Maße zn verbiegen

Fig. 13. '"4/2 - Ek*

B

ist. Wenn daher d»3 zn tragende
Gewicht P nicht grüßer ist als

ist überhaupt keine Verbicgung zu
befürchten. Ist P jedoch größer, so kann
die Sänle der Verbiegnng nicht
widerstehen. Bleibt aber die Elastizität der
Säule und also auch ihre Dicke nngeän-
dert, so wird dio Last P, die sie ohne
Gefahr zu tragen vermag, sich umgekehrt
wie das Quadrat der Höhe verhalten.
Rine doppelt so hohe Sänle wird nur
den vierten Teil der Last tragen können.
Die3 kann mau sich besonders bei hölzernen

S.tnlen zu Nutze machen, die der Verbiegnng sehr
unterworfen sind.

A

1

Aus Leonhard Euler:
Sur la force des colonnes.

Mémoires de
l'Académie Royale des
Sciences de Berlin,
1757; übersetzt von
H. Linsenbarth

Labiles
Gleichgewichl

Verzvveigungspunkt
unter Euler'scher
Belastung

i stabiles Gleichgewicht

Ausbiegung d

Gleichgewicht und Verzweigungspunkt

Augen haben. Am einfachsten erscheint
eine vollständige Wiedergabe des (relativ)
kurzen Paragraphen 37 (Von der Tragkraft
der Säulen) aus dem erwähnten
Additamentum, in der deutschen Übersetzung
von H. Linsenbarth. Einleitend sei
bemerkt, dass Euler in diesem Anhang neun
Arten von elastischen Kurven unterscheidet,

im Paragraphen 37 kommt er auf die
erste Art zurück.

Was Euler mit Ek2 bezeichnet und
absolute Elastizität nennt, nennen wir heute
die Biegesteifigkeit eines Stabes und
bezeichnen sie gewöhnlich mit EI, wo E der
Elastizitätsmodul ist und I das Trägheitsmoment

des Querschnittes. (Es ist nicht
einsichtig, -woher Euler die Bezeichnung
Ek2 nimmt.)

Euler hat also den Ausdruck für jene
Last P gefunden, unter welcher die Säule

AB sich unendlich wenig verbiegt. Ist die
Last kleiner als dieses kritische P, so bleibt
die Säule gerade (und zusammengedrückt).

Ist die Last jedoch grösser als die
kritische Belastung, so wird die Säule

verbogen, d.h. sie knickt aus. Man kann
zeigen, dass die gerade, unausgebogene Form
der Säule unter dieser Last, die grösser ist
als P, immer noch im Gleichgewicht ist,
doch ist dieses Gleichgewicht nicht mehr
stabil. Unter der kritischen Belastung P findet

also eine Verzweigung des Gleichgewichtes

statt (2).
Wie ist nun der Ausdruck «in noch so

geringem Mass- zu verstehen? Um dies zu
erfassen, betrachten wir eine Säule der
Länge a, an deren Ende eine Kraft P
exzentrisch (Exzentrizität e) angreift (3).

Unter dieser Belastung P wird sich die
elastische Säule verbiegen, d d (x). Um
das obere Stück der Säule zwischen x und
a im Gleichgewicht zu halten, muss im
Querschnitt x d ein Moment M wirken,
dessen Grösse sich ergibt als

M P(e+d,-d).
Andererseits wird in der elementaren,

klassischen Biegetheorie (von Bernoulli-
Euler) angenommen, dass das Quer-
sclinittsmoment M proportional der

Krümmung des Stabes sei und dass die
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x=a

x=0

aVd

^P

Exzentrische Belastung

77777
4a

4

Verformungen bei verschiedener Lagerung

77777
4c

Krümmung sich durch die zweite Ableitung

der Durchbiegung ausdrücke. Der
Proportionalitätsfaktor ist die Biegesteifig-
keit EI und somit M EId2d/dx2 Eid".

Nun kann M in diesen beiden
Gleichungen eliminiert werden, und man
erhält die Differentialgleichung der
elastischen Linie (Durchbiegung): Eid"
P(e+da-d). Die allgemeine Lösung dieser

nichthomogenen gewöhnlichen
Differentialgleichung, mit P/(EI) K2 kann wie

folgt angeschrieben werden:
d(x) Acoskx + BsinKx + e + da.

Die noch unbekannten Konstanten A,
B und da können aus den Randbedingungen

bestimmt werden. Die Säule ist unten
(x 0) eingespannt, d.h. dort verschwindet

die Durchbiegung und deren Ableitung.

Am oberen Ende der Säule gilt d(a)
da und somit d(x) e(l-cosKx)/(cosKa)

und speziell am oberen Ende, fiir x a:

d(a) d, e(l/cosKa-l). Man sieht, dass

bei einer Belastung, die cosKa 0

entspricht, d.h. bei Ka n/2 oder P

;t2EI/(4a2) die Ausbiegung d(a) unabhängig

der Grösse der Exzentrizität e unendlich

gross wird. Man spricht dann von
einem Knicken des Stabes unter der
(kritischen) Knicklast P:

P 7t 2EI/(4a2)

Es ist festzuhalten, dass wegen unserer
grundlegenden Annahmen betreffend
kleiner Durchbiegungen im Vergleich zur
Länge des Stabes (Linearität) die Gültigkeit

unserer Beziehungen sich eben nur auf
kleine d(a) erstreckt. Würden wir diese

Annahmen revidieren und mit einer
nichtlinearen Theorie für grosse Durchbiegungen

arbeiten, so ergäbe sich das Verhalten

gemäss (2), falls die Exzentrizität
verschwindet.

Vergleichen wir den oben stehenden

Ausdruck mit dem von Euler hergeleiteten,

so stellen wir fest, dass bei Euler der
Faktor 1/4 fehlt. Der Grund dafür ist, dass

Euler den Randbedingungen seiner Säule

keine besondere Beachtung geschenkt
hat. Man muss annehmen, dass er den Fall

einer beidseits gelenkig gelagerten Säule

betrachtet hat (4a), doch soll bemerkt werden,

dass die Lagerungsart in (4b) die gleiche

Knicklast ergibt, weil in beiden Fällen
die (unendlich kleine) Ausbiegung durch
eine halbe Welle der Sinuskurve dargestellt
wird. Wir hingegen untersuchten die

unten eingespannte, oben freie Säule (4c),
deren Ausbiegung durch ein Viertel der

Wellenlänge der Sinuskurve beschrieben
wird. Da die Länge quadratisch in die
Knickformel eingeht, ergibt sich der Faktor

1/4.

Es ist für Knickprobleme relevant,
dass die Euler'sche Formulierung nicht ein

lineares, sondern genau genommen ein li-
nearisiertes Problem darstellt. Dies bedeutet,

dass das Verhalten der Last P nicht nur
im ursprünglichen, nicht ausgebogenen,
sondern auch im verformten Zustand
angegeben werden muss.

Wenn die Belastung ein Gewicht ist
(wie es Euler annahm), verändert sich die

Richtung der Kraft, die aufdie Säule wirkt
(5a) im verformten Zustand nicht (5b).
Wenn aber die Kraft, die auf das freie Ende

der Säule wirkt, im verformten Zustand
ihre Richtung nicht behält, und z.B. immer

tangential (5c) oder unter einem
bestimmten Winkel zur Endtangente (5d)
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wirkt, dann werden die Randbedingungen
im Vergleich zum Verhalten in (5b)
verändert. Und wenn man, im Sinne Eulers,
die Säule unter einer mitgehenden Last
(5c) untersucht und einen Verzweigungspunkt

der Gleichgewichtskurven bestimmen

möchte, wie im Falle der Belastung
nach (5b), dann kommt man zum Ergebnis,

dass es überhaupt keinen solchen
Verzweigungspunkt gibt, und dass die

Belastung gegen unendlich anwachsen kann,
ohne dass überhaupt etwas passiert, was
mit Stabilität oder Instabilität zu tun hätte.
Dieser Sachverhalt führt zu einem Paradox,

das erst 1952 geklärt wurde. Es stellte
sich heraus, dass die Euler'sche Methode,
die einen Verzweigungspunkt der
Gleichgewichtslagen sucht, im allgemeinen auf
statische Probleme beschränkt ist. Es gibt
aber zahlreiche mechanische Systeme
(z.B. durchströmte Rohre, angetriebene
Raketen, Turbinenschaufeln, angeströmte
Flugzeugflügel), welche ihren stabilen
Zustand verlieren, indem sie nicht in eine
(benachbarte) Gleichgewichtslage übergehen
wie bei Euler, sondern, durch kleine
Erregungen verursacht, mit immer grösseren
Amplituden zu schwingen anfangen und
somit zur Zerstörung des Systems führen.
Es kann hier an das spektakuläre Flattern
und den Einsturz der Tacoma-Hänge-
brücke (1940) erinnert werden.

Während die Euler'sche Methode
einen «statischen» Verlust der Stabilität
bestimmen kann, den wir als «Divergenz»
bezeichnen können, gibt es auch die
umfangreiche Kategorie der dynamischen»
Stabilitätsverluste, die wir gemeinsam als

«Flattern» identifizieren können. Die
Euler'sche Methode ist nicht in der Lage, das

Flattern zu untersuchen.
Ein weiterer bemerkenswerter

Umstand betrifft den Einfluss der Dämpfung.

Bei statischen (d. h. Euler'schen) Problemen

verschwindet der Einfluss der Dämpfung

auf die kritische Last, wenn diese

Dämpfung immer kleiner und schliesslich
Null -«ird. Ganz anders verhält es sich bei
Systemen, die ihre Stabilität dynamisch,
d.h. durch Flattern verlieren. Bei
verschwindender Dämpfung ist die kritische
Belastung verschieden und kleiner im
Vergleich zu jener, die man ohne jegliche
Berücksichtigung der Dämpfung errechnen

würde. Dieses wieder scheinbar paradoxe

Verhalten lässt sich dadurch erklären,
dass die Dämpfung bei Systemen, die Flattern

können, noch eine zusätzliche Rolle
spielen kann. Sogar verschwindend kleine
Dämpfung bewirkt noch Phasenverschiebungen

zwischen den verschiedenen
Freiheitsgraden des Systems, welche eine
vermehrte Energieaufnahme des Systems aus
der Umgebung ermöglichen. Und dies
führt dann natürlich zu einer verminderten

kritischen Belastung.
Zusammenfassend, und Stüssis

Schlusssätze paraphrasierend, lässt sich

sagen, «dass die Leistung Eulers bei der
Entdeckung der Knickformel angesichts
der damaligen Unkenntnis der uns heute
geläufigen Begriffe der Biegungslehre um
so höher bewertet werden muss. Seine
Methodik, die bei der Überwindung
mathematischer Schwierigkeiten auf die Erfassung

des Wesentlichen ausgeht, ist für uns
auch heute noch wertvoll, aufschlussreich
und von vorbildlicher Klarheit und
Eleganz der Darstellung.»

Doch das Gebiet der Stabilität
mechanischer Systeme ist ein weites Feld, und die

Entwicklung der letzten 50Jahre, basierend
aufder Euler'schen Knickformel, hat unser
Wissen wesentlich erweitert, wie diese

kurze Darstellung zu vermitteln versucht.
Es ist aber beileibe nicht so, dass diese Ent¬

wicklung nun abgeschlossen wäre. Unsere

Horizonte werden immer weiter
geschoben, und es ist zu erwarten, dass

jemand in weiteren 50jahren genügend Stoff
haben sollte, um über die neuen
Fortschritte des Knickproblems zu berichten.
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