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Baustatik

George Herrmann, Davos

Schweizer Ingenieur und Architekt

Euler’'sche Knickformel

Gut 250 Jahre ist es her, dass Euler
seine Knickformel entwickelte und
publizierte. Im Lichte des heutigen

Wissens wird sie hiermit nochmals
kurz dargestellt und gewiirdigt.

Im Jahre 1944 veroffentlichte Dr. Fritz Stiis-
si, Professor fiir Stahlbau an der ETH
Ziirich, einen Aufsatz [1] in der Schweize-
rischen Bauzeitung unter dem Titel «200
Jahre Euler’sche Knickformel». In seiner
Darstellung verwies Stiissi auf die grosse
Bedeutung dieser Knickformel fiir die Ent-
wicklung der Festigkeitslehre und der Bau-
statik, die so nebenbei in einem Anhang
(Additamentum I) «Uber die elastischen
Kurven» zu seinem grundlegenden Werk
tber Variationsrechnung [2] verdffentlicht
wurde. Diese Bedeutung fiir das Inge-
nieurwesen war fiir Stissi Grund genug,
an die Entstehung der Euler’schen Knick-
formel zu erinnern.

Ein solches Nachskizzieren der Uber-
legungen Eulers macht den Hauptteil des
Beitrags von Stiissi aus. In seiner Arbeit
bezieht er sich auf eine Euler’sche Publi-
kation aus dem Jahre 1757 [3], in welcher
eine andere (und einfachere) Herleitung
der bertihmten Formel aufgezeigt wird. Er-
ginzend erwihnt Stissi einige nachfol-
gende Entwicklungen des Knickproblems,
speziell die 150 Jahre spiter erfolgten Ver-
suche von L. von Tetmajer und die Erwei-
terung auf den unelastischen Bereich von
Engesser und von Karman.

1994 wurde die Euler’sche Knickfor-
mel 250 Jahre alt, und es schien mir reiz-
voll, daran zu erinnern. Es schien mir fer-
nerangebracht, in diesem Zusammenhang
einige Entwicklungen der letzten Jahre zu
erwihnen, welche auf der Euler’schen
Knickformel basieren und welche Stiissi
1944 nicht darlegen konnte.

Zunichst sollten wir jedoch die
eigentliche Euler’sche Knickformel vor

Von der Tragkraft der S#iulen.

37. Was vorher ftber die erste Art bemerkt worden ist,
kann dazu dienen, die Tragfihigkeit der Sdnlen zu bestimmen.
AB (Fig. 13) sei eine vertikal fiber der Basis A stehende Bxule;

sie trage das Gewicht P. Die Saule sei so beschaffen, daB
sie nicht gleiten kann. Ist das Gewicht P nicht zu groB, so
ist hochstens eine Verbiegung der Saule zu befdrchten. In
diesem Falle kann die Saule gleichsam als mit Elastizitat be-

gabt angesehen werden.

Es sei die absolute Elastizitit der

Stale — E 42, ihre Hohe = 2/ =a = AB. Wir haben vorbher in
Nr. 25 gesehen, daB die Kraft, welche erforderlich ist, um
diese Siule in noch so geringem MafBc zu verbiegen

nlER?
Fig. 13. g = g B
P ist. Wenn daher das zn tragende Ge-
wicht P nicht grifer ist als
B En2k?
e

firchten.

ist iiberhaupt keine Verbiegung zu be-
Ist P jedoch griéBer, so kann

die Sinle der Verbiegung nicht wider-
stehen. Bleibt aber die Elastizitit der
S3iule und also auch ihre Dicke ungeiin-
dert, so wird die Last P, die sie ohne
Gefahr zu tragen vermag, sich umgekehrt
wie das Quadrat der Ilshe verhalten.

7.3

Bine doppelt so hohe Sinle wird nur
den vierten Teil der Last tragen kénnen.
Dies kann man sich besonders bei halzer~

nen Sinlen zu Nutze machen, die der Verbiegung schr unter-

worfen sind.

1
Aus Leonhard Euler:
Sur la force des colon-
nes. Mémoires de
I’Académie Royale des
Sciences de Berlin,
1757; Ubersetzt von
H. Linsenbarth
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Gleichgewicht

stabiles Gleichgewicht

Verzweigiingspunkt
unter Euler'scher
Belastung

Ausbiegung d

2
Gleichgewicht und Verzweigungspunkt

Augen haben. Am einfachsten erscheint
eine vollstindige Wiedergabe des (relativ)
kurzen Paragraphen 37 (Von der Tragkraft
der Siulen) aus dem erwihnten Addita-
mentum, in der deutschen Ubersetzung
von H.Linsenbarth. Einleitend sei be-
merkt, dass Euler in diesem Anhang neun
Arten von elastischen Kurven unterschei-
det, im Paragraphen 37 kommt er auf die
erste Art zurtick.

Was Euler mit Ek? bezeichnet und ab-
solute Elastizitit nennt, nennen wir heute
die Biegesteifigkeit eines Stabes und be-
zeichnen sie gewdhnlich mit EI, wo E der
Elastizititsmodul ist und I das Trigheits-
moment des Querschnittes. (Es ist nicht
einsichtig, woher Euler die Bezeichnung
Ek? nimmt.)

Euler hat also den Ausdruck fiir jene
Last P gefunden, unter welcher die Siule
AB sich unendlich wenig verbiegt. Ist die
Last kleiner als dieses kritische P, so bleibt
die Siule gerade (und zusammenge-
driickt). Ist die Last jedoch grosser als die
kritische Belastung, so wird die Siule ver-
bogen, d.h. sie knickt aus. Man kann zei-
gen, dass die gerade, unausgebogene Form
der Siule unter dieser Last, die grosser ist
als P, immer noch im Gleichgewicht ist,
doch ist dieses Gleichgewicht nicht mehr
stabil. Unter der kritischen Belastung P fin-
det also eine Verzweigung des Gleichge-
wichtes statt (2).

Wie ist nun der Ausdruck «in noch so
geringem Mass» zu verstehen? Um dies zu
erfassen, betrachten wir eine Siule der
Linge a, an deren Ende eine Kraft P ex-
zentrisch (Exzentrizitit e) angreift (3).

Unter dieser Belastung P wird sich die
elastische Siule verbiegen, d = d (x). Um
das obere Stiick der Siule zwischen x und
a im Gleichgewicht zu halten, muss im
Querschnitt x = d ein Moment M wirken,
dessen Grosse sich ergibt als
M =P (e+d,-d).

Andererseits wird in der elementaren,
klassischen Biegetheorie (von Bernoulli-
Euler) Quer-

schnittsmoment M proportional  der

angenommen, dass das
Kriimmung des Stabes sei und dass die
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Verformungen bei verschiedener Lagerung

Kriimmung sich durch die zweite Ablei-
tung der Durchbiegung ausdriicke. Der
Proportionalititsfaktor ist die Biegesteifig-
keit EI und somit M = EId*d/dx? = EId".

Nun kann M in diesen beiden Glei-
chungen eliminiert werden, und man
erhilt die Differentialgleichung der ela-
stischen Linie (Durchbiegung): EId” =
P(e+d,-d). Die allgemeine Losung dieser
nichthomogenen gewohnlichen Differen-
tialgleichung, mit P/(EI) = «* kann wie
folgt angeschrieben werden:
d(x) = Acoskx + Bsinkx + e + d,.

Die noch unbekannten Konstanten A,
B und d, kénnen aus den Randbedingun-
gen bestimmt werden. Die Siule ist unten
(x =0) eingespannt, d.h. dort verschwin-
det die Durchbiegung und deren Ablei-
tung. Am oberen Ende der Siule gilt d(a)
=d, und somit d(x) = e(1-coskx)/(coska)
und speziell am oberen Ende, firr x = a:
d(a) = d, = e(1/coska-1). Man sicht, dass
bei einer Belastung, die coska = 0 ent-
spricht, d.h. bei xa = /2 oder P =
m’El/(4a%) die Ausbiegung d(a) unabhiin-
gig der Grosse der Exzentrizitit ¢ unend-
lich gross wird. Man spricht dann von
einem Knicken des Stabes unter der (kri-
tischen) Knicklast P:
P = 1 2E1/(42?)

Schweizer Ingenieur und Architekt

Es ist festzuhalten, dass wegen unserer
grundlegenden Annahmen betreffend
kleiner Durchbiegungen im Vergleich zur
Linge des Stabes (Linearitit) die Giiltig-
keitunserer Bezichungen sich eben nurauf
kleine d(a) erstreckt. Wirden wir diese
Annahmen revidieren und mit einer nicht-
linearen Theorie fiir grosse Durchbiegun-
gen arbeiten, so ergibe sich das Verhalten
gemiss (2), falls die Exzentrizitit ver-
schwindet.

Vergleichen wir den oben stehenden
Ausdruck mit dem von Euler hergeleite-
ten, so stellen wir fest, dass bei Euler der
Faktor 1/4 fehlt. Der Grund dafiir ist, dass
Euler den Randbedingungen seiner Siule
keine besondere Beachtung geschenkt
hat. Man muss annehmen, dass er den Fall
einer beidseits gelenkig gelagerten Siule
betrachtet hat (4a), doch soll bemerkt wer-
den, dass die Lagerungsart in (4b) die glei-
che Knicklast ergibt, weil in beiden Fillen
die (unendlich kleine) Ausbiegung durch
eine halbe Welle der Sinuskurve dargestellt
wird. Wir hingegen untersuchten die
unten eingespannte, oben freie Siule (4c),
deren Ausbiegung durch ein Viertel der
Wellenlinge der Sinuskurve beschrieben
wird. Da die Linge quadratisch in die
Knickformel eingeht, ergibt sich der Fak-
tor 1/4.

Es ist fur Knickprobleme relevant,
dass die Euler’sche Formulierung nicht ein
lineares, sondern genau genommen ein li-
nearisiertes Problem darstellt. Dies bedeu-
tet, dass das Verhalten der Last P nicht nur
im urspriinglichen, nicht ausgebogenen,
sondern auch im verformten Zustand an-
gegeben werden muss.

Wenn die Belastung ein Gewicht ist
(wie es Euler annahm), verindert sich die
Richtung der Kraft, die auf die Siule wirkt
(5a) im verformten Zustand nicht (5b).
Wenn aber die Kraft, die auf das freie Ende
der Siule wirkt, im verformten Zustand
ihre Richtung nichtbehilt, und z.B. immer
tangential (5¢) oder unter einem be-
stimmten Winkel zur Endtangente (5d)

5
. . I
Saule unter mitgehen-
der Last Sa
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wirkt, dann werden die Randbedingungen
im Vergleich zum Verhalten in (5b) ver-
indert. Und wenn man, im Sinne Eulers,
die Siule unter einer mitgehenden Last
(5¢) untersucht und einen Verzweigungs-
punkt der Gleichgewichtskurven bestim-
men mochte, wie im Falle der Belastung
nach (5b), dann kommt man zum Ergeb-
nis, dass es tiberhaupt keinen solchen Ver-
zweigungspunkt gibt, und dass die Bela-
stung gegen unendlich anwachsen kann,
ohne dass tiberhaupt etwas passiert, was
mit Stabilitit oder Instabilitit zu tun hitte.
Dieser Sachverhalt fithrt zu einem Para-
dox, das erst 1952 geklirt wurde. Es stellte
sich heraus, dass die Euler’sche Methode,
die einen Verzweigungspunkt der Gleich-
gewichtslagen sucht, im allgemeinen auf
statische Probleme beschrinkt ist. Es gibt
aber zahlreiche mechanische Systeme
(z.B. durchstromte Rohre, angetriebene
Raketen, Turbinenschaufeln, angestrémte
Flugzeugfliigel), welche ihren stabilen Zu-
stand verlieren, indem sie nicht in eine (be-
nachbarte) Gleichgewichtslage iibergehen
wie bei Euler, sondern, durch kleine Erre-
gungen verursacht, mit immer grosseren
Amplituden zu schwingen anfangen und
somit zur Zerstorung des Systems fithren.
Es kann hier an das spektakulire Flattern
und den Einsturz der Tacoma-Hinge-
briicke (1940) erinnert werden.

Wihrend die Euler’'sche Methode
einen «statischen» Verlust der Stabilitit be-
stimmen kann, den wir als <Divergenz» be-
zeichnen konnen, gibt es auch die um-
fangreiche Kategorie der «dynamischen»
Stabilititsverluste, die wir gemeinsam als
«Flattern» identifizieren koénnen. Die Eu-
ler’sche Methode ist nicht in der Lage, das
Flattern zu untersuchen.

Ein weiterer bemerkenswerter Um-
stand betriftt den Einfluss der Dimpfung.

Schweizer Ingenieur und Architekt

Bei statischen (d. h. Euler’schen) Proble-
men verschwindet der Einfluss der Damp-
fung auf die kritische Last, wenn diese
Dimpfung immer kleiner und schliesslich
Null wird. Ganz anders verhilt es sich bei
Systemen, die ihre Stabilitit dynamisch,
d.h. durch Flattern verlieren. Bei ver-
schwindender Dimpfung ist die kritische
Belastung verschieden und kleiner im Ver-
gleich zu jener, die man ohne jegliche
Berticksichtigung der Dimpfung errech-
nen wiirde. Dieses wieder scheinbar para-
doxe Verhalten lisst sich dadurch erkliren,
dass die Dimpfung bei Systemen, die Flat-
tern konnen, noch eine zusitzliche Rolle
spielen kann. Sogar verschwindend kleine
Dimpfung bewirkt noch Phasenverschie-
bungen zwischen den verschiedenen Frei-
heitsgraden des Systems, welche eine ver-
mehrte Energieaufnahme des Systems aus
der Umgebung ermoglichen. Und dies
fithrt dann natiirlich zu einer verminder-
ten kritischen Belastung.

Zusammenfassend, und Stiissis
Schlusssitze paraphrasierend, lisst sich
sagen, «dass die Leistung Eulers bei der
Entdeckung der Knickformel angesichts
der damaligen Unkenntnis der uns heute
geliufigen Begriffe der Biegungslehre um
so hoher bewertet werden muss. Seine Me-
thodik, die bei der Uberwindung mathe-
matischer Schwierigkeiten aut die Erfas-
sung des Wesentlichen ausgeht, ist fir uns
auch heute noch wertvoll, aufschlussreich
und von vorbildlicher Klarheit und Ele-
ganz der Darstellung.»

Doch das Gebiet der Stabilitit mecha-
nischer Systeme ist ein weites Feld, und die
Entwicklung derletzten 50 Jahre, basierend
aufder Euler’schen Knickformel, hatunser
Wissen wesentlich erweitert, wie diese
kurze Darstellung zu vermitteln versucht.
Es ist aber beileibe nicht so, dass diese Ent-
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wicklung nun abgeschlossen wire. Unse-
re Horizonte werden immer weiter ge-
schoben, und es ist zu erwarten, dass je-
mand in weiteren 50 Jahren gentigend Stoff
haben sollte, um {iber die neuen Fort-
schritte des Knickproblems zu berichten.
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