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John P. Wolf, Lausanne

Feder-Dämpfer-Massen-Modelle
Berechnung der Baugrund-Bauwerk-Interaktion in der Praxis bei dynamisch belastetem Baugrund

Der flexible und in der Regel Energie abstrahlende
Baugrund kann in einer dynamischen Bauwerksanalyse als
einfaches Feder-Dämpfer-Massen-Modell mit
frequenzunabhängigen Koeffizienten erfasst werden. Für die
beiden Grenzfälle des Baugrundes, den homogenen
Halbraum und die homogene Schicht auf starrem Fels,
werden für verschiedene Parameter wie Verhältnisse der
Abmessungen und Poisson's Querdehnungszahl die
Koeffizienten in Tabellen angegeben. Starre Fundamente
auf der Oberfläche und mit Einbettung werden für alle
Translations- und Rotationsfreiheitsgrade berücksichtigt.
Für die praktische Berechnung kann dieses dynamische
Modell des Baugrundes direkt mit demjenigen des
Bauwerkes gekoppelt werden, wobei ein normales dynamisches

Tragwerksprogramm zur Anwendung kommt.

Professor Hugo Bachmann zum 60. Geburtstag gewidmet

Einführung

Aufgabenstellung
Die Aufgabe der dynamischen Baugrund-Bauwerk-Interaktions-Analyse,

auch als Boden-Strukair-Wechselwirkungs-Analyse
bezeichnet, ist im Bild 1 dargestellt. Ein Bauwerk mit endlichen

Abmessungen ist im flexiblen Baugrund eingebettet, welcher
unendlich ausgedehnt ist. Oft kann die Kontaktfläche zwischen
Bauwerk und Baugrund, im folgenden als Fundament bezeichnet, als

starr betrachtet werden. Die zeitabhängige Last wirkt entweder
direkt am Bauwerk wie zum Beispiel von rotierenden Maschinen
herrührend oder wird über den Baugrund eingeführt wie im Falle

von Erdbeben. Die dynamische Beanspruchung des Bauwerkes

mit Berücksichtigung der Interaktion mit dem Baugrund soll
berechnet werden.

Die Modellierung des Bauwerkes, das sich auch nichtlinear
verhalten kann, ist weit entwickelt. Meistens wird die Mediode

der finiten Elemente verwendet, welche mit einer endlichen
Anzahl von Freiheitsgraden als verallgemeinerte Federn, Dämpfer
und Massen physikalisch gedeutet werden können. Leistungsfähige

Computerprogramme zur dynamischen Analyse des

Bauwerkes stehen zur Verfügung. Im Gegensatz dazu bereitet die

Modellierung des linear sich verhaltenden Baugrundes grosse
Schwierigkeiten. Sowohl dessen Flexibilität als auch die Energie-

abstrahlung ins Unendliche müssen erfasst werden. Zwar ist für

anspruchsvolle Spezialaufgaben wie die Erdbebenanalyse von
Nuklearbauwerken mit entsprechendem Budget die sogenannten
Randelementtnethode, beruhend auf der dreidimensionalen
Elastizitätstheorie, entwickelt worden. Diese erlaubt aber wegen der

grossen Rechenkosten und Arbeitsaufwandes kaum die notwendige

Variation der Baugrundparameter, ist wegen ihrer mathematischen

Komplexität nicht anschaulich und gehört eher zur
angewandten Mechanik als zum Bauingenieurwesen.

Geeigneter sind für die täglich vorkommenden Berechnungen

der Baupraxis einfache physikalische Modelle mit einigen
Federn, Dämpfern und Massen und einer kleinen Anzahl von
Freiheitsgraden, deren Koeffizienten für die wichtigsten Fälle aus

Tabellen bestimmt werden können. Die Modellierung des

Baugrundes geschieht somit auf die gleiche Weise wie diejenige des

Bauwerkes. Insbesondere ist es möglich, die Modelle des

Bauwerkes und des Baugrundes zu koppeln und mit einem normalen

Tragwerksprogramm die dynamische Baugrund-Bauwerk-
Interaktion in einer Berechnung zu erfassen.

Festigkeitslehre des Baugrundes
Die Feder-Dämpfer-Massen-Modelle können als Teil einer

Festigkeitslehre des dynamisch belasteten Baugrundes betrachtet

werden, analog der technischen Balkenlehre des Statikers mit
vereinfachtem Deformationsverhalten (Ebenbleiben der Querschnitte).

In dieser Festigkeitslehre des Baugrundes wird der dreidimensionale

homogene Halbraum durch einen eindimensionalen

Kegelstumpf ersetzt. Wichtig ist, dass dieser Kegels rümpf zur
Modellierung eines kreisförmigen Oberflächenfündamentes genau einem

Tabelle 1.

Geometrie und Wellengeschwindigkeit des Kegelstumpf-Modelles und

Koeffizienten des Feder-Dämpfer-Massen-Modelles des Bildes 5 für das

Fundament auf der Oberfläche des homogenen Halbraumes

Freiheitsgrad Horizontal Vertikal Kippen Torsion

Equivaienter
Radius /o y? V 7t V K y?
Schlankheit r'0

71 (2-
8

K 1>) Ï&- v)\ cJ gd-D) S
97t
32

Poisson's
Querdehnungszahl V

alle v <!
"3

1<v<1
3 2

<1
"3

1<v<1
3 2 alle v

Wellengeschwindigkeit c
c, 'r 2c c'p X r,

Mitschwingende
Masse AMAM,

0 0 2,4(v-I) PA,'» 0 W(v-1) pU 0

Feder-Dämpfer-
Massen-Modell

K pr4
Tl

C pcA0

K,=3pr-
X=Pch
M« PIt>zo
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Bild 1.

Aufgabenstellung der
Baugrund-Bauwerk-
Interaktion

Bild 2.

Vertikale dynamische
Steifigkeit des
Fundamentes auf der
Oberfläche der

homogenen Schicht

Bild 3.

Vertikale Verschiebung
infolge Kraft als

Einheitsimpuls des
Fundamentes auf der
Oberfläche der homogenen
Schicht

Bild 4.

Kreisförmiges Fundament

auf die
Oberfläche des homogenen
Halbraumes

Feder-Dämpfer-System (und für den Rotationsfreiheitsgrad auch
einer Masse mit eigenem Freiheitsgrad) entspricht, wie in der
wesentlichen Pionierarbeit [l] bewiesen. Eine ausführliche Beschreibung

ist in [2] und [3] enthalten. Die einzige Annäherung besteht
somit im Ersetzen des Halbraumes durch einen Kegelstumpf, was
physikalisch durch den Ingenieur erklärt werden kann. Ein
solches Vorgehen ist dem Einführen einer mathematischen
Approximation vorzuziehen, die zum Beispiel darin bestehen kann, dass

in den Differentialgleichungen der dreidimensionalen Elastizitätstheorie

gewisse Terme mit höheren Ableitungen vernachlässigt
werden.

Als nächster Schritt können die Koeffizienten des Feder-

Dämpfer-Massen-Modells bei gleicher Anordnung durch

Kurvenanpassungen bestimmt werden, anstatt diejenigen des Kegel-
snimpfes zu verwenden. In einem bestimmten Frequenzbereich
wird dadurch erreicht, dass die Abweichung (als Summe der
Quadrate) zwischen der Näherungslösung des Feder-Dämpfer-Massen-Modells

und den zum Beispiel mittels der oben erwähnten
Randelementmediode "genauen» Werten, der Literatur entnommen,

oder analytischen Resultaten, falls vorhanden, möglichst
klein ausfällt.

Die einfachen, viel verwendeten Modelle [4], [5] und [6] für
Fundamente auf der Oberfläche eines homogenen Halbraumes
oder darin eingebettete Fundamente können auf diese Weise

hergeleitet werden. Als Verallgemeinerung ist ein systematisches
Verfahren entwickelt worden [7], um eine ganze Familie von Feder-

Dämpfer-Massen-Modellen durch parallele Anordnung des Modells
des Kegelstumpfes aufzustellen, wobei nach der Approximation
durch eine rationale Funktion keine weiteren Näherungen eingeführt

werden. Dies erlaubt, Fundamente auf der Oberfläche einer

homogenen Schicht oder darin eingebettete Fundamente auf starrem

Fels zu erfassen [8]. Materialdämpfung des Baugrundes kann

gemäss [9] direkt in den Berechnungsalgorithmus des Feder-

Dämpfer-Massen-Modells eingeführt werden.
Nebenbei bemerkt wurden kürzlich unter direkter Verwendung

von Kegelsmmpfmodellen eine Festigkeitslehre für die meisten

vorkommenden Fälle der Baugrunddynamik, Fundamente auf
der Oberfläche und eingebettet in auch geschichtetem Halbraum,
entwickelt.

Zur Festigkeitslehre des Baugrundes gehören auch Methoden,
in denen in einer horizontalen Ebene ein bestimmtes Wellenbild
mit den zugehörigen Verformungen vorgeschrieben wird.
Dadurch können Green'sche Funktionen zur Berechnung
unregelmässiger Oberflächenfündamente und dynamische Interaktionskoeffizienten

zum Erfassen der Pfahlgruppenwirkung bestimmt
werden.

Die drei Arten von einfachen physikalischen Methoden der

Festigkeitslehre des Baugrundes - die Kegelstumpfmodelle, die
darauf basierenden Feder-Dämpfer-Massen-Modelle und die
Verfahren mit vorgeschriebenem Verformungsverhalten in der
horizontalen Ebene - sind in einem kürzlich erschienenen Buch [lO]
in allen Einzelheiten beschrieben worden. Einfache, physikalisch
motivierte Herleitungen, viele Beispiele und praktische Anwendungen

werden erfasst. Zwar fuhren diese einfachen physikalischen
Modelle zu einem gewissen Verlust an Genauigkeit, der aber durch
die vielen Vorteile mehr als aufgewogen wird. Die einfachen
physikalischen Modelle sind anschaulich, einfach anzuwenden (in
vielen Fällen auf der Rückseite des berühmten Briefumschlages
ohne Computer), allgemein einsetzbar (was die Geometrie des

Fundamentes, den Aufbau des Bodenprofiles und die Einbettung
anbetrifft) und genügend genau, so dass sie sich für den Einsatz
in der Baudynamik-Praxis eignen. Ebenfalls können diese Medioden

zur Kontrolle der Resultate der speziellen Computerprogramme
der «genauen- Methoden wie diejenige der Randelemente

herangezogen werden.
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Erreichbare Genauigkeit
Um die Abweichungen der Resultate des Feder-Dämpfer-Massen-Modells

von den genauen Lösungen der dreidimensionalen
Elastizitätstheorie zu belegen, soll der vertikale Freiheitsgrad einer

kreisförmigen starren masselosen Fundamentplatte mit Radius r„
auf der Oberfläche einer homogenen Schicht der Dicke d, auf starrem

Fels gelagert, mit der Poisson's Querdehnungszahl v untersucht

werden (Bild 10). Im folgenden werden r0 dund v lh

gewählt. Das Feder-Dämpfer-Massen-Modell (Bild ll) umfasst
neben dem Freiheitsgrad u„ des Fundamentes auch zwei interne
ux und u2. Es treten vier Federn, drei Dämpfer und eine Masse mit
ffequenzunabhängigen Koeffizienten auf, wobei diese
dimensionslos für den vertikalen Freiheitsgrad, ra / d 1 und v V.

aus der Tabelle 5 entnommen werden. Da das Feder-Dämpfer-
Massen-Modell den statischen Fall und den Grenzwert der
unendlich grossen Frequenz genau erfasst, sind in Wirklichkeit nur
sechs Koeffizienten unabhängig voneinander.

Für eine harmonische Erregung mit der Frequenz co kann der
dynamische Steifigkeitskoeffizient, der das Verhältnis der Amplitude

der angreifenden Kraft P0(a0) und derjenigen der resultierenden

Verschiebung u0(a0) beschreibt, als

(1) S(ao) K[k(ao) + iaoc(a0)}

Bild 5.

a) Kegelstumpf-Modell
b) Feder-Dämpfer-
Modell für Translation
c) Feder-Dämpfer-
Massen-Modell für
Rotation

Bild 6.

Feder-Dämpfer-
Massen-Modell ohne
internen Freiheitsgrad
für a) Translation
b) Rotation

AM,, Mnr>n

KÎAMlIlC
V///////AW/:..::-:-:: ¦

b)

\M *cy
Vi..°

lu-.

M V"°

JC

dargestellt werden mit der dimensionslosen Frequenz a„ co r0 / cs

(c, Schubwellengeschwindigkeit). In dieser komplexen Schreibweise

ist K der statische Wert, k(a0) der dimensionslose ffequenz-
abhängige Federkoeffizient und c(a0) der entsprechende
Dämpfungskoeffizient. Aus dem Vergleich von k(a0) und c(a0) der
Berechnung mittels dem Feder-Dämpfer-Massen-Modell, als stark

ausgezogene Linie im Bild 2 dargestellt, mit der genauen Lösung
der Elastizitätsdieorie ergibt sich eine gute Übereinstimmung. Die
starke Frequenzabhängigkeit wird gut wiedergegeben; insbesondere

kann das Feder-Dämpfer-Massen-Modell dem verschwindenden

Wert von c(a0) im unteren Frequenzbereich (und damit
keiner Abstrahlung von Energie im Baugrund) Rechnung tragen.

Als Beispiel einer dynamischen Analyse im Zeitbereich ist die
vertikale Verschiebung u0(t), hervorgerufen durch eine Kraft im
Zeitpunkt / 0 als Einheitsimpuls aufgebracht, berechnet worden

(Bild 3). Wiederum sind die Abweichungen von der exakten

Lösung klein. Eine sehr grosse Anzahl von Vergleichen der
Resultate der einfachen physikalischen Modelle mit den genauen
Lösungen ist in [10] endialten.

Bild 7.

Feder-Dämpfer-Massen-Modell

mit einem
internen Freiheitsgrad

Bild 8.

Zylindrisches Fundament,

eingebettet im

homogenen Halbraum

PoH

M„
c,LU V

M,
*

o

Tabelle 2.

Statische Steifigkeit und dimensionslose Koeffizienten des Feder-Dämp-
fer-Massen-Modelles des Bildes 6 für das kreisförmige Fundament auf
der Oberfläche des homogenen Halbraumes

Statische
Steifigkeit
K

Dimensionslose Koeffizienten
Dämpfer
y

Masse

Horizontal 8Gr„
2-V

0,58 0,095

Vertikal 4Gr0
1-v

0,85 0,27

Kippen HGrl

3(l-v)

0,3
0,24

3(l-v)»
StfP

Torsion
3

0,433 / „,
i + 2f V ';.p

r«p

0,045

Bild 9.

Feder-Dämpfer-Massen-Modell

für das
zylindrische Fundament,
eingebettet im homogenen

Halbraum mit
Kopplung der horizontalen

und Kipp-Frei-
heitsgrade

Bild 10.

Kreisförmiges Fundament

auf der
Oberfläche der homogenen
Schicht

n
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e
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Bild 11.

Feder-Dämpfer-Massen-Modell

mit zwei
internen Freiheitsgraden

Bild 12.

Zylindrisches Fundament,

eingebettet in

der homogenen
Schicht

KOPPLUNG

HORIZONTAL

'- K

U.~» K

E E

rx
KIPPEN

Bild 13.

Feder-Dämpfer-Massen-Modell

für das
zylindrische Fundament,
eingebettet in der
homogenen Schicht
mit Kopplung der
horizontalen und Kipp-Frei-
heitsgrade

D
HAMMER

AMBOSS
LAGER
/

U°°_
BLOCK

2.00 1.00

BAUGRUND SCHICHT

Bild 14.
Schmiedehammerfundament

mit Inertial-
block, eingebettet im

Baugrund homogene
Schicht auf starrem
Fels (Abmessungen
in m)

Übersicht der Tabellen der Koeffizienten der
Feder-Dämpfer-Massen-Modelle

In den folgenden Abschnitten werden für die beiden Grenzfälle

des Baugrundes, den homogenen Halbraum und die homogenen

Schicht auf starrem Fels, die ftir das Aufstellen des Feder-

Dämpfer-Massen-Modells benötigten Angaben bereitgestellt.
Massenlose, starre Fundamente auf der Oberfläche des Baugrundes

und mit Einbettung werden für eine umfangreiche Parametervariation

behandelt. Die Angaben in Tabellenform umfassen die
dimensionslosen Koeffizienten der Federn, Dämpfer und Massen,
die statischen Steifigkeitskoeffizienten und Angaben über
Exzentrizitäten, falls vorhanden. Wie bereits erwähnt, kann das Feder-

Dämpfer-Massen-Modell des Baugrundes mit wenigen internen
eigenen Freiheitsgraden direkt an der Unterseite des Fundamentes

mit dem dynamischen Modell des Bauwerkes gekoppelt werden

und das gesamte dynamische Modell mit einem normalen
Tragwerksprogramm berechnet werden. Dieses Vorgehen erlaubt
es, die dynamische Baugrund-Bauwerk-Interaktion mit nur
geringfügig höherem Aufwand zu erfassen, als wenn nur das
Bauwerk berechnet würde.

Im folgenden werden nur die für die praktische Berechnung
benötigten Angaben aufgeführt. Als Beispiel wird am Schluss eine
Schmiedehammerftindation mit nichtlinearem Verhalten besprochen.

Die Herleittmgen sowie Annahmen und weitere Beispiele
sind in den aufgeführten Referenzen und sehr ausführlich im Buch
[lO] beschrieben. Es wird vorausgesetzt, dass die dynamische
Belastung direkt am Bauwerk angreift. Für Erdbeben und andere
über den Baugrund eingeführte Erregungen können die Feder-

Dämpfer-Massen-Modelle auch verwendet werden. In diesem Fall
muss die Erregung in eine direkt am Fundament und somit am
Bauwerk angreifenden dynamischen Belastung umgerechnet werden.

Dieses geschieht dadurch, dass die Erregung in Form der

sogenannten effektiven Fundament-Eingabe-Bewegung dem Feder-

Dämpfer-Massen-Modell des Baugrundes aufgezwungen wird.
Die zugehörige Reaktionskraft stellt dabei die direkt am Fundament

angreifende Last dar. Dieses Vorgehen ist im Abschnitt 6.5

von [lO] beschrieben.

Fundament auf der Oberfläche des homogenen
Halbraumes

Im folgenden werden drei Möglichkeiten der Modellierung für
ein Fundament auf der Oberfläche des homogenen Halbraumes

Tabelle 3. Massen-Modelles des Bildes 7 für das kreisförmige Fundament auf der
Statische Steifigkeit und dimensionslose Koeffizienten des Feder-Dämpfer- Oberfläche des homogenen Halbraumes

Dimensionslose Koeffizienten
Statische Steifigkeit Dämpfer
K 7o Yi

Massen
M-1

Horizontal 8G^
2-v 0,78 - 0,4 v

Vertikal
iGro
1-v 0,8 0,34 - 4,3 v' v<

v>i0,9(v-I)
0,4 - 4 v1

Kippen
8Gtf - 0,42 - 0,3 v2 v<; o

v>^0,lö(v--l)
0,34 - 0,2 v2

3 (1-v)

Torsion
16C7>-3

3

(0,017)

0,29

(0,291) (-)

0,2

(0,171)
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(Bild 4) mit zunehmender Genauigkeit für jeden Freiheitsgrad
(horizontal, vertikal, Kippen, Torsion) beschrieben.

Kegelstumpfmodell [2, 3]
Für jeden Freiheitsgrad kann ein starres massenloses Fundament

mit der Fläche A„, dem (polaren) Trägheitsmoment /„ auf
der Oberfläche eines homogenen Halbraumes mit der Poisson's

Querdehnungszahl v, Schub- und Dilatationswellengeschwindigkeiten

cs und cp und Dichte p als Kegelsmmpf (Bild 5a und
Tabelle l) mit equivalentem Radius r0, Schlankheit z0/r0 und
Wellengeschwindigkeit c modelliert werden (cs ^ (_./p, cp v'£c/p mit
Schubmodul G und Zusatnmendrückungsmodul £c G 2(1—v)/

(l—2v). Für die horizontalen und Torsions-Kegelstumpf-Modelle
mit Schubbeanspruchung ist die Wellengeschwindigkeit c gleich
cs. Für die vertikalen und Kipp-Kegelsttimpf-Modelle mit axialer

Beanspruchung ist c gleich cp für v <Vj und c gleich 2cs für lh <v
< 1h. Das Translations-Kegelstumpf-Modell für die Verschiebung

«o und die Kraft P0 entspricht dynamisch exakt dem Feder-Dämpfer-Modell

(Bild 5b). Das Rotations-Kegelstumpf-Modell für die

Rotation ü0 und das Moment M0 ist exakt equivalent einem Feder-

Dämpfer-Massen-Modell mit einem internen Freiheitsgrad vx

(Bild 5c), von dem zwei Möglichkeiten dargestellt sind. Im Modell

ohne das Massenträgheitsmoment _Vfa sind zwei der
Koeffizienten negativ. Alle Koeffizienten (Tabelle l) sind

frequenzunabhängig. Für die vertikale und die Kipp-Bewegungen treten
für Vi < v < V2 zusätzlich eine mitschwingende gefangene Masse

/VM und ein Massenträgheitsmoment /VM0 auf, die direkt dem
Fundamentknoten zugeordnet werden.

Feder-Dämpfer-Massen-Modell ohne internen Freiheitsgrad

[4]
Diese einfachste Anordnung dem Bild 5b entsprechend ist für

den Translationsfreiheitsgrad u0 und den Rotationsfreiheitsgrad d0

in den Bildern 6a und 6b dargestellt mit den Angaben in der
Tabelle 2. Neben der Feder mit dem statischen Steifigkeitskoeffi-
zienten K treten ein Dämpfer C und eine Masse M
(Massenträgheitsmoment für Rotation) auf mit den Koeffizienten:

0.50 0.50

HORIZONTAL

--^0.4251

âxû
KOPPLUNG

3.034

ffi*i.

KIPPEN

VERTIKAL

Bild 15.

Dynamisches Modell der Schmiedehammerfundation mit Feder-Dämpfer-
Massen-Modell

Bild 16.

Vertikale Verschiebung

im Schwerpunkt
des Ambosses

2.0

_. 1.5

ä
o

xu

1.0 -

0.5-

-1.0

ABHEBEN
LINEAR

0.00 0.04 0.08 012
ZEITt

0.16

(2a) C=fyK (2b) _Vf 4|aK

Es ist zu beachten, dass y und \i der Rotationsfreiheitsgrade auch

eine Funktion des Massenträgheitsmomentes m des Bauwerkes

(mitschwingender Teü) sind.

Tabelle 4. Massen-Modelles des Bildes 9 für das zylindrische Fundament, eingebet-

Statische Steifigkeit und dimensionslose Koeffizienten des Feder-Dämpfer- tet im homogenen Halbraum

Kippen 8Gi

Statische Steifigkeit
K

Dimensionslose Koeffizienten
Dämpfer
Yo 7i

Masse

Horizontal
2-vl1+r0J

0,68 + 0,57 XJ - -

Vertikal 4Gr„, „, 0,80 +0,35 f0

0,32-0,01/ eX 0,38

Kr=3ä^)l1+2'3r0'58(^

ÇA
"r 2(2-v

C \3|

K„_=K_-_y-» ji+zu]2

0,15631,':

-0,08906(Ie\2

-0,00874 ff;e\i

0,40 + 0,03/,.e\2 0,33 +0,10/f]2

Torsion
-rL(1+2fi7i)

0,29 + 0,09 0,20 + 0,25./-£
V 'o
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Feder-Dämpfer-Massen-Modell mit internem Freiheitsgrad

[6]
Diese Anordnung vom unteren Teil das Bildes 5c abgeleitet,

ist im Bild 7 für den Freiheitsgrad u„ und die Kraft P0 dargestellt
mit den Angaben in der Tabelle 3. Neben der Feder mit dem
statischen Steifigkeitskoeffizienten K und dem Dämpfer C0, welche
den Fundamentknoten mit der Masse _VI0 (Massenträgheitsmoment

für Rotation) mit einem starren Auflager verbinden, wird
ein interner Freiheitsgrad //, mit eigener Masse Ml
(Massenträgheitsmoment für Rotation) eingeführt, welcher mit einem
Dämpfer Ct am Fundamentknoten befestigt ist. Deren Koeffizienten

folgen als:

(3a) C0 /YoK

(3 c) M0 5n0X

(3b) C. /YlK

(3d) M, £mK

Fundament eingebettet im homogenen Halbraum (Bild 8)

Für die vertikalen und Torsions-Freiheitsgrade des zylindrischen
starren masselosen Fundamentes mit der Einbettung e wird jedes
Feder-Dämpfer-Massen-Modell mit einem internen Freiheitsgrad
des Bildes 7 mit M0 0 verwendet mit den Angaben in der
Tabelle 4 und der Gleichung (3) [6].

Um die Kopplung zwischen der horizontalen Verschiebung
u0 mit der Kraft P0 und der Kipprotation ö0 mit dem Moment M„
zu erfassen (Bild 9), wird das Feder-Dämpfer-Modell für den
horizontalen Freiheitsgrad ua dem Bild 5b entsprechend mit den
Exzentrizitäten fK und^ angescldossen:

ia) £=0,25. (4b) f 0,32.+ 0,03et

Die Feder Kh mit der statischen Steifigkeit K und der
dimensionslose Koeffizient y0 des Dämpfers sind in der Tabelle 4 aufgeführt

mit:

(5) Coh='fy0K
s

Für den Kippfreiheitsgrad r>0 wird das Feder-Dämpfer-Massen-
Modell mit einem internen Freiheitsgrad ö, des Bildes 7 mit M0r

0 verwendet. Es ist zu beachten, dass die entsprechenden
Koeffizienten bezüglich KT (und nicht K0l) definiert sind, obwohl K0r der
Koeffizient der Feder ist, welche die Verbindung zum starren
Auflager darstellt [10] :

(6a) C0r ^y0K (6b) C^'f^K (6c) M^J^K

Tabelle 5.

Dimensionslose Koeffizienten des Feder-Dämpfer-Massen-Modelles des
Bildes 11 für das kreisförmige Fundament auf der Oberfläche der
homogenen Schicht

Horizontal Vertikal Kippen Torsion
Poisson's Querdehnungszahl v
0 1/3 0.45 0 1/3 045 0 1/3 0.45

1.00 k, -.109636 E+02 -.125658 E+02 -.107091 E+02 -.185216 E+02 -.312572 E+02 -.585650 E+02 -.538137 E+01 -.127100 E+02 -.125057 E+02 -920277 E+01
k. -.199616 E+02 -.100143 E+02 -.277613 E+02 -.689058 E+02 +.564651 E+01 +.533868 E+02 -.118019 E+02 -.127000 E+01 -.102097 E+02 -.488643 E+01
k5 -.596293 E+03 -.236814 E+03 -.837270 E+03 -.803915 E+04 -.297570 E+04 -.972054 E+05 -.370561 E+03 -.106411 E+03 -.114401 E+05 -.762034 E+02
k. +.262006 E+02 +.172890 E+02 +.350886 E+02 +.781698 E+02 +.101028 E+02 -.297301 E+02 +.152717 E+02 +.665102 E+01 +.171002 E+02 +.104850 E+02

c, -.423955 E+01 -.391585 E+01 -.443420 E+01 -.564579 E+01 -.620122 E+01 -.533597 E+01 -.152562 E+01 -.168764 E+01 -.159579 E+01 -.209847 E+01

c. -.144980 E+02 -.969345 E+01 -.164981 E+02 -.573623 E+02 -.372925 E+02 -.162817 E+03 -.511671 E+01 -.464871 E+01 -.205038 E+02 -.424955 E+01

c3 +.176380 E+02 +.128349 E+02 +.196381 E+02 +.618023 E+02 +.435725 E+02 +.173237 E+03 +.622671 E+01 +.621871 E+01 +.231038 E+02 +.581955 E+01

TJ

m -.444888 E+02 -.177585 E+02 -.804875 E+02 -.355432 E+03 -.896786 E+02 -.759400 E+03 -.136958 E+02 -.294864 E+01 -.748688 E+02 -.501042 E+01

0.50 k, -.101741 E+02 -.756096 E+01 -.103098 E+02 -.869429 E+01 -.178038 E+02 -.211241 E+02 -.558202 E+01 -.315920 E+01 -.544861 E+01 -.584813 E+01

i? k; -.711128 E+01 +.221036 E+01 +.353643 E+00 -.211429 E+02 +.869558 E+01 +.237930 E+02 -.260867 E+01 +.429538 E+00 +.544528 E+01 +.779373 E+00

<U k, -.376551 E+02 -.183990 E+02 -.386290 E+02 -.301954 E+03 -.648930 E+02 -.574768 E+04 -.120186 E+02 -.563639 E+00 -.495529 E+02 -.267204 E+01
__9 k< +.114651 E+02 +.370791 E+01 +.631911 E+01 +.266455 E+02 +.167960 E+00 -.104560 E+02 +.553603 E+01 +.268680 E+01 -.714571 E+00 +.448746 E+01
5 c. -.563146 E+01 -.169515 E+01 -.312323 E+01 -.635435 E+01 -.300736 E+01 -.885920 E+01 -.180105 E+01 -.217449 E+00 -.226588 E+01 -.873265 E+00
3
N c2 -.853329 E+01 -.484337 E+01 -900332 E+01 -.118278 E+02 -967485 E+01 -.348879 E+02 -.209944 E+01 -.485884 E-01 -.872006 E+00 -.664093 E+00

IA Cj +.116733 E+02 +.798337 E+01 +.121433 E+02 +.162678 E+02 +.159548 E+02 +.453079 E+02 +.320944 E+01 +.161859 E+01 +.347201 E+01 +.223409 E+01

Radii

m -.125108 E+02 -.142805 E+02 -.222875 E+02 -.438319 E+02 -.104698 E+02 -.156304 E+03 -.166034 E+01 -.550887 E-01 -.105920 E+01 -.758683 E+00

0.25 k, -.500393 E+01 -.569922 E+01 -.635602 E+01 -.650348 E+01 -.866267 E+01 -.939217 E+01 -.197103 E+01 -.131566 E+01 -.185845 E+01 -.317223 E+01
c
0 k. +.117908 E+01 +.113372 E+01 +.126563 E+01 +.212837 E+01 +.360033 E+01 +.591506 E+01 -.908392 E+00 -.159178 E+01 +.140842 E+01 -.110204 E+02
> k, -.531658 E+01 -.627809 E+01 -.861155 E+01 -.111486 E+02 -.206851 E+02 -.294639 E+02 +.320667 E+00 +.889908 E+00 -.198123 E+01 -.272014 E+02
—
'E k, +.330564 E+01 +.414181 E+01 +.444955 E+01 +.290606 E+01 +.353509 E+01 +.239510 E+01 +.280516 E+01 +.228996 E+01 +.228257 E+00 +.133791 E+02

c, -.753687 E+00 -.123420 E+01 -.118324 E+01 -.147587 E+01 -.301652 E+01 -.652332 E+01 -.111891 E+01 -.117566 E+01 -.166191 E+01 -.175255 E+01

r_. Cl -.320391 E+01 -.343160 E+01 -.476257 E+01 -.545496 E+01 -.633133 E+01 -.153512 E+01 -.192001 E+01 -.120420 E+00 -.608065 E-01 -.576183 E+00

£ C) +.634391 E+01 +.657160 E+01 +.790257 E+01 +.989496 E+01 +.126113 E+02 +.119551 E+02 +.131920 E+01 +.199042 E+01 +.266081 E+01 +.214618 E+01

m -.197705 E+02 -.277938 E+02 -.353939 E+02 -.202557 E+02 -.262470 E+02 -.217797 E+01 -.496405 E-02 -.234838 E-01 -.166728 E-01 -.408057 E+00

0.00 k, -.135004 E+02 -.388471 E+01 -.517262 E+01 -.196175 E+01 -.741830 E+01 -.174454 E+02 -.177328 E+01 -.371794 E+01 -.398695 E+01 -.347454 E+01
k; -.953646 1+01 -.159784 E+02 +.239313 E+00 -.586095 E+00 +.149859 E+01 +.318590 E+01 -.825315 E+01 -.530262 E+01 +.488296 E+01 +.161189 E+00

k, -.152937 E+02 -.214052 E+02 -.491200 E+01 +.418313 E+00 -.108130 E+02 -.145871 E+03 -.960129 E+00 -.456729 E+01 -.157465 E+02 -.175021 E+00
k< +.100318 E+02 +.139890 E+02 +.491843 E+01 +.253876 E+01 +.426031 E+01 +.401297 E+01 +.363207 E+01 +.648378 E+01 -.222776 E+01 +.329151 E+01

Ci -.108173 E+01 -.406936 E+00 -.431719 E-01 -.540639 E+00 -.308148 E+00 -.287195 E+01 -.105544 E+01 -.150532 E+01 -.158356 E+01 -.257114 E-01
c2 -.164199 E+01 -.441082 E+00 -.433318 E-01 -.316451 E-02 -.760091 E+00 -.496738 E+01 -.396130 E+00 -.400894 E+00 -.408329 E+00 -.525606 E-02
C} +.478349 E+01 +.358258 E+01 +.318483 E+01 +.470316 E+01 +.704009 E+01 +.153874 E+02 +.150613 E+01 +.197089 E+01 +.300833 E+01 +.157526 E+01

m -.207315 E+00 -.331202 E-01 -.126178 E+00 -.110135 E-02 -.348161 E+00 -.240813 E+01 -.245402 E-01 -.633544 E-01 -.125199 E+00 -.126499 E-02

9
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Fundament auf der Oberfläche der homogenen Schicht Fundament eingebettet in der homogenen Schicht

Für jeden Freiheitsgrad //0 mit der Kraft P0 des kreisförmigen starren

masselosen Fundamentes auf der Oberfläche der homogenen
Schicht (Bild 10) mit der Dicke d auf starrem Fels [8] wird das

Feder-Dämpfer-Massen-Modell mit zwei internen Freiheitsgraden

«!, 7/, des Bildes 11 verwendet. Es besteht aus vier Federn K„ drei

Dämpfern Q und einer Masse M mit den Angaben der Tabelle 5.

Für die Translationsfreiheitsgrade gilt (Schubmodul G):

(7a)K KV l,...,4 (7b) C- ¦C.Gjri-
i c 1,„,3 (7c)M otG-

Für die Rotationsfreiheitsgrade wird die rechte Seite der Gleichung
(7) mit X multipliziert.

Für die vertikalen und Torsions-Freiheitsgrade des zylindrischen
starren masselosen Fundamentes (Bild 12) mit der Kontaktlänge
ec [8] wird je das Feder-Dämpfer-Massen-Modell mit zwei internen

Freiheitsgraden des Bildes 11 verwendet mit den Angaben in
der Tabelle 6 und den Gleichungen (7). Um die Kopplung
zwischen der horizontalen Verschiebung «0 und der Kipprotation
ü0 einzuführen, wird zusätzlich zu den Feder-Dämpfer-Massen-
Modellen dieser beiden Freiheitsgrade ein weiteres mit der
Exzentrizität e eingeführt. Dieses Feder-Dämpfer-Massen-Modell
ist im Bild 13 und in der Tabelle 6 mit dem Wort Kopplung
bezeichnet.

Tabelle 6.

Dimensionslose Koeffizienten der Feder-Dämpfer-Massen-Modelle der
Bilder 11 und 13 für das zylindrische Fundament, eingebettet in der

homogenen Schicht (Verhältnis von Einbettung zu Radius e/r0 1)

Vertikal Horizontal Kippen Kopplung Torsion

% 1.00 k, -.203759 E+02 -.124401 E+02 -.125229 E+02 -.618776 E+01 -.139252 E+02

k, +.339543 E+01 +.286199 E+01 -.583152 E+00 +.202777 E+01 -.275441 E+01

k. -.617014 E+01 -.208541 E+02 -.814822 E-01 -.141784 E+02 +.178780 E+01

k, +.166202 E+02 +.794575 E+01 +.130945 E+02 +.337083 E+01 +.161164 E+02

c, -.918456 E+01 -.590158 E+01 -.315268 E+01 -.333135 E+01 -.774712 E-02
c. -.596381 E+00 -.516028 E+01 -.885823 E-01 -.340080 E+01 -.736101 E+00

c. +.131164 E+02 +.130103 E+02 +.322858 E+01 +.811310 E+01 +.85S610 E+01

m -9S7169 E+00 -.163126 E+02 -.680666 E+00 -.146553 E+02 -.962102 E+00

0.50 k, -.190169 E+02 -.123585 E+02 -.918010 E+01 -.311508 E+01 -.150459 E+02
k, +.102770 E+02 +.382788 E+01 +.934512 E+00 +.786487 E+00 +.149201 E+01

k. -.256293 E+02 -.116229 E+02 -.466308 E+01 -.869559 E+01 -.230599 E+01

k. +.480379 F+01 +.697738 E+01 +.821627 E+01 +.184030 E+01 +.132374 E+02

c, -.803919 E+00 -.129978 E+01 -.212247 E+01 -.715314 E+00 -.513171 E+00

c. -.378972 E+01 -.357027 E+01 -.316747 E+00 -.208337 E+01 -.403901 E+00

C3 +.131677 E+02 +.102413 E+02 +.266675 E+01 +.326137 E+01 +.511390 E+01

m -.364874 E+01 -.820645 E+01 -.342125 E+01 -SSS905 E+01 -.515523 E+00

0.00 k, -.199866 E+02 -.113528 E+02 -.801960 E+01 -.820959 E+01
1? k, +.324059 E+01 +.187819 E+01 +.103933 E+01 +.236828 E+00
4) h -.138239 E+03 -.141228 E+02 -.800817 E+01 -.295213 E+00
__
O U K +.151110 E+02 +.837372 E+01 +.584466 E+01 +.794727 E+01
Q
3
N

tf c. -.577181 E+01 -.169786 E+01 -.101867 E+01 -.288545 E+00

IA c. -S91247 E+01 -.396633 E+01 -.157192 E+01 -.308176 E-01
l/l
3

'E c, +.151425 E+02 +.710633 E+01 +.313092 E+01 +.160082 E+01

1

Radi
verhäl

m -.485815 E+02 -.142894 E+02 -.217586 E+01 -.372596 E-01

'A 1.00 k, -.215677 E+02 -.800686 E+01 -.112339 E+02 -.531331 E+01 -.158881 E+02
0
> 2 k, +.995664 E+01 +.248098 E+01 +.271244 E+01 +.128879 E+01 -.216892 E+01

VI k. -.299529 E+02 -.530555 E+01 -.112792 E+02 -.117090 E+02 +.122884 E+01
tni 0

__
k, +.122789 E+01 +.460883 E+01 +.830774 E+01 +.314281 E+01 +.175253 E+02

erhäl
c, -.214856 E+01 -.638370 E+01 -.185381 E+01 -345S99 E+01 -.770582 E+00

t'2 -.703468 E+01 -.234186 E+01 -.147482 E+01 -.442673 E+01 -.114118 E+01
> Ci +.195563 E+02 +.101919 E+02 +.461482 E+01 +.913903 E+01 +.8991 IS E+01

m -.476605 E+01 -.598035 E+01 -.101760 E+02 -.222249 E+02 -.244900 E+01

0.50 k> -.263609 E+02 -.105510 E+02 -.812675 E+01 -.258694 E+01 -.164865 E+02

k2 +.106994 E+02 +.323771 E+01 +.327590 E+01 +.487010 E+00 +.162631 E+01

k, -.415582 E+02 -.101866 E+02 -.183711 E+02 -.708362 E+01 -.359665 E+01

K +.391023 E+00 +.579774 E+01 +.434718 E+01 +.155304 E+01 +.138158 E+02

c. -.734715 E-02 -.691681 E-01 -.831614 E+00 -.752538 E+00 -.786309 E+00

c. -.101472 E+02 -.475156 E+01 -.272228 E+01 -.265221 E+01 -.129218 E+01

c. +.195330 E+02 +.114226 E+02 +.507228 E+01 +.383021 E+01 +.600218 E+01

m -.674277 E+01 -.148975 E+02 -.147137 E+02 -.128622 E+02 -.159889 E+01

0.00 k, -.147108 E+02 -922525 E+01 -.736535 E+01 -.790274 E+01
k, +.600489 E+01 +.187933 E+01 -.907967 E+00 +.176502 E-01
k, -.355109 E+02 -.788239 E+01 -.157724 E+03 -.179897 E-01
k. +.527313 E+01 +.637232 E+01 +.684877 E+01 +.788488 E+01

q -.203850 E+01 -.425306 E-01 -.168579 E+01 -.128670 E+00

cz -.830045 E+01 -.368700 E+01 -.1145.38 E+02 -.263292 E-03
c. +.145.304 1+02 +.682700 E+01 +.130128 E+02 +.157125 E+01
CD -.200705 E+02 -.139626 E+02 -.920928 E+02 -.3.31649 E-03

10
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Schmiedehammer, undation

Als praktisches Beispiel einer nichtlinearen Analyse der Baugrund-
Bauwerk-Interakrion wird ein Schmiedehammerfundament,

eingebettet in eine Bodenschicht auf starrem Fels, besprochen
(Bild 14). Der Hammer schlägt auf den exzentrisch angeordneten
Amboss auf. Da die Lager zwischen dem Stahlamboss und dem

Betonblock keinen Zug übertragen können, wird sich ein
teilweises Abheben des Ambosses einstellen, sobald die vertikale

dynamische Kraft im Lager die Eigenlast übersteigt. Die
Koeffizienten der Feder-Dämpfer-Massen-Modelle des zylindrischen
eingebetteten Fundamentes für die vertikalen und horizontalen
Verschiebungen, die Kipprotation und den Kopplungsterm folgen für

r0ld 0,5 und eje 1 aus der Tabelle 6 (Bild 15). Im linearen

Fall, also ohne Abheben, treten 4x2 Freiheitsgrade ftir die Feder-

Dämpfer-Massen-Modelle des Baugrundes und die 2x3-Starr-

körperfreiheitsgrade des Blocks und des Ambosses auf. Das totale

dynamische Modell des Bildes 15 kann direkt mit einem

Tragwerksprogramm, welches lokale Nichtlinearitäten zulässt, verarbeitet

werden. Wie erwartet, erhöht das Abheben die vertikale

Verschiebung des Ambosses wa beträchtlich verglichen mit dem
Resultat einer linearen Berechnung (Bild 16).
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