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Willi H. Hager, Zürich

Uberfallstrahlen
Das heutige Wissen über den Verlauf
von Überfallstrahlen bei scharfkantigen

Wehren wird mitgeteilt. Dabei
handelt es sich hauptsächlich um
experimentelle Resultate, ist es doch
erst in letzter Zeit gelungen, solche
komplexe Abflüsse mit zwei freien
Oberflächen rechnerisch zu modellieren.

Die Angaben sind so aufbereitet,
dass sie sich direkt auf praktische
Problemstellungen etwa im
Zusammenhang mit Strahlen von Bogen-
mauern oder auf Belüftungsprobleme
anwenden lassen. Der Frage der
Modellähnlichkeit wird speziell
nachgegangen, da solche Strahlen
sowohl durch die Viskosität als auch
durch die Oberflächenspannung
beeinflusst werden können.

Strahlen bilden in der Fluidmechanik eine

spezielle Klasse von Strömungen, welche
sich durch eine konzentrierte Impulsballung

mit Diffusionseigenschaften auszeichnen.

Üblicherweise denkt man bei Strahlen

an störende Luftmassen, die bei offenem
Fenster in ein Zimmer eintreten, oder an

Strahlen im Wasserbad. Wasserstrahlen
stellen sich bei der Bewässerung ein mit
dem Unterschied zu den erwähnten Strahlen,

dass sie eine freie Oberfläche besitzen,

an der Atmosphärendruck herrscht.
Strahlen wurde in diesemJahrhundert

ein ausserordentliches Interesse entgegengebracht,

man denke dabei an Flugzeug-
und Raketenantrieb, an Wärme-, Gas- und
Wasserstrahlen sowie an die Misch- und

Verbrennungstechnik. Die Berechnung
solcher Strahlen ist massgeblich von
Prandd (1875-1953) sowie seinen Schülern

um 1930 entwickelt worden. Dabei ist ein

homogenes inkompressibles Fluid vorausgesetzt

worden, und anhand einer

Abschätzung von Grössenordnungen in den

Gleichungen von Navier-Stokes folgten
die Grenzscbichtgleichnngeti. Danach ist die

Mischbreite (Grenzschichtdicke) im
Vergleich zur Strahlenausdehnung klein und
der Geschwindigkeitsgradient in Querrichtung

viel grösser als in Strahllängsrichtung.
Wird weiterhin die Strahlähtilichkeit in

Rechnung gestellt, so lässt sich das ebene

Problem in ein eindimensionales reduzieren,

welches mit ausgewählten Versuchen

einer Lösung zugeführt werden kann.
Uberfallstrahlen sind damit verglichen

sehr viel komplexer, da sie weder dem

Strahlähnlichkeitsgesetz folgen, noch sich

durch die Grenzschichtgleichungen appro¬

ximieren lassen. Sieht man sogar von der
Viskosität und der Kapillarität ab, so werden

sie durch die Potentialgleichung mit
Quellentermen beherrscht. Infolge der
freien Oberfläche ist üblicherweise die

Ähnlichkeit nach Froude massgebend, aber

kombinierte Effekte der Reynolds- und
Weberzahl können bei kleinen - etwa im
Labor bei Modellversuchen sich ergebenden

- Abmessungen das Basisgesetz stören.
Über diese Modelleffekte sind einige
Kenntnisse vorhanden, welche mitgeteilt
werden sollen.

Überfallstrahlen sind in der Praxis

relevant, so bei Hochwasserendastungen von
Bogenstaumauern und bei der Definition
des Strahlaufprallgebietes zur Kolksicherung

oder bei der Anordnung von
Belüftungskanälen zur Verhinderung von hy-
dromechanisch angeregten Vibrationen.
Sie bilden aber insbesondere die Grundlage
zur Geometrie des unterdruckffeien Wehr-

profils, welches im Bemessungfall exakt mit
der unteren Strahltrajektorie übereinstimmen

soll. Nachfolgend sollen die heutigen
Kenntnisse besprochen werden.

Frühere Resultate

Der erste seriöse Versuch, die Geometrie
des Überfallstrahls zu erfassen, unternahm
Bazin (1890). Henry Bazin (1829-1917) darf
schlechthin als der erste Experimental-Hy-
drauliker bezeichnet werden, hat er doch
massgeblich zum Fliessgesetz um I860 und

zur Schwallfortpflanzung beigetragen.

W

Während rund 10Jahren nahmen ihn dann
Rechtecküberfälle in Bann, die gesammelten

Resultate legte er 1898 nieder. Anhand

von zwei scharfkantigen, vollbelüfteten
Überfällen der Wehrhöhen w 0.35 m und
1.13 m wies er nach, dass die auf die
Überfallhöhe H bezogenen Koordinaten der
oberen und unteren Strahlbegrenzung
unveränderlichen Kurven entsprechen. Die
obere Kurve ist bei vertikalem Wehr
ausgezeichnet durch den Anfangspunkt von
0.85 bis 0.86 H über der Wehrkrone. Die
untere Kurve steigt von der Wehrkrone her

auf den Maximalwert 0.112 H an der Stelle

x/H 0.25, um dann bei x/H 0.68 wieder
aufKronenhöhe zu fallen (Bild l). Der
Einfluss der Wehrneigung aufdie untere
Strahlbegrenzung wurde systematisch erfasst und
die entsprechenden Kurven dimensionslos

ausgewertet.
Bazin ging gar soweit, auch die Ge-

schwindigkeits- und Druckverteilung im
kontraktierten Strahlquerschnitt zu erfassen.

Die Druckhöhe wächst von den
Oberflächen mitAtmosphärendruck aufden
Maximalwert 0.18 H auf der Höhe z/H 0.34

über der Wehrkrone an. Die Geschwindigkeit

nimmt vom Wert 0.50 (2gH)"2 an der

Oberfläche (z/H 0.76) hyperbolisch zu bis

auf den Maximalwert von 0.89 (2gH)"2 an
der Strahlunterseite. Dabei bedeutet g die

Erdbeschleunigung. Diese Experimente
wurden durch Berechnungen von Boussi-

nesq erhärtet. Obwohl Bazin den Wert
seiner Experimente noch nicht in die Praxis

umsetzte und er keine eigentliche technische

Anwendung erwähnte, hat er ein

ausgezeichnetes Bild des Überfallstrahls
gezeichnet. Auch Boussinesq ging es

offensichtlich weniger um eine praktische
Anwendung der Resultate, sondern um eine

Bild 1.

a) Definition der Überfallgeometrie, b) entsprechende

Foto
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Verifikation physikalischer Gesetzmässigkeiten,

die er an hervorragenden
Experimenten testen wollte. Mit Bazin hatte er
dabei auf den Besten seiner Zeit gesetzt.

Eine einfache, wenn auch unrichtige
Berechnung des «Aufprallpunktes» eines
Überstrahls wurde von Deischa (1923)

abgeleitet. Er betrachtete den Überfallstrahl
als Massenpunkt mit einer
Anfangsgeschwindigkeit von rund (gH)12 und erhielt
als Aufprallabstand vom vertikalen Überfall
der Wehrhöhe w den Wert (3/2) (wH)1'2.

Stevens (1928) schlug erstmals
Belüfterelemente in der Form von Strahlauf-
reissern auf überströmten Bogenmauern
vor (Bild 2). Damit soll eine vollständige
Strahlbelüftung sichergestellt und
Vibrationen auf das Bauwerk verhindert werden.
Der Aufprallpunkt des Strahls soll so weit
ins Unterwasser geführt werden, dass der
Kolk der Sperre keinen Schaden zuführt.
Durch solche Belüfter wird die ebene

Strahlgeometrie natürlich gestört und der

Lufteintrag in den Strahl verändert. In der

Folge soll jedoch ausschliesslich der ebene
Fall betrachtet werden.

De Marchi (1928), später Professor am
Politecnico in Mailand und grösster
Hydrauliker Italiens des 20. Jahrhunderts, hat
sich intensiv mit dem scharfkantigen Überfall

beschäftigt. Seine Zielsetzung war klar,
wollte er doch die optimale Kronenform für
Überfallbauwerke ermitteln. Aufbauend
auf der Kronenform von Bazin erstellte er
einen sogenannten Standardüberfall, d. h.

ein Überfallbauwerk, dessen Krone eine für
eine gegebene Überfallhöhe H identische
Geometrie wie die untere Strahlbegrenzung

besass. Er wies nach, dass ftir eine
Überfallhöhe gleich der Bemessungshöhe
der Sohldruck praktisch atmosphärisch ist,
d. h. längs der Krone sich keine
Unterdrücke ergeben. Weiter wurden der
Überfallbeiwert \j. sowie die Druck- und
Geschwindigkeitsverteilung im Kronenquerschnitt

für variable Überfallhöhe ermittelt.
Die erste umfangreiche Studie über das

im Wasserbau relevante vertikale
scharfkantige und vollständig belüftete Wehr, das

sogenannte Standardwehr führte Scimemi
(l930) durch. Der Versuchskanal hatte eine

Breite und eine Höhe von 0.50 m, und die

Wehrhöhe betrug 0.35 m. Ingesamt wurden
die Strahlbegrenzungen ftir neun Durchflüsse

mit Überfallhöhen zwischen 35 und
132 mm ermittelt. Als erstes stellte Scimemi
fest, dass die Einflüsse von Zuflussge-
schwindigkeit und Überfallhöhe auf die

Strahlbegrenzung klein sind. Dann wurden
die obere, mittlere und untere Strahlkoordinate

im Bereich 0 <x/H 6.5, 0 <z/H <17

angegeben. Wird das rechnerische Strahlprofil

(x/H)2 1.8(z/H) nach Creager
(1917) auf die Höhe 0.4 H über der Wehrkrone

bezogen, so stimmt es ausgezeichnet

a ¦
_

q- c

¦ ° t

'•O'.'.q •.?

L' : 0 c

c*
; : 0
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Bild 2.

Anordnung der Strahlaufreisser nach Stevens
(1928)

mit den Messungen überein. Ohne den Beitrag

von Boussinesq zum Strahlproblem zu
kennen, versuchte Vitols (1936) die
Strahlkoordinaten theoretisch zu ermitteln. Statt
eines handfesten Resultats verstieg er sich

jedoch in ein mathematisches Labyrinth
(Fischer 1937).

Amerikanische Beiträge

Das Bureau of Reclamation in Denver
(USBR) hat sicherlich das umfassendste

Projekt zur Ermittlung der Überfallsttö-

mung durchgeführt. Anlass dazu bildete der
ausserordentliche Hoover-Damm in
Nevada/Arizona. Während mehr als 15 Jaliren
wurden rechteckige Überfälle aller Art
getestet, so etwa die Einflüsse der
Zuflussgeschwindigkeit, der Wehrneigung gegenüber

der Vertikalen, von sogenannten
Überhängern und die Anwendung auf
typische Bauwerke, eben etwa auf den
Hoover-Damm. Das Hauptinteresse des

0.12

0.08

0.04 ~-

I i i

¦\o"^i^r
_^2:3"
^3:3"

-2:1 fi4:1

0 0.1 0.

Projekts bestand in der Festlegung der
unteren Strahlkoordinaten, daneben wurden
ebenfalls Überfallbeiwerte, Druckverteilung

auf die Wehrplatte usw. ermittelt. Alle
Resultate sind nicht nur graphisch
ausgewertet, sondern auch numerisch in
Tabellen zusammengestellt. Es handelt sich
deshalb bei diesen Zahlenwerten um das

Standardwerk für Uberfallstrahlen. Die
nachfolgenden Betrachtungen beziehen
sich nur auf den Standardüberfall.

Der Einfluss der Zufliissgescbwindigkeit
zeigt sich deudich auf den Maximalwert
der unteren Strahlbegrenzung. Bedeutet

V0=Q/ [b(h„+w)] die Zuflussgeschwindigkeit
im rechteckigen Zulaufkanal der Breite

b, so ist deren Einfluss für V./(2gH)<0.01
vernachlässigbar. Für eine grössere
Geschwindigkeit liegt das Strahlmaximum
unter dem Wert O.llOH (-2%).

Der Diirchflitss Q wird definiert durch

Q=Qb(2gH')12 (1)

mit Cd als Durchflussbeiwert. Schliesst man
kleine Überfallhöhen H aus, so verändert
sich Cd nur mit der relativen Wehrhöhe
w/H. Nach den Messwerten hat dieser
Parameter keinen Einfluss aufCd, falls H/w <1
ist. Danach nämlich gilt Cd= 0.413 ±0.005.

Der Einfluss der Webrneigitng wurde an
Überfällen mit 1:3, 2:3 und 3:3 getestet,
d. h. bei Winkeln gegenüber der Vertikalen
von 18.4°, 33.7° und 45°. Als Schlussresultat

liegen Tabellen vor, die sowohl die

untere als auch die obere Strahlbegrenzung
für verschiedene Zuflussgeschwindigkeiten

V./(2gH)<0.20 und Wehrneigungen
beinhalten. Die Aussagen bezüglich
Zuflussgeschwindigkeit als auch Wehrhöhe
lassen sich direkt auf den geneigten Überfall

übertragen. Bild 3 zeigt die maximale
Strahlerhöhung und den auf die Überfallhöhe

H-e bezogenen Durchflussbeiwert.
Da die Daten von USBR (1948) tabel-

lenhaft und nicht formelhaft mitgeteilt wurden,

begann bereits 1954 durch Blaisdell der
Versuch, einfache Bemessungsbeziehun-

0.5

Bild 3.

Gemittelte Experimente a) Maximum der unteren
Strahlbegrenzung E e/H in Abhängigkeit der

0.4

:b)°

relativen Zuflussgeschwindigkeit u VJ/(2gH),
b) Durchflussbeiwert Cd= Q/b[2g(H-e)3]"2 in

Abhängigkeit von v (1-E)/(W+E) mit W w/H
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gen abzuleiten. Dabei ging er wie bereits
seine Vorgänger vom Prinzip der konstanten

Horizontalgeschwindigkeit aus, d.h. der

parabolischen Strahl-Begrenzungskurven.
Da sich im Nahbereich der Überfallkrone
eine beträchtliche Druckumlagerung
einstellt, gelten die so erhaltenen Resultate nur
für den Fernbereich. Mit y. Y7,/(2gH) als

Zuflussgeschwindigkeitswert und X x/H,
Z z/H erhielt Blaisdell (1954) für die

untere (Index »u») und obere (Index «t»)

Strahlbegrenzung und X >0.50

Zu =0.150-0.45(i + [0.411-1.603 (J.-ct]X
-[0.425-0.25(x]X2 (2)

-^X

Zt Zu+ 0.57-i (Wm)2exp(Wm) (3)

mit a [1.568(i.2-0.S92(_ + 0.127]12und

m (i—0.208. Für vernaclilässigbare
Zuflussgeschwindigkeit (jj. <0.0l) folgt daraus

o- 0.356 und m -0.208, also

0.150 + 0.055X-0.425X2.

Zt Zu + 0.559-

(4)

(5)

Die Ähnlichkeit der oberen und unteren
Strahlbegrenzungen für alle experimentell
ermittelten Anordnungen V,2, / (2gH) < 0.20

wurde von Rajaratnam et al. (1968) ftir den

vertikalen Überfall nachgewiesen. Für den

aufsteigenden unteren Strahlabschnitt
dienen dabei die Koordinaten fund e als

Massstabslängen, welche sich näherungsweise
angeben lassen zu

f/H„= F= 0.25-0.40(j.

e/H„= E 0.112-0.40^.

(6)

(7)

Sind x1; z, die vom Strahlmaximum an
gerechneten Horizontal- und Vertikalkoordinaten,

und Xx= x,/fsowie 7Li z-[lt die

entsprechenden dimensionslosen Koordinaten,

so folgt als aufsteigende untere

Strahlbegrenzung (Bild 4)

Z,= l-(l-X,)< (8)

Dasselbe Prozedere lässt sich auf den

fallenden Strahlbereich anwenden.
Bezeichnet das Strahlmaximum wiederum
den Koordinatensprung (Bild 4a), x2 und

z2 die Koordinaten der fallenden
Strahlunterseite und X2 x2/m, Z2 z,/n die

dimensionslosen Grössen mit

m/H„= 1.45 —2.5[j_, (9)

n/H„ 10e/H„, (10)

so gilt für X, <2.3 die einfache Beziehung

»-XX. ~*

1Z 1Z

a) b) 0

Bild 4.

a) Definition der Koordinatensysteme nach

Rajaratnam, et al. (1968), b) Vergleich (•) gemittelte
Beobachtung mit Gl.(14)

0.8
'H

0.6

w hJw w/h
0.4

a) b 0 10 0.1 0.05 0

Bild 5.
Überfall und Schwelle bei strömendem Zufluss

a) Bezeichnungen, b) Durchflussbeiwert Ch in

Abhängigkeit der Relativwehrhöhe nach Kandas-

wamy und Rouse (1957)

,-1
a) -1

— "" \

x/hQ 10^
0 1

0 _.

z/h0

r

W/ho0.01^^5k N
v/h 0-04^^\x/ho 0.1^^

2 b) -1

Bild 6.

Strahlbegrenzungen für a) Überfälle und

b) Schwellen

Die obere Strahlbegrenzung wird durch die

Koordinaten X,= x,/p, Z,= z,/q bezüglich
der Wehrkrone erfasst mit

zeichnete Bauwerke vor (Bild 5a). Derauf
die modifizierte Überfallgleichung

p/H„= 1.34-0.30(_,

q/H„= 0.85-0.83(1,

Z, =l-X3u6.

(12)

(13)

(14)

Q Chb(2gh3„)> (15)

z2=x2-8 (11)

Damit lässt sich also die Methode von Blaisdell

(1954) einfach auf den gesamten
Überfallbereich für (j,<0.2 ausdehnen.

Eine Ausdehnung der Restütate ftir
relativ kleine Wehrhöhen und strömenden
Zufluss im Rcchteckkanal präsentierten
Kandaswamy und Rouse (1957). Es liegen
die Profile sowohl für Überfalle (h„/w<6)
als auch fur als Schwellen (w/h„ <0.06) be¬

bezogene Beiwert Ch lässt sich für Überfälle

nach Rehbock ausdrücken durch

Ch= 0.404 + 0.053(h„/w) (16)

und für Schwellen nach Rouse (1936)

Ch =0.707(1 +0». (17)

Im Übergangsbereich der zwei Abflusstypen

ist C,, __ 0.78 nach Bild 5b).
Die verallgemeinerten Strahlbegrenzungen

sowohl ftir Überfalle als auch ftir
Schwellen gehen aus Bild 6 hervor. Die un-



Wasserbau Schweizer Ingenieur und Architekt Nr. 19. 4. Mai 1995 445

tere Strahlbegrenzung besitzt demnach das

höchste Strahlmaximtim für h„/w 0. Mit
zunehmender Überfallhöhe wird dieses

kleiner, bis der Strahl für w/h0 0 tangential

zum Boden steht. Dann spricht man
von einem Endüberfall.

Hay und Markland (1958) ermittelten
die Strahlbegrenzungen von scharfkantigen

Überfällen mit Hilfe des sogenannten
elektrolytischen Tanks. Diese auf der Analogie

von Potentialströmungen aufbauende
Methode gibt die hydraulische Lösung
durch experimentelle Anordnung im
elektrischen Feld. Die Berechnungsresultate
stimmten gut mit den Experimenten von
USBR (1948) überein, obwohl bei
zunehmender Zuflussgeschwindigkeit eine
systematische Abweichung auftritt. Diese wird
den unten genauer erläuterten Einflüssen
der Viskosität und der Oberflächenspannung

zugeschrieben.
Die erste mathematische Lösung des

Überfallproblems wurde numerisch von
Streikoff (1964) durchgeführt. Er bezog sich
ebenfalls auf die Potentialströmung und
löste diese als Randwertproblem. Die
Übereinstimmung der Resultate mit den
Experimenten von Kandaswamy und Rouse war
hervorragend. Ein klassisches Problem der

Hydraulik von Freispiegelströmungen wurde

damit einer Lösung zugeführt.

Einfluss der Oberflächenspannung

Eine wohl einmalige Untersuchungsreihe
über den Einfluss der Kapillarität auf
Uberfallstrahlen stammt vom Hydraulikinstitut
der Universität von Padua (Italien). Vorerst
unter der Leitung von Prof. Augusto Ghet-
ti, wurde dieses Projekt später von Prof.

Luigi D'Alpaos über einen Zeitraum von 30

Jahren durchgeführt. Nachfolgend sollen
die wichtigsten Ergebnisse besprochen
werden.

Der Einfluss der Oberflächenspannung

wird durch die Weberzahl

V

•-X

w
(cr/pL)1 (18)

beschrieben, wobei V eine typische
Geschwindigkeit, er die Oberflächenspannung,

p die Fluiddichte und L eine typische
Länge darstellen. Ist die Oberflächenspannung

vernachlässigbar, so ist <r 0 und
damit W ' 0. Die Oberflächenspannung
wird demnach wichtig ftir kleine Werte von
W, d. h. ftir Wasser mit fixierten Parametern

CT und p bei kleiner Geschwindigkeit
und kleiner typischer Länge. Kapillareffekte

sind demnach typische Massstabseffekte,
sie verfälschen etwa das bei Überfällen
dominierende Ähnlichkeilsgesetz nach Froude.

Ghetti (1966) betrachtete einen
zweidimensionalen Wasserstrahl der Dicke h,

V
a„/ Q.

/ x

A
Bild 7.

Kräftegleichgewicht am ebenen Wasserstrahl

der Elementlänge ds auf einer Bahn im x,z-
Koordinatensystem mit dem lokalen Winkel

<\t gegenüber der Horizontalen und dem
lokalen Krümmungsradius R. Die Druckhöhen

auf die innere (Index «i») und
äussere (Index -a-) Strahlseite sei p, und p,
(Bild 7). Ist der Strahl genügend dünn, so
kann man sich auf den auf die Strahlachse
konzentrierten Strahl beziehen. Es handelt
sich dann um ein eindimensionales
Problem. Die Zentrifugalkraft p(V7R)hds hat
die Gewichtskomponente in Radialrichtung

pghds««4>, plus die Kraft infolge der
Druckdifferenz (pa— p,)ds, plus schliesslich
die Oberflächenkraft (2a/R)ds zu
kompensieren, also

V2 2a p--pj
gR-pghR-^-T °

(19)

Mit cosfy (l+tan24>)"12= (l+z2)~12 und
1/R z"/(l-t-z'2)3ß lässt sich nun die folgende,

unter den Randbedingungen V(o) V„
und z(o) z„ zu lösende Differentialgleichung

aufstellen

+ z- 2G

Pgh l+z':
1/2

(1+z;
1

P_-Pi
2h

(20)

Dabei ist die Geschwindigkeit V durch die

Bernoulligleichung über die
Anfangsgeschwindigkeit und die Referenzlage z„ 0

ausgedrückt. Diese im Prinzip auf Boussi-

nesq zurückgehende Differentialgleichung
lässt sich nur numerisch lösen. Sie wird
durch die Froudezahl F2=V2, (gh), die We-
berzahl W und die Eulerzahl E V2[g(p-
p,)] beeinflusst. Wird die Kapillarität
vernachlässigt, so findet man die Strahlkonfiguration

infolge eines Differenzdrucks, wie
sie bei Strahloszillationen von Interesse ist

(Schwartz und Nutt 1963). Vernachlässigt
man hingegen den Einfluss von E, so wird
ein Strahl im allseitig identischen Druck
betrachtet, welcher der Gleichung folgt

hz" V2

gh"
2fj

Pgh2 (21)

X x/(VJ/2g), Z z/(V2/2g) sowie w
W"2 2cr/(ph0V2)) lautet die Lösung allgemein

X
2cos§ (l—ta)

[[(1 + Z)'2 - co]2- .or\(l - cû)2]1'2 -
—M«<t>0(l—œ) + to"2/«

[(1 + Z)L'2- cû]+([(1+Z)1'2- <äf-co\{\- co)2)1'2

(1—co) (l+s/'w<t (22)

0 ergibt sich daraus die SttahlformFür
nach der Wurfparabel

Z XA7» <i
X

icos2^
(23)

Mit q =Vh als Einheitsdtirchfluss und
den dimensionslosen Strahlkoordinaten

Mit diesen vereinfachten Beziehungen lässt

sich das Überfallproblem betrachten. Darin
spielt natürlich die Zulaufenergiehöhe H0
die Rolle des Längenmassstabs. Nach den

Messungen von Scimemi (1930) und eigenen

Messungen von Ghetti (1966) liess sich
der Einfluss der Kapillarität eindeutig
bemerken. Je kleiner nämlich die Überfallhöhe

H0, desto mehr nähert sich der aufdie
Koordinaten X x/H0, Z z/H„ bezogene
Strahl der Überfallwand. Dies wird durch
Gl.(22) eindeutig belegt.

D'Alpaos (l977) hat in seiner Dissertation

eine umfassende Studie über Überfallstrahlen

vorgelegt. Der Zulaufkanal war
300 mm breit, besass ein 400 mm hohes
Wehr mit einer 2 mm exakt horizontalen,
scharfen Kante. Der Strahl wurde durch
zwei Seitenwände geführt, so dass ein praktisch

ebener Abfluss resultierte. Die
Strahlbelüftung wurde genauestens eingehalten.
Als Fluide dienten Wasser und verschiedene

Mischungen mit Alkohol sowie mit
Glyzerin. Die Dichte aller Fluide war praktisch
gleich, die Viskosität variierte aber um
einen Faktor 2.5, und die Oberflächenspannung

um rund 2. Ziel der Studie war
die Ermittlung der Einflüsse der Weberzahl
W (V„H„p/2ct)12 und der Reynoldszahl

r V.H./v mit V, (2gH„)'2. Aus Vorversuchen

mit gleicher Weberzahl, aber stark
unterschiedlicher Reynoldszahl resultierte
ein praktisch vernachlässigbarerEinfluss der
Viskosität auf die Sttalilform. Der Kapillareffekt

verschwindet etwa für W>10,
entsprechend etwa einer Überfallhöhe von
30 mm bei üblicher Wasserqualität. Der
Einfluss der Oberflächenspannung auf den
Überfallbeiwert wurde nicht abschliessend
behandelt.

In einer weiteren Untersuchung
diskutierten D'Alpaos und Ghetti (1984) die
Einflüsse von Oberflächenspannung und
Viskosität auf Überfallstrahlen. Bezüglich
des Uberfallbeiwerts Q tritt eine Verringerung

durch Verkleinerung der
Oberflächenspannung g ein. Der beispielsweise
in der Formel von Rehbock erscheinende
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Bild 8.

Unterschied zwischen Überfallstrahl a) bei

scharfer und b) ausgerundeter Krone

dimensionsbehaftete Zusatzterm wird fast

vollständig dem Einfluss der Kapillarität
zugeschrieben. Anhand des vorliegenden
Datenmaterials lässt sich der aufdie Formel

von Rehbock (1929) bezogene Durchflussbeiwert

folgendermassen angeben

Cd 0.403+ 0.053
H

_u 0.28
w w (24)

mit W H,,(pg/cr)12. Es werden aber noch

Zusatzexperimente benötigt, um eine
definitive Formel für Cd zu ermitteln. D'Alpaos
(1986) hat schliesslich seine Messwerte mit
denjenigen von Sarginson (1972) verglichen

und die maximale Strahlhebung nur
in Abhängigkeit der Weberzahl beschrieben

zu

E 0.112(1-12.3WJ). (25)

Kleine Weberzahlen haben demnach die

Tendenz, die Steighöhe der unteren
Strahlkategorie zu verkleinern. Dagegen bleibt
die Lage F des Strahlmaximums von der

Oberflächenspannung unbeeinflusst.
Abschliessend weist D'Alpaos auf den

geführten Überstrahl hin, wie er etwa bei

Bogenmauern auftritt. Anstelle der scharfen

Überfallkante wird das Kronenstück
eines Standardüberfalls nachgebildet. Dann
entwickelt sich entlang dieses - wenn auch

kurzen - Sohlenstücks eine Grenzschicht,

b)

womit die Einflüsse der Reynoldszahl auch

zu berücksichtigen sind (Bild 8). Im
Gegensatz zum Überfallstrahl an einer
scharfkantigen Kronengeometrie wirken demnach

beim Mauerüberfall simultan Einflüsse

der Froude-, der Weber- und der
Reynoldszahl.

Krümmungseffekte

Die Strahlgleichungen nach den bisherigen
Untersuchungen haben sich auf den dünnen

Strahl bezogen. Wird der Strahl jedoch
relativ dick, wobei die Bezugslänge noch

festzulegen ist, so darf der interne Strahldruck

nicht mehr vernachlässigt werden.
Die erste Arbeit mit Bezug auf Überfälle

stammt von Tuck (1976). Unter
Vernachlässigung der Oberflächenspannung
lässt sich bei Annahme einer
Potentialströmung als Masslänge der Parameter

e (g/Ü) (Q/U) '2 gQ12U"5
2 finden mit

U als typische Geschwindigkeit und Q als

Durchfluss. Dieser Parameter entspricht
dem Quadrat der inversen Froudezahl,
welcher bisher als sehr klein angenommen
wurde, d. h. e —? 0.

Das einfachste aller Strahlprobleme
lautet: Wie verläuft die Oberfläche eines

vertikal aufsteigenden oder fallenden

a

b)
Bild 9.

Überkritischer Zufluss an Überfallbauwerk Typ

stehende Welle mit F+ a) 1.27, b) 1.46

Bild 10.

Berechnete Überfallstrahlen nach Han und

Chow(1981)

Strahls? Dieses Problem wird durch die

Potentialgleichung, gekoppelt mit der
kinematischen Randbedingung und der Bedingung

für den atmosphärischen
Oberflächendruck beschrieben. Die den

Bewegungsablauf beschreibende Differentialgleichung

ist komplex, sie lässt sich ftir die

Spezialfälle entweder eines bereits

beschleunigten Strahls oder des gravitationsfreien

Strahls lösen.
Dias und Tuck haben ihr Problem 1991

weiter bearbeitet. Sie betrachten eine

inkompressible Flüssigkeit ohne Viskosität
und führen ein Geschwindigkeitspotential
ein. Das sich aus der Potentialgleichung
ergebende Gleichungssystem wird numerisch

gelöst, wobei die auf die Zuflusstiefe h+w
bezogene Froudezahl F+ Q/[gb2(h+w)5]'2
als Parameter dient. Für F+—* 0 entsteht der

konventionelle Überfall mit dünnem

Strahl, während für F+—» 1 entweder eine

grosse Zuflussgeschwindigkeit oder eine

kleine Überfallhöhe vorliegt. Der Bereich

F+>1, in welchem ebenfalls begrenzt
Lösungen gefunden wurden, lässt sich mit den

Angaben von Kandaswamy und Rouse

(1957) vergleichen.
Der überkritische Abfluss mit F+>1

kann sich auf zwei Arten einstellen, nämlich

entweder als "Überfall", wie bereits von
Kandaswamy und Rouse beschrieben (Bild
5a), oder als Abfluss mit einer oberwasser-

seitig stehenden Welle (Bild 9), die einer
Solitâ'ruelle ähnelt. Solche Abflüsse sind im

Zusammenhang mit Schwellen in
Tosbecken beobachtet worden, etwa beim

«ausgeblasenen- Wassersprung.
Einen anderen Lösungsweg wählen

Han und Chow (l98l) durch die Hodogra-
phenmethode. Sie ist bei Ingenieuren nicht
sehr verbreitet, da die physikalische Lösung
nur einem indirekten Resultat entspricht.
Die Mediode scheint sich jedoch
ausgezeichnet ftir gravitationsbeeinflusste
Strömungen zu eignen. Sie besteht im Abbilden
der physikalischen Ebene in die Hodogra-
phenebene und iterativem numerischen
Lösen eines Gleichungssystems, bis die

Randbedingtingen erfüllt werden. Die
Berechnungen stimmen mit Messungen von
UBSR (1948) und Kandaswamy und Rouse
(1957) gut überein. Bild 10 zeigt berechnete

Uberfallstrahlen ftir drei verschiedene

Wehrneigungen.

Schlussfolgerungen

Die Geometrie von ebenen Uberfallstrahlen

infolge eines scharfkantigen Wehres ist
heute bekannt, obwohl die Einflüsse von
Massstabseffekten noch nicht abschliessend

geklärt sind. Von speziellem Interesse
ist die untere Strahlbegrenzung, die ;üs Basis

ftir den Standardüberfall dient. Anhand von

8
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Bild 11.

Ansichten von Überfallstrahlen im Laborkanal
a) Kronenbereich, b) Durchfluss-Messanordnung
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umfangreichen Datenanalysen sind die
Einflüsse von Zuflussgeschwindigkeit und
Überfallhöhe abgeklärt; sie lassen sich

durch die verallgemeinerten Sttahlprofile
erfassen.

Von wissenschaftlichem Interesse dürfte

die Berechnung der Strahlgeometrie sein

(Bild ll). Obwohl die vorliegenden Resultate

schon erstaunlich gut mit Messungen
korrespondieren, sind Einflüsse der Viskosität

und Kapillarität nicht enthalten. Von
der technischen Relevanz wichtiger sind

jedoch räumliche Strahlen, welche zudem
noch eine Interaktion mit dem
Umgebungsmedium Luft, oder Wasser bei
Eintauchvorgängen in Wasserpolster hervorrufen.

Hier liegt ein breites Forschungsfeld,
das eine Vielzahl von experimentellen und
numerischen Problemen umfasst.

Adresse des Verfassers:

PD Dr. Willi H. Hager. Versuchsanstalt ftir
Wasserbau, Hydrologie und Glaziologie, ETH
Zentrum, 8092 Zürich
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