Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 111 (1993)

Heft: 43

Artikel: Elektrischer Widerstand von Mörteln und Beton

Autor: Hunkeler, Fritz

DOI: https://doi.org/10.5169/seals-78262

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Elektrischer Widerstand von Mörteln und Beton

Die Zusammensetzung, das Alter und der Feuchtigkeits- und Salzgehalt eines Mörtels und Betons sowie die Nachbehandlungsdauer und die Temperatur beeinflussen im wesentlichen den spezifischen elektrischen Widerstand und dessen Abhängigkeit von der relativen Luftfeuchtigkeit. Der spezifische elektrische Widerstand ändert sich bei relativen Luftfeuchtigkeiten unter 80% während vieler Jahre und kann um mehrere Grössenordnungen variieren. Die Abhängigkeit des spezifischen Widerstandes von der relativen Luftfeuchtigkeit widerspiegelt das Adsorptionsverhalten des Betons und Mörtels. Letzterer Aspekt wird in einer später folgenden Arbeit behandelt.

Es gibt eine grosse Zahl von Arbeiten über viele Aspekte der Korrosion von Stahl in Beton. Über den spezifischen

VON FRITZ HUNKELER, ZÜRICH

elektrischen Widerstand von Beton oder Mörtel pc insbesondere über dessen Abhängigkeit von der relativen Luftfeuchtigkeit, sind aber nur wenige verlässliche Angaben verfügbar (z.B. [1]), obwohl diese Grösse von ganz zentraler Bedeutung für die Korrosionsgeschwindigkeit I_{Korr} von Stahl in Beton ist. Wie aus Gleichung 1 hervorgeht, ist I_{Korr} unter Vernachlässigung der Polarisationswiderstände umgekehrt proportional zum ohmschen Widerstand R_{Ω} bzw. zum spezifischen Widerstand p_c oder direkt proportional zur spezifischen Leitfähigkeit des Betons σ_C , wie dies z.B. bei künstlichen Makroelementen gezeigt werden konnte [2,3].

$$I_{Korr} \approx \frac{1}{R_{\Omega}} \sim \frac{1}{\rho_c} = \sigma_c$$
 (1)

Der elektrische Widerstand des Betons steuert im wesentlichen auch die Stromverteilung beim kathodischen Korrosionsschutz (KKS) von Stahlbetonbauwerken [2–5]. Wichtig ist diese Grösse auch bei der Potentialmessung an Stahlbetonbauwerken sowie bei der Auslegung von Erdungsanlagen aus Stahlbeton.

Im Rahmen eines im Auftrage des Bundesamtes für Strassenbau durchgeführten Forschungsprojektes wurde der spezifische elektrische Widerstand von verschiedenen Mörteln über einen Zeitraum von etwa 300 Tagen verfolgt [6]. Nach Abschluss dieses Projektes wurden von der SGK, Zürich, in Zusammenarbeit mit der TFB, Wildegg, die vorhandenen Prüfkörper weiter untersucht. Nach der letzten Widerstandsmessung wurden der Wassergehalt und die Porosität der nun etwa 650 Tage alten Prüfkörper bestimmt. Die folgenden Ausführungen fassen die Resultate der Widerstandsmessungen zusammen. Miteinbezogen werden auch die Ergebnisse der Messungen von Polder et al. [1]. In einer weiteren Arbeit werden dann die wichtigsten Erkenntnisse über den Zusammenhang zwischen dem spezifischen elektrischen Widerstand, dem Wassergehalt und der Porosität dargestellt [7].

Angaben zu den Untersuchungen

Widerstandsmessung

Der spezifische elektrische Widerstand wurde mit der sogenannten 4-Punkt-Methode nach Wenner bei einer Temperatur von 20 °C an Mörtelprüfkörpern bestimmt. Bei kleineren Widerständen konnte für diese Messung ein handelsübliches Wechselspannungs-Widerstandsmessgerät verwendet werden. Bei Widerständen > 100 k Ω (bei den Laborprüfkörpern entspricht dies in etwa einem spezifischen Widerstand von > 2600 Ω m) erfolgte die Messung mit einer selbstgebauten Wechselspannungsquelle und üblichen Strom-/Spannungsmessgeräten. Weitere Details zur Messung sind in [6] zu finden.

Bei den Untersuchungen an Betonen wurde von Polder et al. eine andere Messmethodik eingesetzt (siehe [1]).

Probenmaterial

Die Kurzbezeichnung und einige Angaben zu den untersuchten Mörtelsystemen sind in der *Tabelle 1* zusammengestellt. Die Dimension der Prüfkörper betrug 40 x 40 x 160 mm. In der Regel wurden zwei Parallelproben untersucht. Weitere Angaben sind in [6] enthalten.

Die Prüfkörper wurden nach der Herstellung wie folgt behandelt (Temperatur: 20 °C):

Mörtelsystem	Abk.	Maximal- korn, mm	Zement kg/m ³	W/Z- Wert	Zusätze	
Labormörtel	PC	5	450	0.4	1 % Sikament (Hochleistungsverflüssiger)	
Labormörtel + Sika-Latex	SL	5	450	0.4	7.6 % Sika-Latex, d.h. ca. 3% Feststoff bez. auf Zement	
Labormörtel + Sika Top 77	ST	5	450	0.4	11 % Sika Top 77, d.h. ca. 4% Feststoff bez. auf Zement	
Labormörtel + Sikacem 810	SC	5	450	0.4	11 % Sikacem 810, d.h. ca. 4% Feststoff bez. auf Zement	
Euco Betec 340	EZ	4	ca. 600	niedrig		
Euco Betec 340A	EL	4	ca. 550	ca. 0.3	verseifungsbeständiger Kunststoff, ca. 8% bez. auf Zement	
Addiment Vergussbeton B 55-3	AZ	3	hoch	niedrig	schwindkompensierend und verflüssigend	
Emaco 110 CP (MBT)	ME	4	ca. 650		Schwindkompensation, ca. 1% Kunststoff bez. auf Zement	
Sika Top Armatec 110 Epo Cem	HS	0.3			Epoxidharz	
Gipsunion Grundputz	GA	1.3			hydraulischer Kalk, organische Zusatzmittel	
Sika-Mono Top	SM	2			Kunststoff, Silicastaub	

Tabelle 1. Angaben zu den untersuchten Mörtelsystemen [6]

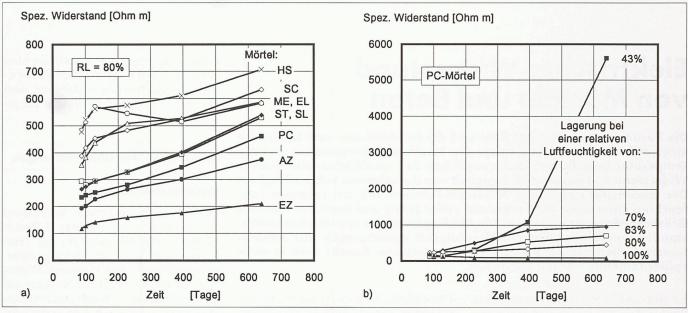


Bild 1. Zeitlicher Verlauf des spezifischen elektrischen Widerstandes bei 20 °C: a) Reiner PC-Mörtel und verschiedene modifizierte Mörtel. Relative Luftfeuchtigkeit: 80% (Bezeichnung und Zusammensetzung: s. Tabelle 1); b) Reiner PC-Mörtel. Relative Luftfeuchtigkeit: 43–100%

- Nachbehandlung: 28 Tage unter Wasser
- Vorlagerung: 60 Tage bei einer relativen Luftfeuchtigkeit von 70%
- Auslagerung bei einer relativen Luftfeuchtigkeit von 43, 63, 70, 80 oder 100%.

Daneben wurden einige orientierende Messungen an alten Betonen (B1 bis B4) durchgeführt (Bohrkerne ø 50 mm, Länge: variabel; Auslagerung bei RL = 80 und 100%). Bei B1 (W/Z = 0.46) und B2 (W/Z unbekannt) handelte es sich um etwa 25 Jahre alte Betone des Typs P 300, bei B3 um einen etwa 54 Jahre alten Belagsbeton (chloridverseucht?) und bei B4 um einen etwa 50 Jahre alten Staumauerbeton.

Polder et al. [1] führten ihre Messungen an Betonen mit einem W/Z-Wert von 0.45, 0.55 und 0.65, einem Zementgehalt von 320 kg/m³ und einem Maximalkorn von 16 mm durch. Als Zemente wurden normaler Portlandzement (PC) und ein Schlackenzement mit 70% Schlacke (blast furnace slag cement, *BFSC*) verwendet. Die Prüfkörper hatten eine Dimension von 150x150 mm mit mehreren, unterschiedlich überdeckten

Metallstäben. Die Prüfkörper wurden zunächst 28 Tage im Feuchtraum nachbehandelt. Danach erfolgte die Auslagerung bei einer relativen Luftfeuchtigkeit von 50, 65, 80, 90% bzw. im Feuchtraum und unter Wasser (Temperatur: 20 °C). Die Untersuchungszeit erstreckte sich über 670 Tage.

Ergebnisse

Zeitlicher Verlauf des Widerstandes

Bild 1a zeigt beispielhaft den zeitlichen Verlauf des spezifischen elektrischen Widerstandes ρ_c von verschiedenen Mörteln bei einer relativen Luftfeuchtigkeit (RL) von 80%, Bild 1b jenen des PC-Mörtels bei verschiedenen relativen Luftfeuchtigkeiten. Aus diesen Bildern geht hervor, dass der zeitliche Verlauf von ρ_c sowohl von der Art des Mörtels wie auch von den Umgebungsbedingungen abhängig ist. Selbst bei den hier verwendeten, relativ kleinen Prüfkörpern kann sich pe über einen sehr langen Zeitraum verändern. Insbesondere bei RL ≤ 80% ist dieser Prozess auch nach über 600 Tagen noch nicht abgeschlossen. Die *Tabelle 2* gibt einen Überblick über die nach etwa 650 Tagen gemessenen spezifischen Widerstände der verschiedenen Mörtel.

Die Ausgangswerte für ρ_c der alten Betone (Alter: 25–84 Jahre) lagen nach einer unkontrollierten Lagerung in Keller- bzw. in Büroräumen zwischen 2 500 und 90 000 Ωm . Nach einer Auslagerungszeit von etwa 550 bis 600 Tagen wurden für den Beton PC 300 mit unterschiedlicher Herkunft folgende Werte gemessen:

RL = 100% $\rho_c = 290\text{--}1100~\Omega m$

RL = 80 % $\rho_c = 7600-12 500 \Omega m$.

Der Vergleich mit den Werten von jungem PC-Mörtel (Tabelle 2) zeigt, dass die spezifischen Widerstände von altem Beton wesentlich höher sind (Faktor 3 bis >15). Dies ist einerseits durch einen kleineren Gehalt an leitfähigem Wasser und durch den höheren spezifischen Widerstand des Betonporenwassers verursacht [7].

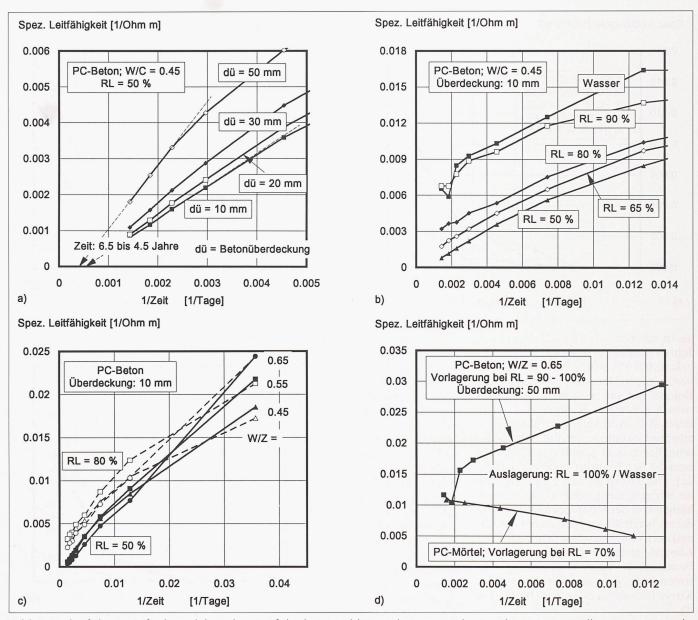
Der zeitliche Verlauf von ρ_c eines Mörtels wird durch das Abbinden des Zementes und der damit verbundenen Veränderungen der Porenstruktur (abnehmendes Porenvolumen, Verfeinerung der Porenstruktur) sowie durch die Umgebungsbedingungen bzw. durch die Änderung der Betonfeuchtigkeit beeinflusst. Bei tiefen relativen Luftfeuchtigkeiten ist die sich ändernde Betonfeuchtigkeit vermutlich wichtiger als der Hydratationsprozess.

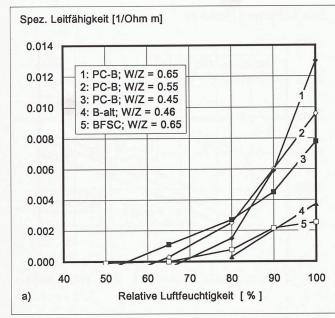
Auslagerung bei Widerstand, Ωm Ausnahmen (Werte in Ωm) RL = 100 %EL (800) 100 - 300 RL = 80 %400 - 700 EZ (200) RL = 70 %950 - 1'200 AZ (650), EZ (400), EL (350) RL = 63 %700 - 1'200 AZ (500), EZ (250), EL (400) RL = 43 %5'500 - 10'500 EL (800), AZ, EZ, ME (1'400); HS (1'500)

Tabelle 2. Bereich des spezifischen elektrischen Widerstandes ρ_c der untersuchten Mörtel, Probenalter: etwa 650 Tage

Extrapolation des Endwertes des Widerstandes

Eine Möglichkeit, den Endwert des spezifischen Widerstandes ρ_c bzw. der spezifischen



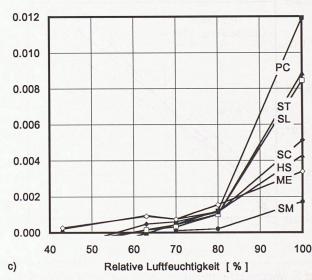

Bild 2. Verlauf der spezifischen elektrischen Leitfähigkeit in Abhängigkeit vom Kehrwert der Zeit. Darstellung zur Extrapolation des Endwertes der spezifischen Leitfähigkeit: a) Einfluss der Betonüberdeckung d_v (rel. Luftfeuchtigkeit: 50%); b) Einfluss der Auslagerungsbedingungen; c) Einfluss des W/Z-Wertes und der relativen Luftfeuchtigkeit; d) Einfluss der Vorlagerung

zifischen Leitfähigkeit σ_c (= $1/\rho_c$) zu extrapolieren, bietet die Darstellung von σ_c gegen den Kehrwert der Zeit (Bilder 2a bis d). Dieses Vorgehen ist mit einigen Unsicherheiten behaftet. Die Genauigkeit der Extrapolation ist wesentlich von der Konstanz des eingestellten Klimas abhängig. Da der Widerstand nicht nur von der relativen Luftfeuchtigkeit, sondern auch von der Temperatur [3, 8, 9] abhängt, ist die Konstanz beider Parameter wichtig. Es hat sich nun gezeigt, dass bei den Untersuchungen von Polder et al. [1] die Klimatas konstanter gewesen sein mussten als beim ASB-Forschungsprojekt [6]. Einen weiteren Einfluss stellt auch die Verweilzeit der Proben bei einem anderen Klima während der Messung dar. Die Standardabweichung der einzelnen extrapolierten Werte ist daher relativ gross, liegt aber i.a. unter 20%.

Neben den Unsicherheiten bei der Extrapolation selbst, laufen in Betonen und Mörteln langsame Veränderungen ab, die sich über Jahre erstrecken und mit dieser Extrapolation nicht sicher erfasst werden. Langsame Veränderungen betreffen z.B. die Porenstruktur bzw. den leitfähigen Wassergehalt und die Karbonatisierung der Porenwände bzw. die Leitfähigkeit des Porenwassers des Betons [7]. In diesem Zusammenhang muss betont werden, dass der Hydratationsgrad bei den untersuchten Materialien nicht bestimmt wurde. Es ist anzunehmen, dass er zumindest bei den jungen Betonen und Mörteln z.B. wegen des variablen W/Z-Wertes unterschiedlich ist und teilweise weit unter 100% liegen dürfte. Selbst der Hydratationsgrad eines bestimmten Mörtels oder Betons dürfte unterschiedlich sein, da bei Feuchtigkeiten unter etwa 75% der Hydratationsprozess zum Stillstand kommt. Umfangreichere Messungen an alten, vollständig hydratisierten Betonen und Mörteln sind deshalb dringend erforderlich.

Trotz der genannten Unsicherheiten vermitteln die extrapolierten Werte sicher einen besseren Einblick in die Wirklichkeit als die Werte zu einem bestimmten Zeitpunkt, da der zeitliche Verlauf des Widerstandes und damit der Wert zu einer bestimmten Zeit nicht nur vom Klima, sondern z.B. auch von der Probengrösse und der Vorlagerung abhängig ist (Bild 2d). Die *Tabelle 3* gibt einen Überblick über die extrapolierten Widerstände der verschiedenen Mörtel und Betone.

Aus Bild 2a ist ersichtlich, dass die Austrocknung erwartungsgemäss an der Oberfläche wesentlich schneller erfolgt



als in tieferen Schichten. Nach einigen Jahren geht bei den bei RL = 50% ausgelagerten Prüfkörpern σ_c gegen Null bzw. ρ_c gegen Unendlich (Bilder 2a,b,c). Betone mit einem hohem W/Z-Wert weisen gegenüber Betonen mit einem tiefen W/Z-Wert anfänglich höhere spezifische Leitfähigkeiten auf. Wegen des schnelleren und leichteren Austrocknens ist der Endwert aber tiefer (Bild 2c). Die extrapolierten Endwerte sind im übrigen mehr oder weniger unabhängig von der Überdeckung. Dass bei derart langfristigen Messungen manchmal auch eine eigentliche Panne bei der Klimasteuerung (nicht konstante Feuchtigkeit oder Temperatur) eintreten kann, geht aus dem Verlauf der Kurve für «Wasser» hervor (Bilder 2 b, d).

Leitfähigkeit und relative Luftfeuchtigkeit (σ-RL-Kurve)

Die Bilder 3a,b,c zeigen für einige Betone und die untersuchten Mörtel die extrapolierten Endwerte für σ_c in Abhängigkeit von RL. Bei gleichem Zementgehalt wird der Kurvenverlauf mit zunehmendem W/Z-Wert steiler (Bild 3a). Der alte Beton B1 weist im Vergleich zum jungen Beton mit einem ähnlichen W/Z-Wert eine wesentlich tiefere Leitfähigkeit auf (Bild 3a). Wie bereits erwähnt wurde, ist die tiefere Leitfähigkeit des alten Betons durch einen kleineren Gehalt an leitfähigem Wasser und durch den höheren spezifischen Widerstand des Betonporenwassers verursacht [7]. Bei den BFSC-Betonen ist die Leitfähigkeit deutlich kleiner als bei den normalen PC-Betonen (Bild 3a) und der W/Z-Wert hat überraschenderweise nur einen sehr geringen Einfluss (s. Tabelle 3). Als Ursache hierfür kommen in Frage: schlechtere Leitfähigkeit des Porenwassers wegen des geringeren Bild 3. Abhängigkeit der spezifischen elektrischen Leitfähigkeit (extrapolierter Endwert) von der relativen Luftfeuchtigkeit: a) Normale PC-Betone (PC-B) mit unterschiedlichem W/Z Wert, Schlackenzement-Beton (BFSC) und alter PC 300-Beton (B-alt); b) und c) Reiner PC-Mörtel (PC) und verschiedene mo-Mörtel difizierte (Bezeichnung und Zusammensetzung: s. Tabelle 1)

Gehaltes an Ca(OH)₂ und der schlechteren Löslichkeit der Si- und Al-Komponenten und ein kleinerer leitfähiger Wassergehalt (vgl. [7]).

Aus Bild 3a und den vorhandenen Resultaten aus anderen Arbeiten [8–13] lässt sich für PC-Betone qualitativ ableiten, dass die σ_c -RL-Kurven bei

- konstantem Zementgehalt mit abnehmendem W/Z-Wert
- konstantem W/Z-Wert mit abnehmendem Zementgehalt
- bei konstantem Wassergehalt mit zunehmendem Zementgehalt

flacher werden. Systematische und quantitative Untersuchungen zu den Punkten b) und c) über einen grösseren RL- und Zeit-Bereich stehen aber noch aus. Einige Einzelinformationen zum Einfluss z.B. der Zementart, des Hüttensandgehaltes, der Flugasche oder von Silicastaub auf den Widerstand sind in [8] enthalten.

Der PC-Mörtel mit einem W/Z-Wert von 0.40 weist einen ähnlichen Kurvenverlauf wie der PC-Beton mit W/Z = 0.65 (Bilder 3a, b) auf. Die Frage, ob dies auf die unterschiedliche Messmethodik zurückzuführen ist oder, was wahrscheinlicher ist, auf den Einfluss des höheren Zementgehaltes (450 bzw. 320 kg/m3) und dementsprechend auf das höhere Porenvolumen, muss vorderhand noch offengelassen werden. Der Durchmesser des Maximalkornes jedenfalls hat gemäss den Untersuchungen von [9, 10] nur eine untergeordnete Bedeutung auf die elektrische Leitfähigkeit.

Die Bilder 3 b, c zeigen das Spektrum der σ_c -RL-Kurven bei den untersuchten Mörteln. Die Zusammensetzung der Mörtel (Zementgehalt, W/Z-Wert, Art und Menge der Zusätze, s. Tabelle 1) beeinflussen die Verläufe ganz erheblich. Einige σ_c -RL-Kurven sind vermutlich wegen ihres Kunststoffgehaltes (ST, SL, SC, HS, EL) und/oder wegen ihres Sili-

RL Widerstand		Junge PC-Betone	Junge BFSC-Betone	Junge Mörtel	Alte Betone			
[%]	[Ωm]	(Werte in Klammern: Widerstand in Ωm)						
100, Wasser 70 - 150		W/Z = 0.45; 0.55; 0.65		PC, EZ, ST, SL, AZ	an established			
	150 - 300	Control of the part that		SC, HS, ME	B1			
reducios? Le	300 - 600		W/Z = 0.45; 0.55; 0.65					
nis S il ikitnis	> 600			EL (960)	B2 (830)			
80 250 - 5	250 - 500	W/Z = 0.45; 0.55		EZ, AZ	E. T. S. D. S. L. TREE CO.			
	500 - 1'000	W/Z = 0.65	gamulars official	PC, ST, SL, SC, HS, ME, EL				
ne Subia le	1′000 - 2′000		W/Z = 0.45; 0.55; 0.65		1007 69			
B.L.	2′000 - 4′000	THE THE LOUIS			B1, B3			
gijā bar nek	> 4'000			SM (5'000), GA (19'000)	B2, B4 (8-10'000			
63, 65	1′000 - 2′000	W/Z = 0.45 (900)	Maria de la Ministra	EZ, AZ, HS, ME, EL (400)				
	2'000 - 4'000	W/Z = 0.55	W/Z = 0.55	sc				
	4'000 - 8'000		W/Z = 0.45	ST, SL				
	→ ∞	W/Z = 0.65 (175'000)	W/Z = 0.65	PC; RL=70 %: SM (9'400), GA (20'000)	B1 bis B4: ?			
43, 50	2′000 - 4′000			ME, EL (1'600)				
	4'000 - 8'000			нѕ				
	→ ∞	W/Z = 0.45; 0.55; 0.65	W/Z = 0.45; 0.55; 0.65	PC, EZ, ST, SL, AZ, SC, SM, GA	B1 bis B4: ?			

Tabelle 3. Überblick über die extrapolierten spezifischen elektrischen Widerstände von Mörteln und Betonen

castaubgehaltes (SC, SM) und/oder wegen ihres tieferen W/Z-Wertes (EL) flacher als jene des PC-Mörtels (Bilder 3 b, c). Es scheint, dass ein höherer Zementgehalt, welcher grundsätzlich zu einer steileren σ_c-RL-Kurve führen würde, durch einen tieferen W/Z-Wert und durch die Zusätze (Kunststoff, Silicastaub) mehr als kompensiert werden kann. Die Rolle der einzelnen Einflussfaktoren kann aber wegen der nicht systematischen Variation der Zusammensetzung nicht aufgeschlüsselt werden. Zudem sind die Herstellerangaben zur Zusammensetzung der Fertigmörtel (AZ, EL, EZ, GA, HS, ME, SM) unvollständig.

Im Vergleich zu den übrigen Mörteln fällt der EL-Mörtel mit dem höchsten Kunststoffgehalt und dem tiefsten W/Z-Wert der untersuchten Mörtel sowie gleichzeitig einem sehr hohen Zementgehalt ganz besonders auf. Dieser Mörtel weist bei RL = 100% die niedrigste und bei RL ≤ 70% die höchste Leitfähigkeit aller untersuchten Systeme auf (Bild 3b). Welche Rolle die porenverdichtende puzzolanische Reaktion (Umsetzung von amorpher Kieselsäure des Zusatzstoffes mit dem Ca(OH)₂ des Zementsteins zu Kalziumsilikathydraten) zu der in diesem Mörtel enthaltenen Flugasche neben den übrigen Faktoren spielt, kann mangels Quervergleichen nicht abschliessend beurteilt werden. Zumindest bei RL ≥ 80% darf angenommen werden, dass die Leitfähigkeit durch die puzzolanische Reaktion erniedrigt wird [8]. Der auffallende Verlauf der σ_c-RL-Kurve könnte im übrigen darauf hindeuten, dass die puzzolanische Reaktion bei RL < 80% nicht mehr abläuft.

Ein besonderes Verhalten ist auch beim GA-Mörtel (Verputzmörtel) mit einem sehr hohen Gesamtporenvolumen (ca. 54% [7]) festzustellen. Dieser Mörtel trocknet offenbar schon bei RL ≤ 80% stark aus. In einem etwas schwächeren Masse gilt dies auch für den SM-Mörtel (leichter Sanierungsmörtel mit Silicastaub) mit einem Gesamtporenvolumen von etwa 27% [7]. Der speziell für den KKS von Stahlbetonbauwerken entwickelte ME-Mörtel mit Kunstfasern weist gegenüber dem PC-Mörtel bei RL = 100% eine wesentlich tiefere, bei RL ≤ 80% eine deutlich höhere Leitfähigkeit auf.

Zusammenfassend kann generell festgestellt werden, dass die σ_c -RL-Kurven, welche grundsätzlich das Adsorptionsverhalten der Mörtel und Betone widerspiegeln [7], umso flacher sind, je weniger durchgehende Poren vorhanden sind und je feiner das gesamte Porensystem bzw. je geringer der Gehalt an leitfähigem Wasser ist [7].

Es wäre nun sehr aufschlussreich, die spezifischen Widerstände von chloridfreien und chloridhaltigen Betonen und Mörteln zu vergleichen. Leider sind aber keine zuverlässigen und systematischen Messreihen über einen längeren Zeitraum an chloridhaltigen Mörteln oder Betonen verfügbar. Die Hinweise aus der Literatur, wonach der elektrische Widerstand mit zunehmendem Salzgehalt sinkt, sind für eine quantitative Betrachtung unzureichend. Im Hinblick auf die Bedeutung des elektrischen Widerstandes für die Korrosion von Stahl in Beton (s. Gleichung 1) sollte diese Lücke aber unbedingt geschlossen werden.

Zusammenfassung und Folgerungen

Die Zusammensetzung (z.B. Zementart und -gehalt, W/Z-Wert, Kunststoffzusätze, Silicastaub), das Alter (Hydratationsgrad) und der Feuchtigkeits- und Salzgehalt eines Mörtels und Betons sowie die Nachbehandlungsdauer und die Temperatur beeinflussen im wesentlichen den spezifischen elektrischen Widerstand und dessen Abhängigkeit von der relativen Luftfeuchtigkeit. Der spezifische elektrische Widerstand ändert sich bei relativen Luftfeuchtigkeiten ≤ 80% über viele Jahre und kann über mehrere Grössenordnungen variieren. Die Abhängigkeit des spezifischen Widerstandes von Beton und Mörtel von der relativen Luftfeuchtigkeit widerspiegelt deren Adsorptionsverhalten für Wasser. Dieser Aspekt wird in der nachfolgenden Arbeit ausführlich behandelt.

Aus der durchgeführten Analyse des spezifischen elektrischen Widerstandes von Mörteln und Betonen können folgende Schlüsse gezogen werden:

- ☐ Laboruntersuchungen zur Korrosion von Stahl in jungem Beton oder Mörtel können zu Fehlschlüssen führen, wenn die zeitliche Veränderung des spezifischen Widerstandes ungenügend berücksichtigt wird.
- ☐ Der spezifische elektrische Widerstand von jungen PC-Betonen und PC-Mörteln sowie deren Abhängigkeit von der relativen Luftfeuchtigkeit unterscheiden sich nicht wesentlich. Ein höherer W/Z-Wert führt bei hohen relativen Luftfeuchtigkeiten zu kleineren, bei tieferen relativen Luftfeuchtigkei-

Der Autor möchte sich beim Bundesamt für Strassenbau, welches die Forschungsprojekte «Kathodischer Korrosionsschutz von Bewehrungsstählen» und «Handbuch – Die Praxis der Potentialmessung bei Stahlbetonbauwerken» finanziert hat und in deren Rahmen ein Teil der Arbeiten durchgeführt werden konnte, herzlich bedanken.

Ein weiterer Dank geht an Herrn Dr. K. Holtzhauer, ehemaliger Mitarbeiter der TFB, Wildegg, für die Mitarbeit bei der Durchführung der Widerstandsmessungen.

ten zu höheren spezifischen Widerständen. Bei weniger als 100 Tage alten Betonen oder Mörteln kann dies genau umgekehrt sein.

- ☐ Für den KKS eignen sich nicht alle Mörtel oder Betone gleichermassen. Der spezifische Widerstand wie auch dessen Abhängigkeit von der relativen Luftfeuchtigkeit sind, neben anderen, zwei wichtige Auswahlkriterien.
- □ Über den spezifischen elektrischen Widerstand von alten, vollständig hydratisierten chloridfreien und chloridhaltigen Betonen oder Mörteln sind nur sehr mangelhafte oder überhaupt keine Kenntnisse vorhanden. In Anbetracht der grossen Bedeutung des elektrischen Widerstandes für die Korrosionsgeschwindigkeit von Stahl in Beton sollten Anstrengungen unternommen werden, um diese Wissenslücke zu schliessen.
- ☐ Der spezifische elektrische Widerstand von Beton sollte wegen seiner Bedeutung für die Korrosionsgeschwindigkeit bei Zustandsaufnahmen von Stahlbetonbauwerken vermehrt gemessen werden. Die dafür erforderliche Messtechnik sollte entwickelt werden.

Literatur

- [1] R.B. Polder and M.B.G. Ketelaars, Electrical resistance of blast furnace slag cement and ordinary portland cement concretes, Proc. Int. Conf. on Blended Cements in Construction, Sheffield UK, Sept. 1991, Editor: R.N. Swamy, Elsevier Applied Science, London (1991).
- [2] F. Hunkeler, The essentials for reinforced concrete monitoring Particular emphasis on CP onset and future responses, International Conference on Structural Improvement through Corrosion Protection of Reinforced Concrete, London 2–3 June 1992.
- [3] F. Hunkeler, N13 Tunnel San Bernardino, Forschungsprogramm «Kathodischer Korrosionsschutz», Kant. Tiefbauamt Graubünden, Chur, und Bundesamt für Strassenbau, Bern, Schlussbericht (1992).
- [4] F. Hunkeler, Kathodischer Korrosionsschutz – Stand der Forschung und Erfahrung in der Schweiz, Erhaltung von Brücken – Aktuelle Forschungsergebnisse, FHB-SIA-Tagung vom 11. März 1993.
- [5] Richtlinie für Projektierung, Ausführung und Überwachung des kathodischen Korrosionsschutzes von Stahlbetonbauwerken (C7d), Schweizerische Gesellschaft für Korrosionsschutz (1991).
- [6] R. O. Müller, K. Holtzhauer, Kathodischer Korrosionsschutz von Bewehrungsstählen – Langzeitbeständigkeit: Anodenmaterialien und Mörtel, Eidg.

- Verkehrs- und Energiewirtschaftsdepartement, Bericht Nr. 503 (1992).
- [7] F. Hunkeler, K. Holtzhauer, Wassergehalt, Porosität und elektrischer Widerstand von Mörteln und Betonen, Schweizer Ingenieur und Architekt, im Druck.
- [8] M. Raupach, Zur chloridinduzierten Makroelementkorrosion von Stahl in Beton, Diss. TH Aachen (1992, im Druck).
- [9] B. Hope, A. K. Ip, Corrosion and electrical impedance in concrete, Cement and Concrete Research, Vol. 15 (1985), p. 525–534.
- [10]*P. Catharin, H. Federspiel,* Der elektrische Widerstand des Betons, Elektrotechnik und Maschinenbau, Vol. 89 (1972), H. 10, S. 399–407.
- [11] J. Höcker, K.J. Passmann, Ermittlung des Feuchtigkeitsgehaltes im Strassenbeton durch elektrische Widerstandsmessung, Strassenbau und Strassenverkehrstechnik, H. 122 (1971). Hrsg. Bundesminister für Verkehr, Bonn.
- [12] *J. Tritthart, H. Geymayer*, Änderungen des elektrischen Widerstandes im austrocknenden Beton, Vol. 30 (1985), S. 23 28.
- [12] W. J. McCarter, S. Garvin, Dependence of electrical impedance of cementbased materials on their moisture condition, J. Phys. D: Appl. Phys. Vol. 22 (1989), p. 1773–1776.

☐ Die Abhängigkeit des spezifischen Widerstandes von der relativen Luftfeuchtigkeit von Mörteln oder Betonen lässt auch Hinweise auf die Wasseraufnahme und -abgabe sowie auf das Wasserleitvermögen zu. Bei Instandsetzungsarbeiten könnte daher der spezifi-

sche Widerstand ein nützliches Kriterium zur Auswahl des geeigneten Sanierungsmörtels oder -betons darstellen.

Adresse des Verfassers: *F. Hunkeler*, Dr. dipl. Ing. ETH/SIA, Schweizerische Gesellschaft für Korrosionsschutz, Seefeldstrasse 301, 8034 Zürich

Bücher

Energy Dissipators and Hydraulic Jump

Von *Willi H. Hager*. 288 Seiten, 17 x 25 cm, gebunden. Preis ca. 120 SFr. Kluwer Academic Publishers, Dordrecht, Boston, London, 1992

Das Buch ist das Resultat einer mehrjährigen Forschungs- und Entwicklungstätigkeit des Autors auf dem Gebiet der Energieumsetzung in Tosbecken. Es fasst seine eigenen experimentellen Arbeiten und eine ausserordentlich reichlich ausgewertete Literatur zusammen. Daraus ist ein geschlossenes, fachlich aktuelles, inhaltlich und graphisch bemerkenswertes Ergebnis entstanden.

Es gibt einen umfassenden und konzentrierten Überblick über den derzeitigen Stand der Technik im Tosbeckenbau mit den heutigen Erfahrungen und Entwurfstendenzen wieder. Es enthält Bemessungs- und Entwurfsvorschläge für Tosbecken und zeigt die Grenzen und Unsicherheiten der heute verfügbaren Arbeitsgrundlagen auf.

Das Buch ist unterteilt in die Teile «Wassersprünge» und «Tosbecken». Der erste Teil behandelt Wassersprünge in verschiedenen Gerinnequerschnitten. Der zweite Teil behandelt die heute gebräuchlichen Bauformen sowie allgemeine Gesichtspunkte zum Thema «Tosbecken». Erfahrungen an ausgeführten Bauwerken und allgemeine Entwurfshinweise schliessen das Buch ab.

Der projektierende Ingenieur findet in dem Buch konkrete Bemessungs- und Entwurfsvorschläge für standardisierte Tosbeckentypen und präzise Literaturverweise für Spezialprobleme und Details. Wie der Autor im Vorwortsagt, ist das Buch nicht als reines Anwendungshandbuch anzusehen, weil der Tosbeckenentwurf vielschichtig ist. Es bietet eine Sicht auf den heutigen State of the Art und damit auch auf die Probleme, für die all-

gemeingültige Grundlagen heute noch feh-

Es ist ein leicht lesbares, umfassendes, aber konzentriertes Buch. Ganz abgesehen vom Inhalt besticht es durch seine ausgezeichnete Graphik und durch seine grosszügige Gestaltung und Übersichtlichkeit. Zur leichten Benutzbarkeit trägt auch der Aufbau bei: Der Benutzer findet nach jedem der beiden Teile ein eigenes, ausführliches Literaturverzeichnis sowie ein eigenes Register der verwendeten Bezeichnungen und ihrer Definitionen, dazu am Schluss des Buches ein umfangreiches Stichwort- und Autorenregister. Die anschaulichen Photos verdienen eigene Erwähnung.

Das gediegene Buch schliesst eine bislang offene Lücke. Dem projektierenden Wasserbau-Ingenieur ist diese anspruchsvolle und aktuelle Neuerscheinung (1992) ohne Einschränkung zu empfehlen.

R. Wanoschek Frankfurt/Main