Zeitschrift: Schweizer Ingenieur und Architekt

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 111 (1993)

Heft: 29

Artikel: Starkniederschläge: Werte aus dem Schweizer Mittelland und Jura

Autor: Gonsowski, Peter

DOI: https://doi.org/10.5169/seals-78213

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Starkniederschläge

Werte aus dem Schweizer Mittelland und Jura

Mit der Extremwert-statistischen Analyse der langjährigen Starkniederschlagsreihen des Mittellandes und Juras ist die Schweiz flächendeckend ausgewertet. Im Dezember 1992 erschien mit dem Band 9 das letzte Werk einer Serie von regional aufgearbeiteten Niederschlagsereignissen und vervollständigt damit ein von der WSL entwickeltes Informationssystem, das in Form von Karten über die Niederschlagsverteilung auch im hydrologischen Atlas der Schweiz auszugsweise eingearbeitet ist.

Was sind Starkniederschläge?

Gewöhnlich bezeichnet man intensive Niederschläge im allgemeinen Sprachgebrauch mit Platzregen, Wolkenbruch,

VON PETER GONSOWSKI, BASEL

Sturzregen, Regenschauer oder Starkregen. Die hydrologische Fachliteratur gibt weitere Ausdrücke wie Schlagregen, Flutregen, dichte Regen oder schadenbringende Starkregen an. Schon genauer definiert sind beispielsweise Platzregen als kurz andauernde intensive Regen auf engstem Raum mit grossen Wassertropfen. Im Gegensatz dazu sind lang andauernde Landregen auf ein grossräumliches Gebiet mit geringer Intensität definiert. Der Wolkenbruch wird als stärkster Regen bezeichnet.

Weht bei einem Starkregen noch ein kräftiger Wind, so dass die Tropfen schräg niederfallen, ist die Rede von einem Schlagregen, der vor allem den oberirdischen Bauwerken zusetzt. Eine einheitlich klare Definition von Starkregen gibt es nicht und ist auch nicht erforderlich. Lediglich sollte man wissen, dass Niederschlag als Regen, Schnee und Hagel fallen kann, während Regen derjenige Niederschlag ist, der zum Abfluss kommt.

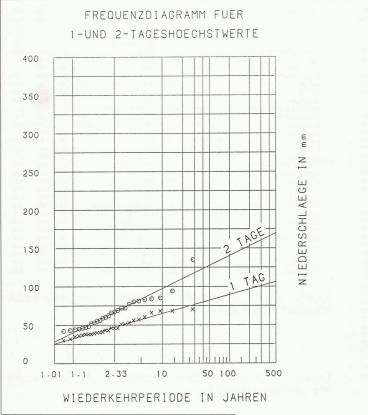
Vom Starkniederschlag zum Hochwasserschutz

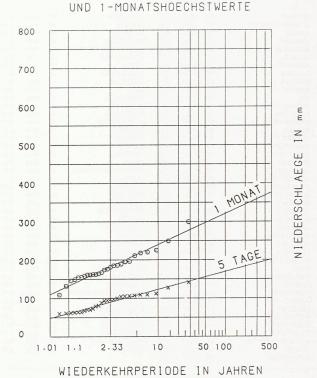
Hochwasser und was dann? Eine Frage, die heute sehr häufig mit Katastrophe beantwortet wird. Das sind unvorhersehbare Naturereignisse, die zu Überschwemmungen, Erosionen, Rutschungen, Einstürzen usw. führen. Diese haben heute schon ein Ausmass mit kaum vorstellbaren Dimensionen erreicht, die inzwischen nicht nur Naturwissenschaftler und Ingenieure, sondern auch Versicherungskaufleute und Juristen beschäftigen.

Daher drängen sich folgende Fragen auf:

Bild 1. Gebietseinteilung der Bände

- Wie können hochwassergefährdete Gebiete definiert und als Zonen mit besonderem Gefahrenpotential ausgewiesen werden?
- Welche Massnahmen müssen im Vorfeld der Planung zum Schutz von Siedlungs- und Wirtschaftsgebieten ergriffen werden?


Eine wesentliche Grundlage bei der Lösung solcher Probleme ist die Kenntnis der regionalen Starkniederschläge. Bei gezielter Anwendung dieser Kenntnisse kann der Weg von der Ursache zur Wirkung besser kontrolliert werden. Von der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft (WSL), vormals Eidgenössische Anstalt für das forstl. Versuchswesen (EAFV), wurden diesbezüglich intensive Untersuchungen vorangetrieben. Unter dem Titel «Starkniederschläge des schweizerischen Alpen- und Alpenrandgebietes» hat die Forschungsanstalt zwischen 1976 und 1983 sechs Bände veröffentlicht, die die extremwert-statistische Auswertung ausgewählter Niederschlagsmessstationen südöstlich der Linie Lausanne-Romanshorn beinhaltet (Bild 1).


Statistische Extremwertanalysen

Niederschlagsmengen werden standardmässig manuell mit Pluviometern (Tagessammlern) und im automatischen Netzverbund mit kontinuierlich aufzeichnenden Pluviographen (Schreibern) gemessen. Stationen mit genügend langen Messreihen sind in den Publikationen mit jeweils einer Frequenzanalyse der 1-, 2-, 5-Tages- und l-Monatshöchstwerte sowie einem Niederschlags-Intensitäts-Diagramm aufgeführt (Bild 2). Bei Stationen mit kontinuierlicher Aufzeichnung sind die Frequenzdiagramme mit der Auswertung der 10- bzw. 20-Minuten- und den 4-Stunden-Höchstwerten ergänzt. Es werden also einerseits die Zusammenhänge zwischen Niederschlagsmenge und Wiederkehrperioden der entsprechenden Messintervalle resp. Niederschlagsdauer in Frequenzdiagrammen dargestellt und andererseits in den Niederschlags-Intensitätsdiagrammen die Zusammenhänge zwischen Intensität und Messintervall resp. Niederschlagsdauer für die entsprechenden Wiederkehrperioden aufgezeigt.

Die statistische Häufigkeitsverteilung der jährlichen Höchstwerte fällt regional unterschiedlich aus und folgt entsprechend dem Messintervall der Normal-, der 1. Extremal- oder der 2.

FREQUENZDIAGRAMM FUER 5-TAGES-

Extremalverteilung. Für Zwecke der Starkregenanalyse haben sich im Bereich der Messintervalle ≤ 5 Tage vor allem die 1. und die 2. Extremalverteilung als geeignet erwiesen (Synonyme für die 1. Extremalverteilung sind: Doppelexponentielle Verteilung, Gumbelverteilung, Fisher-Tippett Typ I, und für die 2. Extremalverteilung: Log-Gumbelverteilung, Fisher-Tippett Typ II oder Frechet-Verteilung). Die 1-Monats-Höchstwerte können in den allermeisten Fällen mit der 1. Extremalverteilung beschrieben werden. Für die 3-Monats- und die l-Jahres-Höchstwerte stehen die Normalverteilung und die logarithmische Normalverteilung im Vordergrund. Durch Anpassung dieser Verteilungsfunktionen an die Messwerte wird die räumliche Variabilität des Niederschlages berücksichtigt.

Der Band 7 enthält 4 Karten im Massstab 1:500 000 über die Niederschlagsverteilung in der Schweiz für I-Std.- und 24-Std.-Starkregen bei Wiederkehrperioden von 2,33 und 100 Jahren. Dabei hat der Mittelwert aller vorkommenden Werte in der 1. Extremalverteilung rein rechnerisch eine Jährlichkeit von 2,33 und die am häufigsten beobachteten Werte von 1,58 Jahren, also Werte, die alle 2 bis 3 Jahre erreicht oder unterschritten werden.

Praktische Anwendung der Ergebnisse

Während Frequenzdiagramme u.a. auch von Versicherungsgesellschaften

Bild 2. Diagramme der Extremwert-statistischen Analyse, Oeschberg-Koppigen, 1961–1987

zur Feststellung der Jährlichkeiten von schadenbringenden Starkregenereignissen verwendet werden, dienen die für die Baupraxis entwickelten Niederschlags-Intensitäts-Diagramme zur Abschätzung von Hochwasserspitzen und -volumen in Kleineinzugsgebieten ohne direkte Abflussmessung. Wildbachverbau, Wasserbau, Siedlungswasserbau

und Kulturtechnik sind ständig mit dieser Aufgabe konfrontiert. Ebenso dürften Bereiche wie Meteorologie, Geographie, Raumplanung sowie ökologisch orientierte Wissensbereiche nützliche Informationen erhalten. Weitere nützliche Informationen enthalten die Bemerkungen zur Stationsgeschichte und Analyse.

Ort (Kanton)		SMA Indika-	WSL Ordn.	Ort (Kanton)	18	SMA Indika-	WSL Ordn.	
		th	Nr.			tiv	Nr.	
AARBERG	BE	5810	8.61	LE BRASSUS	VD	6020	8.13	
ALLERHEILIGENBERG	SO	6713	8.97	LE LOCLE	NE	8539	8.48	
AREUSE	NE	6250	8.33	LE SENTIER	VD	6030	8.14	
ARISDORF	BL	1680	8.92	LES BRENETS	NE	8520	8.47	
ARLESHEIM	BL	1900	8.70	LES PONTS-DE-MARTEL	NE	6320	8.34	
AUGST BL	BL	1700	8.93	LES RANGIERS	JU	1780	8.65	
AVENCHES	VD	5920	8.55	LIESTAL	BL	1670	8.91	
BAULMES	VD	6180	8.27	LOEWENBURG	JU	1820	8.67	
BELLELAY	BE	1760	8.64	LONGIROD	VD	8260	8.10	
BENNWIL	BL	1620	8.86	LULLY	GE	8445	8.04	
BIEL	BE	6370	8.43	MAGGLINGEN	BE	6380	8.42	
BOCHUZ (ORBE)	VD	6090	8.19	MERVELIER	JU	1740	8.63	
BOECKTEN	BL	1590	8.95	MONT-SOLEIL	BE	6390	8.44	
BRUDERHOLZ	BL	1930	8.73	MONTCHERAND	VD	6085	8.18	
CERNIER	NE	6327	8.36	MORMONT	JU	8670	8.52	
CHABLES FR	FR	6170	8.26	MOUTIER	BE	1720	8.62	
CHAMBRELIEN	NE	6245	8.32	MURTEN	FR	5940	8.57	
CHAMP-FAHY	BE	6359	8.40	NEUCHATEL	NE	6340	8.38	
CHANGINS	VD	8290	8.08	NYON	VD	8320	8.09	
CHAUMONT	NE	6350	8.39	OESCHBERG-KOPPIGEN	BE	6580	8.78	
COMBE-GAROT	NE	6240	8.31	OLTEN	SO	6750	8.98	
COMPESIERES	GE	8380	8.03	PAYERNE	VD	5890	8.54	
CORCELLES SUR CHAVORNAY	VD	6120	8.23	PFEFFINGEN	BL	1860	8.69	
COSSONAY	VD	8178	8.11	RIEHEN	BS	1955	8.76	
COURTELARY	BE	6400	8.45	ROMAINMOTIER	VD	6109	8.21	
COURTEPIN	FR	5763	8.56	ROMONT	FR	5720	8.53	
DELEMONT	JU	1800	8.66	SAIGNELEGIER	JU	8600	8.50	
DOMBRESSON	NE	6325	8.35	SATIGNY	GE	8449	8.05	
ECHALLENS	VD	6100	8.22	SERRIERES	NE	6333	8.37	
EPTINGEN	BL	1600	8.85	SOLOTHURN	SO	6430	8.81	
EVILARD (LEUBRINGEN)	BE	6401	8.41	ST. CERGUE	VD	8275	8.06	
FAHY	JU	8640	8.51	ST. CHRISCHONA	BL	1950	8.75	
GERLAFINGEN	SO	6550	8.79	THERWIL	BL	1920	8.72	
GINGINS	VD	8287	8.07	THIERRENS	VD	6150	8.25	
HERBETSWIL	SO	6690	8.83	VALEYRES SOUS RANCES	VD	6080	8.17	
JUSSY	GE	8350	8.01	VALLORBE	VD	6052	8.15	
KERZERS	FR	5960	8.58	WAHLENDORF	BE	5800	8.60	
KILCHBERG BL	BL	1580	8.94	WALDENBURG	BL	1640	8.87	
L'ABERGEMENT	VD	6070	8.16	WEISSENSTEIN	so	6420	8.82	
L'AUBERSON	VD	6190	8.28	WENKENHOF	BS	1960	8.77	
LA CHAUX DE FONDS	NE	8545	8.49	WINTERSINGEN	BL	1550	8.96	
LA CURE	VD	6010	8.12	WITZWIL	BE	5980	8.59	
LAMPENBERG	BL	1650	8.88					

Ort (Kanton)		SMA Indika-	WSL Ordn.	Ort (Kanton)		SMA Indika-	WSL
		th	Nr.			tiv	Nr.
AADORF	TG	2540	9.28	KREUZLINGEN	TG	1110	9.04
AARAU-UNTERENTFELDEN	AG	6780	9.65	KUESNACHT	ZH	3620	9.52
AESCH	LU	6880	9.57	LAUFENBURG	AG	1460	9.70
AFFELTRANGEN	TG	2560	9.23	LOHN SH	SH	1260	9.12
ANDELFINGEN	ZH	2680	9.32	MAENNEDORF	ZH	3520	9.50
ARBON	TG	1050	9.01	MERISHAUSEN	SH	1280	9.14
BADEN	AG	3960	9.55	MOEHLIN	AG	1520	9.72
BARMELWEID	AG	6770	9.66	MURI	AG	6920	9.56
BEZNAU / BOETTSTEIN	AG	6970	9.69	NIEDERNEUNFORN	TG	2650	9.31
BISCHOFSZELL	TG	2360	9.19	PFANNENSTIEL	ZH	3590	9.51
BOEZBERG / UNTERBOEZB.	AG	6940	9.67	RAPERSWILEN / ILLHART	TG	2418	9.05
BRUGG-WILDEGG	AG	6955	9.68	RECKENHOLZ	ZH	2930	9.46
BUCH SH	TG	1220	9.09	RHEINAU	ZH	1320	9.18
BUELACH	ZH	2980	9.47	RHEINFELDEN	AG		9.73
DIELSDORF	ZH	2960	9.53	SCHAFFHAUSEN	SH	1300	9.15
DIESSENHOFEN	TG	1240	9.10	SCHLEITHEIM	SH	1410	9.13
DUEBENDORF	ZH	2917	9.43	SEENGEN	AG	6900	9.58
EFFRETIKON	ZH	2770	9.44	SEMPACH	LU	6800	9.61
ESCHENZ	TG	1180	9.08	ST. URBAN	LU	6610	9.63
ESCHLIKON	TG	2500	9.27	SULGEN	TG	2380	9.21
FEHRALTDORF	ZH	2765	9.39	TANNEGG-DUSSNANG	TG	2470	9.26
FLAACH	ZH	1340	9.33	THAYNGEN	SH	1200	9.11
FRAUENFELD	TG	2500	9.30	UNTERKULM	AG	6860	9.60
FRICK	AG	1500	9.71	WAENGI TG	TG	2507	9.29
GRUENINGEN	ZH	2830	9.41	WIL BEI RAFZ	ZH	1360	9.37
HALLAU	SH	1430	9.16	WILCHINGEN	SH	1440	9.17
KALCHRAIN	TG	2620	9.25	WINTERTHUR-SEEN	ZH	2790	9.36
KOELLIKEN	AG	6820	9.64	ZOFINGEN	AG	6670	9.62
KOLLBRUNN	ZH	2750	9.35	ZUERICH KLOTEN	ZH	2940	9.45

Tabelle 2. Alphabetisches Verzeichnis der untersuchten Messstationen Band 9

Tabelle 1. Alphabetisches Verzeichnis der untersuchten Messstationen Band 8

Bauwerke werden entsprechend dem eingeschlossenen Gefährdungspotential mit Werten bestimmter Jährlichkeiten (Wiederkehrperiode dieser Werte) bemessen. So liegt z.B. der Bemessung von Kanalisationen eine Jährlichkeit von 2-10 und Staudämmen von 500-1000 Jahren zugrunde. Grosse Jährlichkeiten bedeuten dabei hohe Sicherheit und weniger Risiko für die Bevölkerung. Kleine Jährlichkeiten weisen auf kalkulierbare Risiken hin. Mit diesen ausgewerteten und publizierten Daten ist eine Basis geschaffen, um Gefahrenzonen auszuweisen, so dass Massnahmen im Vorfeld der Planungen gezielt

Literatur

[1] Zeller, J., Geiger, H., Röthlisberger, G.: Starkniederschläge des Schweizerischen Alpen- und Alpenrandgebietes, Schweizer Mittelland und Jura, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Band 1-9, Birmensdorf, 1976-1992. getroffen werden können, und um Überschwemmungen und anderen damit verbundenen Naturgewalten besser begegnen zu können.

Neueste Auswertung für das Mittelland und den Jura

Verschiedene Instanzen des Mittellandes und des Juras haben mehrfach den Wunsch nach Starkniederschlagsauswertungen auch für ihre Regionen geäussert, um das vorhandene Datennetz engmaschiger gestalten zu können. Ebenso sind die nachstehend erwähnten eidgenössischen Amtsstellen an einer solchen Verfeinerung des Datennetzes interessiert:

Bundesamt für Wasserwirtschaft, Bern (BWW), Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf (WSL), Landeshydrologie und -geologie, Bern (LHG), und die Schweizerische Meteorologische Anstalt, Zürich (SMA).

Die Gruner AG wurde von den zuständigen Kantonen beauftragt, das vorhandene Datenmaterial von 144 Niederschlagsstationen für diese Region Extremwert-statistisch auszuwerten (Tabellen 1 und 2). Dazu wurden 69 Bände der SMA mit rund 5000 Niederschlagsjahren gesichtet, ca. 2 Mio. Einzelwerte digitalisiert sowie 2160 Dateien für die Auswertung und Darstellung aufbereitet. Das endlos scheinende Zahlenmeer der Niederschlagsdaten wird so für jeden Interessenten überschaubar und zum praktischen Hilfsmittel. Die Ergebnisse sind in der Publikationsreihe der WSL im Band 8 und Band 9 veröffentlicht. Die Bände können direkt bei der WSL in Birmensdorf bezogen werden [1].

Adresse des Verfassers: *Dr. Peter Gonsows-ki*, dipl. Bauing. TH/SIA, c/o Gruner AG, Ingenieurunternehmung, Gellertstrasse 55, 4020 Basel.