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Aerodynamische
Entwurfsverfahren für transsonische
Axialverdichter
In einem Überblick auf die jüngere Literatur der
Axialverdichter-Berechnungsverfahren werden nacheinander angesprochen: Gründe für
die Hinwendung vom Unter- zum Transschall-Axialverdichter im stationären

Maschinenbau, übliches Vorgehen bei der Auslegung in den
Meridian- und Profilschnittebenen, beim Bemessen der Verluste in den
Rechenverfahren und die Darstellung der dreidimensionalen Strömung
mittels mehrerer gekoppelter zweidimensionaler Rechnungen in der
Form von quasi dreidimensionalen Programmen für die ingenieurmäs-
sige Anwendung bei der industriellen Maschinenauslegung.

Einleitung

Hoher Energieumsatz bei geringem
Bauaufwand ist eines der Ziele bei der
Auslegung von Axialverdichtern. Un-

VON HORST STOFF UND
RENÉ WÄLCHLI
BADEN

ter Voraussetzung eines guten
Wirkungsgrades soll die Zahl der
Verdichterstufen möglichst niedrig sein.
Als wirkungsvoller Weg, den Druckanstieg

bezogen auf eine Maschinenstufe
zu steigern, bietet sich die Erhöhung
der Rotorgeschwindigkeit an. Das hat
zur Auslegung von Laufreihen mit
schallnaher Unterschall-Relativanströ-
mung geführt, wobei lokale Überschall-
gebiete auf der Profilsaugseite auftreten.

Für noch höheren Druckanstieg
wählt man Überschall-Relativanströ-
mung zur Laufreihe in den Eintrittsstufen

von Axialverdichtern. Auf diese
Weise verhilft der Verdichtungsstoss im
Transschallverdichter beim Übergang
von supersonischer Relativströmung
im Rotor zu einem erhöhten
Stufendruckverhältnis. In industriellen
Anwendungen haben sich dabei nur
Entwürfe mit Verdichtungsstoss im Laufrad

durchgesetzt. Einige wenige
Auslegungen mit supersonischer absoluter
Eintrittsströmung entstanden in
Forschungszentren [1, Überblick in 2]. Sie
haben sich aber bis jetzt aufgrund ihrer
Betriebseigenschaften noch nicht für
gebräuchliche Anwendungen durchsetzen

können.

In den mittleren und hinteren Stufen
mehrstufiger Transschall-Axial Verdichter

ist die Temperatur, und damit auch
die Schallgeschwindigkeit, infolge
Verdichtung so weit gestiegen, dass die
schwerer abstimmbaren transsonischen
Stufen nicht mehr in Frage kommen
[3].

Die Leistungssteigerung einer Gasturbine

wird am einfachsten durch Erhöhen

der angesaugten Umgebungsluftmenge

erreicht. Hierzu sind
Rotordurchmesser am Verdichtereintritt
erforderlich, die infolge ihrer Baugrösse
Überschall-Umfangsgeschwindigkeit

erreichen [4, 5, 6, 7]. Durch massstäbli-
che Veränderungen eines vorhandenen
Entwurfs sind dann auch kleinere,
schneller drehende Axialverdichter
gebaut worden, die ursprünglich mit dem
Ziel einer industriellen Nutzung
entwickelt und nicht aus Flugzeug-Gasturbinen

abgewandelt worden sind [8, 9,

10, 11].

Hiermit zeichnen sich zwei Wege in der
geschichtlichen Entwicklung ab, die
hin zum Transschallverdichter geführt
haben: Verringerung der Stufenzahl
und wachsender Massenstromdurch-
satz.

Entwicklungsgesichtspunkte

Im Hinblick auf die gasdynamische
Theorie der Druckerhöhung im
Verdichtungsstoss sollte man vermuten,
dass der Transschallverdichter ohne
Schwierigkeiten eine im Wirkungsgrad
überlegene Methode der Drucksteige-
rung bietet. Trotzdem gelingt es nur mit
grosser Sorgfall, dem Unterschallverdichter

im Wirkungsgrad ebenbürtige
Transschallverdichler zur Seite zu stellen

[3], da im Bereich der
Schallgeschwindigkeit kleine Abmessungsfehler

grosse Wirkung zeigen [ 12].

Für den Entwurf herkömmlicher Un-
terschallverdichter ging man von im
Modell gemessenen Stufenkennlinien
aus, z.B. [13]. Die erforderliche Zahl
hintereinandergeschalteter Stufen
verhilft so zum gewünschten Druckverhältnis

[14]. Dabei steht für Entwürfe
stationärer Maschinen meistens eine
Optimierung bezüglich des Wirkungsgrades

im Vordergrund. Das hat zur
Folge, dass Gesichtspunkte wie die

Grössen von Machzahl, Diffusionswirkung

(Diffusionsfaktor, De-Haller-
Zahl), Kanalkonturkrümmung und
Schaufelspiele aufgrund von
Erfahrungswerten einzustellen sind. Für die

günstigste Auswahl einer Lösung unter
der Vielzahl von Variationsmöglichkeiten

ist für Transschall-Axialverdichter
im Mittelschnitt der Einsatz von
mathematischen Algorithmen für die Ex-
tremwertfindung eingesetzt worden
(Diss, von A. Biagosch, siehe [15]).

Bisher stammten Profile in stationären
Axialverdichtern in der Überzahl aus

geometrischen Formfamilien, die man
nach Eignungsprüfung im Gitterwindkanal

entsprechend ihrem möglichen
Einsatzgebiet in angepasster Grösse
verwendet hat. Derartige Profile bieten
dem Auslegungsingenieur nur die Freiheit

der Wahl von Inzidenz (Anstellwinkel),

Dicke und Umlenkung. Der
Vorstoss zu höheren Anström-Mach-
zahlen, bis in den Überschall, erforderte

die Anpassung der Profilsaugseite an
die Strömungserfordernisse und führte
zum Vielkreisbogen-Profil. [3].

Durch den Vormarsch der Computer-
Strömungs-Feldrechenverfahren im
Turbomaschinenbau [16] haben vor
allem die Produzenten von Luftfahrt-
Triebwerken eine Optimierung des

jeweiligen Produktes auf dem Weg der
verfeinerten Nachrechnung gesucht
[17, 18, 19]. Ursprünglich von der
Tragflügeltheorie inspiriert, hat man einige
Richtlinien für die aerodynamische
Belastung aufstellen können, wie man
Unterschall-angeströmte Profile mit
lokalen Überschallzonen wirkungsgradoptimal

gestaltet [20, Überblick in 15].

Auslegung und Nachrechnung im
Meridianschnitt

Bevor Profilgitterschnitte entworfen
werden, muss ein globales Konzept
vorliegen, das die Randbedingungen für
die Auslegung des Axialverdichters
definiert. Sodann wird die Verteilung des

Druckanstiegs durch den Stufenverband

festgelegt. Im einfachsten Fall
kann eine Massstabsänderung einer
existierenden Maschine als Ausgangspunkt

dienen [7], Mit einer Strömungsrechnung

im umfangsgemittelten
Meridianschnitt, erst ein-, dann zweidimensional,

beginnt die Arbeit schrittweiser
Optimierung. Seit Ende der sechziger
Jahre verwenden die Firmen dafür
entwickelte Grossrechnerprogramme für
die Euler-Strömungsfeldaleichungen,
z.B. [21],

Korrekturen für Verluste und Abströmwinkel

berücksichtigen Reibungseinflüsse

[22, 23, 24, 25]. In jüngerer Zeit
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Bild 1. Netz der achsensymmetrischen Meridianschnitt-Strömungsrechnung mit
Rechenstationen innerhalb des Schaufelkanals (Through-Flow-^'erfahren)

wird auch darauf hingearbeitet, die
Lage des Verdichtungsstosses bei
transsonischen Maschinen in der Meridianebene

genauer zu beschreiben, z.B.[26].

Wird nicht nur in einer Rechenebene
jeweils an Ein- und Austritt der
Schaufelreihe gerechnet («duct flow»),
sondern auch innerhalb der Schaufelreihe
(«through flow»), so ist erst durch iterative

Annäherung über die Profilgitterrechnung

eine endgültige Bestimmung
der Verläufe von Stromschicht, Umlen-
kung und Verlusten möglich (Bild 1).

Eine bis ins Detail genaue Überführung
von Meridianschnittdaten in den
Profilgitterschnitt und umgekehrt scheitert
an der Notwendigkeit, Strömungsgrös-
sen umfangsgemittelt zu verknüpfen.
Diesbezügliche Vorschläge bleiben ein
aktuelles Thema [27],

Reibungseinflüsse sind lange Jahre in
vollständig empirischen oder halbempirischen

Formeln ausgedrückt worden
[22, 25]. Eine zunehmende Verfeinerung

bei der Darstellung von Seitenwand-,

radialen Mischungs- und Sekun-

¦

¦
Bild 2a. Strömungsfeld im Laufreihen-
Spitzenschnitt eines Transschallverdichters,

berechnet nach dem McDonald-
Zeitschrittverfahren für Euler-Gleichungen

[siehe z.B. 46].

Bild 2b. Der Vergleich mit
Verschmutzungsspuren lässt die Lage des

Verdichtungsstosses auf der konvexen
Profilsaugseite erkennen.

därströmungseffekten hat Anfang der
achtziger Jahre mit den Veröffentlichungen

der Arbeiten über die
Stoffaustausch-Ansätze durch Wirbel von
Adkins & Smith und durch turbulente
Zähigkeit von Gallimore & Cumpsty
eingesetzt [28].

Auslegung und Nachrechnung im
Profilgitterschnitt

Solange im Axialverdichterbau Profile
aus Geometriefamilien im Bereich
vorliegender Windkanalergebnisse
verwendet werden, finden Strömungsfeld-
Nachrechnungen im Profilgitterschnitt
nur in Ausnahmefällen statt. Stufen-
kennfelder, empirische oder halbempirische

Verfahren für Korrekturen des

Totaldruckverlustes und der Abströmwinkel

gegenüber den Metallwinkeln
in der sonst reibungsfreien Rechnung
haben genügt, die Beschaufelung im

Meridianschnitt-Rechenprogramm
hinreichend genau auszulegen und für
spezifische Betriebspunkte nachzurechnen

[22].

Bei der Auslegung von mehrstufigen
stationären Turbinen ist die Verwendung

von Profilgitternachrechnungen
bereits seit einiger Zeit gebräuchlich,
denn die Strömung in Richtung des

Druckgefälles verursacht geringeren
Aufwand infolge kleineren
Grenzschichteinflusses [29, 30].

Auf der Suche nach Verdichter-Profilgittern

mit kleinen Verlusten in
transsonischer Strömung führte kein Weg
mehr an der Auslegung mit
Strömungsfeld-Rechenprogrammen vorbei. Im
Gegensatz zur Turbinenentwicklung,
bei der eher existierende Profilformen
durch schrittweise Nachrechnung
verbessert worden sind («direkte Methode»),

wählte man für die Abschwä-
chung von Stossen im lokalen Über-
schallgebiet von Verdichtergittern auch
andere Wege. Durch die Entwicklung
des sogenannten stossfreien Profils für
Tragflügel hat sich die «inverse» Auslegung

verbreitet, die bei Vorgabe der
Saugseiten-Geschwindigkeitsverteilung
Geometriekonturen als Ergebnis
liefert. Aus dieser Vorgehensweise sind
dann auch Beiträge zur
Verdichtergitterentwicklung entstanden und stetig
weiterentwickelt worden [20, Überblick
in 15 und 31]. Soweit die Lösungen auf
der Hodographenmethode basierten,
waren die Verfahren anfangs nur für
den Entwurf ebener Profilgitter
vorgesehen. Dann konnte das Ergebnis über
eine konforme Abbildung für die
Verwendung in konischen Schnitten
transformiert werden [32],

Eine Vielzahl von Rechenmethoden
erreicht die Profilformen für eine ge-
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Bild 3. Machzahlverteilung um das Profil des Spitzenschnittes
eines Transschallverdichters, gerechnet mit Zeitschrittverfahren:

a) ohne Grenzschicht [siehe z.B. 46]
b) mit Grenzschicht nach [41]

Bild 4. Machzahlverteilung um das Doppelkreisbogen-Profil
im Gitterschnitt bei Anströmung mit Schallgeschwindigkeit nach
Rechnungen mit dem Zeitschrittverfahren von Steger & Lomax
[siehe z.B. 47]-.

a) mit Euler-Gleichungen
b) mit Navier-Stokes-Gleichungen

wünschte Geschwindigkeitsverteilung
durch Nachrechnungen schrittweise
geänderter Geometrien, z.B. [33. 34, 35,
36], Von der Möglichkeit einer inversen
Handhabung des Gitterentwurfprogramms

bei Überschall-Profilanströ-
mung wird bisher nur wenig berichtet
[37, 38]. Die Reibungseinflüsse werden
bei inversen und direkten
Profilgitterrechnungen durch
Integral-Grenzschichtverfahren berücksichtigt [39, 40,
41

Grösseneinfluss

Je nach Strömungsmedium. Arbeitsdruck

oder Baugrösse der ausgeführten
Maschine machen sich bei den
Turboverdichtern Reynoldszahleinflüsse
bemerkbar. Strömungsmedium und
Arbeitsdruck beeinflussen vorherrschend
den industriell eingesetzten Axialverdichter,

der Arbeitsdruck ändert sich
mit der Flughöhe von Triebwerksverdichtern,

und die Maschinengrösse ist
von Bedeutung bei der
Ähnlichkeitstransformation für Baureihen in der
Ausführung von Kraftwerksgasturbinen.

Veröffentlichungen in der Literatur

geben ein exponentielles Gesetz für
die Änderung des Grenzschichtverlustes

in Axialmaschinen mit hydraulisch
glatter Oberfläche an. wobei der Exponent

der Reynoldszahl zwischen -0.1
und -0.15 um den Werl -0.125
schwankt [42]. Die Umrechnung der
mittleren Rauhigkeit Ra verschiedenster

Oberflächen in die .strömungsme¬
chanisch gleichwertige Sandrauhigkeit
Rs wird von verschiedenen Quellen im
Bereich von Rs/Ra 4.2 bis 12 angegeben

[42, 43]. Dabei fanden 6.3 bis 8,9 in
Axialverdichtern Verwendung.

Schlussfolgerungen

Bild5. Schaufelentwurf mit strömungs-
angepassten Profilschnitten nach [48] und
Randzonenkorrektur nach [49] für den
Einfluss der Seitenwandgrenzschicht

Bei der Berechnung der
Axialverdichterströmung im Meridianschnitt
sind die sogenannten
Stromlinienkrümmungsverfahren in der industriellen

Anwendung am weitesten verbrei¬

tet. Bei steigenden Machzahlen werden
ihnen in der jetzigen Form Grenzen
gesetzt sein [44].

Die Verwendung inverser strömungs-
feldangepasster Profilgitterauslegung
wurde bisher nur an Verdichterschaufelreihen

mit Unterschall-Relativan-
strömung in der Praxis verwirklicht.
Um die Auslegungszeit für einen
Maschinenentwurf aus wirtschaftlichen
Gründen zu verkürzen, gelangen
zunehmend «quasi dreidimensionale»
Rechenverfahren zum Einsatz. Dabei
werden die zweidimensionalen
Rechnungen von Meridianschnitt und
Profilschnitten schrittweise ineinander
überführt, um wesentliche Einflüsse
wiedergeben zu können, ohne die
kostspielige dreidimensionale Rechnung in
der Auslegungsphase durchführen zu
müssen. Von derartigen quasi
dreidimensionalen Verfahren in der
industriellen Anwendung berichten unter
anderen [19. 41,45].

Danksagung

Für Rechnungen, die den Abbildungen
zugrunde liegen, richtet sich der Dank
der Verfasser an ABB-Kraftwerke
A.G.. P. Ebner(Bilà 1). D. Raw(Bild2),
J. Smutny und P. Smejkal (Bild 3 und
5). Rolls-Royce (Bild 3), O. Schäferuna
H.P.Blahowsky (Bild 3).

Adresse der Verfasser: H. Stoff und
R. Wälchlt. ABB. Abt. KWG E 12. 5401
Baden.

928


	Aerodynamischer Entwurfsverfahren für transsonische Axialverdichter

