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Maschinenbau

Schweizer Ingenieur und Architekt Nr. 33-34, 20. August 1990

Aerodynamische Entwurfs-
verfahren fur transsonische

Axialverdichter

In einem Uberblick auf die jiingere Literatur der Axialverdichter-Be-
rechnungsverfahren werden nacheinander angesprochen: Griinde fiir
die Hinwendung vom Unter- zum Transschall-Axialverdichter im statio=-
ndren Maschinenbau, iibliches Vorgehen bei der Auslegung in den Me-
ridian- und Profilschnittebenen, beim Bemessen der Verluste in den Re-
chenverfahren und die Darstellung der dreidimensionalen Stromung
mittels mehrerer gekoppelter zweidimensionaler Rechnungen in der
Form von quasi dreidimensionalen Programmen fiir die ingenieurmdas-
sige Anwendung bei der industriellen Maschinenauslegung.

Einleitung

Hoher Energieumsatz bei geringem
Bauaufwand ist eines der Ziele bei der
Auslegung von Axialverdichtern. Un-

VON HORST STOFF UND
RENE WALCHLI
BADEN

ter Voraussetzung eines guten Wir-
kungsgrades soll die Zahl der Ver-
dichterstufen moglichst niedrig sein.
Als wirkungsvoller Weg, den Druckan-
stieg bezogen auf eine Maschinenstufe
zu steigern, bietet sich die Erhohung
der Rotorgeschwindigkeit an. Das hat
zur Auslegung von Laufreihen mit
schallnaher Unterschall-Relativanstro-
mung gefiihrt, wobei lokale Uberschall-
gebiete auf der Profilsaugseite auftre-
ten. Fiir noch hoéheren Druckanstieg
wihlt man Uberschall-Relativanstro-
mung zur Laufreihe in den Eintrittsstu-
fen von Axialverdichtern. Auf diese
Weise verhilft der Verdichtungsstoss im
Transschallverdichter beim Ubergang
von supersonischer Relativstromung
im Rotor zu einem erhdhten Stufen-
druckverhiltnis. In industriellen An-
wendungen haben sich dabei nur Ent-
wiirfe mit Verdichtungsstoss im Lauf-
rad durchgesetzt. Einige wenige Ausle-
gungen mit supersonischer absoluter
Eintrittsstromung entstanden in For-
schungszentren [1, Uberblick in 2]. Sie
haben sich aber bis jetzt aufgrund ihrer
Betriebseigenschaften noch nicht fiir
gebriuchliche Anwendungen durchset-
zen konnen.

In den mittleren und hinteren Stufen
mehrstufiger Transschall-Axialverdich-
ter ist die Temperatur, und damit auch
die Schallgeschwindigkeit, infolge Ver-
dichtung so weit gestiegen, dass die
schwerer abstimmbaren transsonischen
Stufen nicht mehr in Frage kommen

(3]

Die Leistungssteigerung einer Gastur-
bine wird am einfachsten durch Erho-
hen der angesaugten Umgebungsluft-
menge erreicht. Hierzu sind Rotor-
durchmesser am Verdichtereintritt er-
forderlich, die infolge ihrer Baugrdsse
Uberschall-Umfangsgeschwindigkeit
erreichen [4, 5, 6, 7]. Durch massstibli-
che Verénderungen eines vorhandenen
Entwurfs sind dann auch kleinere,
schneller drehende Axialverdichter ge-
baut worden, die urspriinglich mit dem
Ziel einer industriellen Nutzung ent-
wickelt und nicht aus Flugzeug-Gastur-
binen abgewandelt worden sind [8, 9,
10, 11].

Hiermit zeichnen sich zwei Wege in der
geschichtlichen Entwicklung ab, die
hin zum Transschallverdichter gefiihrt
haben: Verringerung der Stufenzahl
und wachsender Massenstromdurch-
satz.

Entwicklungsgesichtspunkte

Im Hinblick auf die gasdynamische
Theorie der Druckerhéhung im Ver-
dichtungsstoss sollte man vermuten,
dass der Transschallverdichter ohne
Schwierigkeiten eine im Wirkungsgrad
iiberlegene Methode der Drucksteige-
rung bietet. Trotzdem gelingt es nur mit
grosser Sorgfalt, dem Unterschallver-
dichter im Wirkungsgrad ebenbiirtige
Transschallverdichter zur Seite zu stel-
len [3], da im Bereich der Schallge-
schwindigkeit kleine Abmessungsfeh-
ler grosse Wirkung zeigen [12].

Fir den Entwurf herkémmlicher Un-
terschallverdichter ging man von im
Modell gemessenen Stufenkennlinien
aus, z.B. [13]. Die erforderliche Zahl
hintereinandergeschalteter Stufen ver-
hilft so zum gewiinschten Druckver-
hiltnis [14]. Dabei steht fiir Entwiirfe
stationdirer Maschinen meistens eine
Optimierung beztiglich des Wirkungs-
grades im Vordergrund. Das hat zur
Folge, dass Gesichtspunkte wie die

Gréssen von Machzahl, Diffusionswir-
kung (Diffusionsfaktor, De-Haller-
Zahl), Kanalkonturkrimmung und
Schaufelspiele aufgrund von Erfah-
rungswerten einzustellen sind. Fiir die
glinstigste Auswahl einer Losung unter
der Vielzahl von Variationsmoglichkei-
ten ist fiir Transschall-Axialverdichter
im Mittelschnitt der Einsatz von ma-
thematischen Algorithmen fiir die Ex-
tremwertfindung eingesetzt worden
(Diss. von A. Biagosch, siehe [15]).

Bisher stammten Profile in stationédren
Axialverdichtern in der Uberzahl aus
geometrischen Formfamilien, die man
nach Eignungspriifung im Gitterwind-
kanal entsprechend ihrem mdglichen
Einsatzgebiet in angepasster Grosse
verwendet hat. Derartige Profile bieten
dem Auslegungsingenieur nur die Frei-
heit der Wahl von Inzidenz (Anstell-
winkel), Dicke und Umlenkung. Der
Vorstoss zu hoheren Anstrom-Mach-
zahlen, bis in den Uberschall, erforder-
te die Anpassung der Profilsaugseite an
die Stromungserfordernisse und fithrte
zum Vielkreisbogen-Profil, [3].

Durch den Vormarsch der Computer-
Stromungs-Feldrechenverfahren im
Turbomaschinenbau [16] haben vor al-
lem die Produzenten von Luftfahrt-
Triebwerken eine Optimierung des je-
weiligen Produktes auf dem Weg der
verfeinerten Nachrechnung gesucht
[17, 18, 19]. Urspringlich von der Trag-
fliigeltheorie inspiriert, hat man einige
Richtlinien fiir die aerodynamische Be-
lastung aufstellen konnen, wie man
Unterschall-angestromte Profile mit lo-
kalen Uberschallzonen wirkungsgrad-
optimal gestaltet [20, Uberblick in 15].

Auslegung und Nachrechnung im
Meridianschnitt

Bevor Profilgitterschnitte entworfen
werden, muss ein globales Konzept vor-
liegen, das die Randbedingungen fiir
die Auslegung des Axialverdichters de-
finiert. Sodann wird die Verteilung des
Druckanstiegs durch den Stufenver-
band festgelegt. Im einfachsten Fall
kann eine Massstabsinderung einer
existierenden Maschine als Ausgangs-
punkt dienen [7]. Mit einer Stromungs-
rechnung im umfangsgemittelten Meri-
dianschnitt, erst ein-, dann zweidimen-
sional, beginnt die Arbeit schrittweiser
Optimierung. Seit Ende der sechziger
Jahre verwenden die Firmen dafiir ent-
wickelte Grossrechnerprogramme fir
die  Euler-Stromungsfeldgleichungen,
z.B.[21].

Korrekturen fiir Verluste und Abstrom-
winkel berticksichtigen Reibungsein-
fliisse [22, 23, 24, 25]. In jlngerer Zeit
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Bild 1. Netz der achsensymmetrischen Meridianschnitt-Strémungsrechnung mit Re-

chenstationen innerhalb des Schaufelkanals (Through-Flow-Verfahren)

wird auch darauf hingearbeitet, die
Lage des Verdichtungsstosses bei trans-
sonischen Maschinen in der Meridian-
ebene genauer zu beschreiben, z.B.[26].

Wird nicht nur in einer Rechenebene
jeweils an Ein- und Austritt der Schau-
felreihe gerechnet («duct flow»), son-
dern auch innerhalb der Schaufelreihe
(«through flow»), so ist erst durch itera-
tive Anndherung iiber die Profilgitter-
rechnung eine endgiiltige Bestimmung
der Verldufe von Stromschicht, Umlen-
kung und Verlusten méglich (Bild 1).

9.9

Bild 2a.  Strémungsfeld im Laufreihen-
Spitzenschnitt eines Transschallverdich-
ters, berechnet nach dem McDonald-
Zeitschrittverfahren fir Euler-Gleichun-
gen [siehe z.B. 46].
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Eine bis ins Detail genaue Uberfiihrung
von Meridianschnittdaten in den Pro-
filgitterschnitt und umgekehrt scheitert
an der Notwendigkeit, Stromungsgros-
sen umfangsgemittelt zu verkniipfen.
Diesbeziigliche Vorschldge bleiben ein
aktuelles Thema [27].

Reibungseinfliisse sind lange Jahre in
vollstdndig empirischen oder halbempi-
rischen Formeln ausgedriickt worden
[22, 25]. Eine zunehmende Verfeine-
rung bei der Darstellung von Seiten-
wand-, radialen Mischungs- und Sekun-

Bild 2b.  Der Vergleich mit Verschmut-
zungsspuren ldsst die Lage des Verdich-
tungsstosses auf der konvexen Profil-
saugseite erkennen.

déarstromungseffekten hat Anfang der
achtziger Jahre mit den Verdffentli-
chungen der Arbeiten tber die Stoff-
austausch-Anséitze durch Wirbel von
Adkins & Smith und durch turbulente
Ziahigkeit von Gallimore & Cumpsty
eingesetzt [28].

Auslegung und Nachrechnung im
Profilgitterschnitt

Solange im Axialverdichterbau Profile
aus Geometriefamilien im Bereich vor-
liegender Windkanalergebnisse ver-
wendet werden, finden Stromungsfeld-
Nachrechnungen im Profilgitterschnitt
nur in Ausnahmeféllen statt. Stufen-
kennfelder, empirische oder halbempi-
rische Verfahren fir Korrekturen des
Totaldruckverlustes und der Abstrom-
winkel gegeniiber den Metallwinkeln
in der sonst reibungsfreien Rechnung
haben geniigt, die Beschaufelung im
Meridianschnitt-Rechenprogramm
hinreichend genau auszulegen und fir
spezifische Betriebspunkte nachzurech-
nen[22].

Bei der Auslegung von mehrstufigen
stationdren Turbinen ist die Verwen-
dung von Profilgitternachrechnungen
bereits seit einiger Zeit gebriuchlich,
denn die Stromung in Richtung des
Druckgefilles verursacht geringeren
Aufwand infolge kleineren Grenz-
schichteinflusses [29, 30].

Auf der Suche nach Verdichter-Profil-
gittern mit kleinen Verlusten in trans-
sonischer Stromung fiihrte kein Weg
mehr an der Auslegung mit Strémungs-
feld-Rechenprogrammen vorbei. Im
Gegensatz zur Turbinenentwicklung,
bei der eher existierende Profilformen
durch schrittweise Nachrechnung ver-
bessert worden sind («direkte Metho-
de»), wihlte man fir die Abschwé-
chung von Stéssen im lokalen Uber-
schallgebiet von Verdichtergittern auch
andere Wege. Durch die Entwicklung
des sogenannten stossfreien Profils fiir
Tragfliigel hat sich die «inverse» Ausle-
gung verbreitet, die bei Vorgabe der
Saugseiten-Geschwindigkeitsverteilung
Geometriekonturen als Ergebnis lie-
fert. Aus dieser Vorgehensweise sind
dann auch Beitrige zur Verdichter-
gitterentwicklung entstanden und stetig
weiterentwickelt worden [20, Uberblick
in 15 und 31]. Soweit die Losungen auf
der Hodographenmethode basierten,
waren die Verfahren anfangs nur fir
den Entwurf ebener Profilgitter vorge-
sehen. Dann konnte das Ergebnis tiber
eine konforme Abbildung fiir die Ver-
wendung in konischen Schnitten trans-
formiert werden [32].

Eine Vielzahl von Rechenmethoden er-
reicht die Profilformen fir eine ge-
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Bild 3. Machzahlverteilung um das Profil des Spitzenschnittes
eines Transschallverdichters, gerechnet mit Zeitschrittverfah-

ren:
a) ohne Grenzschicht [siehe z.B. 46]
b) mit Grenzschicht nach [41]

winschte Geschwindigkeitsverteilung
durch Nachrechnungen schrittweise ge-
dnderter Geometrien, z.B. [33, 34, 35,
36]. Von der Moglichkeit einer inversen
Handhabung des Gitterentwurfpro-
gramms bei Uberschall-Profilanstrd-
mung wird bisher nur wenig berichtet
[37, 38]. Die Reibungseinfliisse werden
bei inversen und direkten Profilgitter-
rechnungen durch Integral-Grenz-
schichtverfahren beriicksichtigt [39, 40,
41].

N—

Bild 5. Schaufelentwurf mit strémungs-
angepassten Profilschnitten nach [48] und
Randzonenkorrektur nach [49] fir den
Einfluss der Seitenwandgrenzschicht

928

Bild 4. Machzahlverteilung um das Doppelkreisbogen-Profil
im Gitterschnitt bei Anstrémung mit Schallgeschwindigkeit nach

Rechnungen mit dem Zeitschrittverfahren von Steger & Lomax

[siehe z.B. 47]:

a) mit Euler-Gleichungen
b) mit Navier-Stokes-Gleichungen

Grosseneinfluss

Je nach Stromungsmedium, Arbeits-
druck oder Baugrdsse der ausgefiihrten
Maschine machen sich bei den Turbo-
verdichtern Reynoldszahleinfliisse be-
merkbar. Stromungsmedium und Ar-
beitsdruck beeinflussen vorherrschend
den industriell eingesetzten Axialver-
dichter, der Arbeitsdruck dndert sich
mit der Flughdhe von Triebwerksver-
dichtern, und die Maschinengrosse ist
von Bedeutung bei der Ahnlichkeits-
transformation fir Baureihen in der
Ausfithrung von Kraftwerksgasturbi-
nen. Verdffentlichungen in der Litera-
tur geben ein exponentielles Gesetz fiir
die Anderung des Grenzschichtverlu-
stes in Axialmaschinen mit hydraulisch
glatter Oberfliche an, wobei der Expo-
nent der Reynoldszahl zwischen —0,1
und —=0,15 um den Wert =0,125
schwankt [42]. Die Umrechnung der
mittleren Rauhigkeit Ra verschieden-
ster Oberflichen in die stromungsme-
chanisch gleichwertige Sandrauhigkeit
Rs wird von verschiedenen Quellen im
Bereich von Rs/Ra = 4.2 bis 12 angege-
ben [42, 43]. Dabei fanden 6,3 bis 8,9 in
Axialverdichtern Verwendung.

Schlussfolgerungen

Bei der Berechnung der Axialver-
dichterstromung im Meridianschnitt
sind die sogenannten Stromlinien-
krimmungsverfahren in der industriel-
len Anwendung am weitesten verbrei-

tet. Bei steigenden Machzahlen werden
ihnen in der jetzigen Form Grenzen ge-
setzt sein [44].

Die Verwendung inverser strémungs-
feldangepasster ~ Profilgitterauslegung
wurde bisher nur an Verdichterschau-
felrethen mit Unterschall-Relativan-
stromung in der Praxis verwirklicht.

Um die Auslegungszeit fiir einen Ma-
schinenentwurf aus wirtschaftlichen
Griinden zu verkiirzen, gelangen zu-
nehmend «quasi dreidimensionale»
Rechenverfahren zum Einsatz. Dabei
werden die zweidimensionalen Rech-
nungen von Meridianschnitt und Pro-
filschnitten schrittweise ineinander
tberfiihrt, um wesentliche Einfliisse
wiedergeben zu kénnen, ohne die kost-
spielige dreidimensionale Rechnung in
der Auslegungsphase durchfithren zu
miussen. Von derartigen quasi dreidi-
mensionalen Verfahren in der indu-
striellen Anwendung berichten unter
anderen[19, 41, 45].
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