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Ein Demonstrationsmodell für
Cutoff-Frequenzen
Am Institut für Mechanik der ETH Zürich ist ein diskretisiertes Modell
einer sogenannten elastisch gebetteten Saite gebaut worden. Seine
Aufgabe ist es, das physikalische Phänomen der Cutoff-Frequenzen zu
veranschaulichen. Im vorliegenden Artikel wird dieses Phänomen
erläutert und das Modell kurz vorgestellt.

Auf Cutoff-Frequenzen stösst man
beim Studium fortschreitender
harmonischer Wellen in Wellenleitern (Stäbe,

VON KLAUS HÄUSLER UND
MARTIN GEORG KOLLER,
ZÜRICH

Platten usw.). Fast alle auftretenden
Wellenarten («Modes») in solchen
Leitern besitzen eine Cutoff-Frequenz.
Eine Ausnahme bildet jedoch meist die
einfachste Wellenart (z.B. einfache
Torsionswelle, Biegewelle usw.). Da diese
in praktischen Fällen häufig - aber
nicht immer - die wichtigste ist, wird
das Phänomen der Cutoff-Frequenzen
oft kaum beachtet.

Cutoff-Frequenzen beim
Torsionssstab

Das Wesen der Cutoff-Frequenzen soll
am einfachen Beispiel harmonischer
Torsionswellen in einem kreisrunden,
prismatischen, linear-elastischen Stab
erläutert werden.

Als Torsionswellen werden Wellen
bezeichnet, die eine rein tangentiale, vom
Winkel unabhängige Verteilung der
Verschiebung bzw. der
Partikelgeschwindigkeit aufweisen (Bild la). Es

ist möglich, mit Hilfe der exakten
Bewegungsgleichungen des dreidimensionalen

linear-elastischen Kontinuums
zu zeigen [1], dass verschiedene Arten
(Modes) solcher Wellen auftreten können

(siehe «Pochammer-Chree-Glei-
chungen»).
Beim ersten - und einfachsten - Mode
ist die Partikelgeschwindigkeit proportional

zum Radius r; der Querschnitt
bewegt sich als Ganzes wie ein starrer
Körper um seine Achse (Bild Ib).
Unabhängig von der Frequenz ist die Wel-
lengeschwindigkeit cT V G/Q (G:
Schubmodul, q: Dichte); eine Culoff-
Frequenz existiert nicht. Ein solches
Verhalten nennt man dispersionsfrei.
Es gibt unendlich viele weitere,
sogenannte «höhere» Modes mit frequenz¬

abhängiger Wellengeschwindigkeit,
d.h. mit dispersivem Verhalten. Als
Beispiele sind die Verteilungen der
Partikelgeschwindigkeiten im Querschnitt
für den 2. und 3. Mode in den Bildern
lc und ld skizziert. Im Gegensatz zum
1. Mode werden hier auch die
Querschnitte selbst deformiert. Alle diese
höheren Modes weisen je eine Cutoff-
Frequenz/, auf.

Fortschreitende Wellen eines bestimmten

Modes können nur existieren, falls
die Frequenz /oberhalb der Cutoff-Frequenz

liegt (f > f). Nur in gewissen
komplizierten Sonderfällen können
auch fortschreitende Wellen mit
Frequenzen leicht unterhalb der Cutoff-
Frequenz existieren. Notwendigerweise
treten dann auch negative
Gruppengeschwindigkeiten auf (siehe «Rayleigh-
Lamb-Spektrum»).
Im Grenzfall f-~ f+ strebt die Wellenlänge

immer gegen Unendlich; jegliche
Ortsabhängigkeit längs des Wellenleiters

entfällt, f kann daher als Eigenfrequenz

des Wellenleiters für eine reine
Schwingung des Querschnitts im
entsprechenden Mode interpretiert werden.

Für f < fc entsteht eine längs des
Leiters örtlich exponentiell abklingende,

überall in Phase schwingende
«Grenzschicht» mit gegenüber f ^ f.
unveränderter Geschwindigkeitsverteilung

im Querschnitt. Wird ein langer
Stab an einem freien Ende torsionsartig
mit f<f{2) (f(2): Cutoff-Frequenz des 2.

Modes) angeregt mit einer
Geschwindigkeitsverteilung im Querschnitt, die
nicht dem 1. Mode entspricht, so läuft
trotzdem nur eine Welle im 1. Mode
durch den Stab. Eine Linearkombination

der höheren Modes sorgt dafür,
dass sich die vorgegebene Verteilung im
Anregungsquerschnitt einstellen kann.
Diese höheren Modes klingen aber alle
örtlich ab, je kleiner das jeweilige
Verhältnis f/f. desto stärker.

In der Praxis wird normalerweise nur
mit dem 1. Mode gearbeitet, was auch
meist genügt. Tatsächlich liegt
beispielsweise die Cutoff-Frequenz des 2.

Modes für einen Stahlstab mit Radius
a IO mm bei f{2) 260 kHz! Unter¬

halb dieser Frequenz gilt für die höheren

Modes gewissermassen noch das St-
Venantsche Prinzip, da sie nur zur
Erfüllung der Randbedingungen, d.h. nur
lokal von Bedeutung sind

Die elastisch gebettete Saite

Die elastisch gebettete Saite dürfte, was
die mathematische Behandlung
anbelangt, der einfachste denkbare Wellenleiter

sein, bei welchem eine Cutoff-
Frequenz existiert. Eine solche Saite ist
nichts anderes als eine klassische
«Schulbeispiel-Saite», ergänzt mit einer
Rückstellkraft pro Längeneinheit, die
an jeder Stelle proportional zur
momentanen (transversalen) Auslenkung
y aus der Ruhelage ist (Bild 2).

Mit Hilfe des Impulssatzes, angewendet
auf ein infinitesimal langes Stück der
Saite, kann die Bewegungsgleichung
der elastisch gebetteten Saite für kleine
Auslenkungen v elementar hergeleitet
werden [2]. Die partielle Differentialgleichung

lautet x
: partielle Ableitung

nach der Ortsvariablen, '
: partielle

Ableitung nach der Zeit) :

(1) y,xx- -Tf-y
1 C,

1 T
i y m" c0= y—.

Hierin bedeuten T die Spannkraft der
Saite, k die Federkonstante der elastischen

Bettung pro Längeneinheit und p_

die Masse pro Länge. Wie man sich
leicht überzeugen kann, erfüllt die
d'Alembertsche Lösung der klassischen
Wellengleichung, y f(x ± c0t),
Gleichung (1) nicht. Das System ist somit
dispersiv, d.h. eine Störung beliebiger
Form kann sich nicht ohne
Gestaltänderungausbreiten.

Ein harmonischer Ansatz der Form

(2) v= >-0ér''(Y™»>

(y0: Amplitude,
2 7t

Y X
Wellenzahl, X: Wellenlänge,

w 2 n / : Kreisfrequenz) hingegen
erfüllt Gleichung (1), falls gilt:

(3) y(ö) or
cl T'

Der verwendete Lösungsansatz hat den
Charakter einer fortschreitenden sinu-
soidalen Welle, solange y reell bleibt,
d.h. solange

Co
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Bild 3. Erzwungene Bewegung einer halbunendlichen,
elastisch gebetteten Saite, (a) unterhalb und (b) oberhalb der
Cutoff-Frequenz

Bild 1. a Querschnitt eines Torsionsstabes; b, c und d
radiale Verteilung der Partikelgeschwindigkeit im 1., im 2. und
3. Torsionsmode

1y py

-x » x+dx
k y dx

/ / TTTTT777
a
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Bild 4. Frequenzenspektrum co (y) der elastisch gebetteten
Bild 2. a Elastisch gebettete Saite in der Ruhelage; b Kräf- Saite. Phasengeschwindigkeit c und Gruppengeschwindigkeit cg

te am infinitesimalen Element in allgemeiner Lage sind unmittelbar ablesbar

Folglich hat der betrachtete und der
hier einzige mögliche Mode die Cutoff-
Frequenz

(6) (ù>(ùc:y(x,t)
(y: reell).

y0e i(Y.v-tof)

(4) ,d.h.fc 2%

Diese ist offensichtlich identisch mit
der Eigenfrequenz der Schwingung der
erstarrt gedachten Saite auf ihrer elastischen

Bettung, die Saitenenden frei
vorausgesetzt.

Wird eine «halbunendliche» Saite (x>0)
am Endquerschnitt x 0 mit der
Frequenz

CO

27t

angeregt, so folgt für die Bewegung für

(5) a><a>c:y(x, t) y0e-y-xe"'01

mit y2 -y2(Y: reell)

bzw. für

Im ersten Fall ergibt sich eine örtlich
exponentiell abklingende Schwingung;
alle Teilchen der Saite schwingen dabei
in Phase (Bild 3a). Im zweiten Fall
kann eine fortschreitende harmonische
Welle beobachtet werden (Bild 3b).
Einen Überblick über das Verhalten
der Saite verschafft man sich am
bequemsten anhand eines Frequenzenspektrums,

d.h. anhand der Gleichung
(3) in der Darstellung co (y) (Bild 4).

Betrachtet man einen Punkt (y,,/(ù0) auf
co (y) mit co > co,, so entspricht die
Steigung der Verbindungsgeraden vom
Ursprung zu diesem Punkt gerade der
Phasengeschwindigkeit c (co„). Dies ist
die Geschwindigkeit, mit der die
Nulldurchgänge von y (x.t) in Bild 3b
wandern. Anderseits liefert die Steigung der
Tangente an co (y) im betrachteten
Punkt per defintionem die Gruppenge-
schwindigkeit c» (co0). Diese ist in Wellen,

wie sie hier besprochen werden, die

Geschwindigkeit, mit der Energie
transportiert wird.
Wie Bild 4 entnommen werden kann,
strebt für co — co<+ cnach Unendlich, cg

hingegen nach Null. Für wachsende

Frequenz fällt c ab und erreicht im
Grenzfall y-»co gerade c0, die
Wellengeschwindigkeit einer ungebetteten, im
übrigen aber identischen Saite. Für kürzer

werdende Wellenlängen geht also
der Einfluss der Bettung verloren; die
aus der Saitenkrümmung resultierenden

Rückstellkräfte, Ty. xxdx, überwiegen

dann mehr und mehr diejenigen
der elastischen Bettung.

Das diskrete Modell

Die «Wellenmaschine» (Bild 5) ist im
wesentlichen ein diskretes Modell einer
elastisch gebetteten Saite. 37 hanteiförmige

Pendelstäbe sind in Abständen
von 50 mm zueinander an einem dünnen

Stahlband befestigt (ein Pendel-
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ß/iüd. Dos Verhalten der Pendelstäbe unterhalb der Cutoff-
Frequenz. Alle Pendelstäbe schwingen in Phase, mit örtlich
abklingenden Amplituden. (Die Pfeile markieren hier die Nullage.)

Bild 5.

gerät
Das Modell der elastisch gebetteten Saite, mit Steuer-

stab : zwei Massen à je 55 g, in je 150 mm
Absland von der vertikalen Achse.
Stahlband: Querschnitt 0,4x10 mm,
Länge 1,8 m). Im Gegensatz zu ähnlich
aussehenden Modellen einer klassischen,

d.h. ungebetteten Saite wird
jeder Pendelstab von vier symmetrisch
angeordneten Federn zusätzlich gehalten

(Konstante einer Einzelfeder: 0,325
N/m). Für kleine Auslenkungen aus
der Ruhelage wirkt daher an jedem
Pendelstab ein zum Auslenkungswin-
kel proportionales rückstellendes Kräf-
lepaar (Moment).

Die Steifigkeit des Bandes in bezug auf
eine Verdrehung zwischen zwei Pendelstäben,

die resultierende Torsionssstei-
figkeit der vier Federn, die an einem
Pendelstab angreifen, sowie das
Trägheitsmoment eines solchen entsprechen,

wenn man sie sich «verschmiert»
denkt, den Parametern T, k sowie g

einer kontinuierlichen, elastisch gebetteten

Saite.

Mit Hilfe eines Schrittmotors kann
dem obersten Pendelstab eine sinusoidale

Verdrehung aufgezwungen werden.

Der unterste Pendelstab ist durch eine
Kupferplatte gleichen Trägheitsmomentes

ersetzt. Diese bildet zusammen
mit einem verschiebbar gelagerten
Permanentmagneten eine Wirbelstrombremse,

welche ein zur
Winkelgeschwindigkeit proportionales
Bremsmoment erzeugt. Der zeitliche Verlauf
des Energieentzuges aus dem System
entspricht damit für harmonische Wellen

gerade dem Energieabf luss, der sich
einstellen würde, wenn sich die Saite
nach unten bis ins Unendliche erstreckte

(«Impedanzanpassung»).
Die erforderliche Dämpfungskonstante
ist allerdings frequenzabhängig, folg¬

lich müsste die Stellung des Magneten
für jede Frequenz neu justiert werden.
Für / < f sollte die Dämpfung Null
sein, da dann im stationären Fall
theoretisch keine Energie durch die Saite
fliesst. Für f> f wächst die erforderliche

Dämpfung mit zunehmender
Frequenz an und muss im Grenzfall /—? °°
den konstanten Wert für ein
entsprechendes ungebettetes System erreichen.

Praktisch wird für / > fc bei mittlerer
Abstimmung der Dämpfung ein kleiner

Anteil einer im unteren Lager
einfallenden fortschreitenden Welle reflektiert.

Die daraus resultierende Störung
beeinträchtigt aber das zu demonstrierende

Wellenbild nur unwesentlich.
Eine Impedanzanpassung selbst für
transiente Störungen wäre denkbar mit
Hilfe eines Elektromagneten mit
geregeltem Stromdurchfluss. Die Realisierung

einer solchen Dämpfung hätte
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Bild7. Das Verhalten der Pendelstäbe leicht oberhalb der
Cutoff-Frequenz. Es sind sehr lange Wellen sichtbar, die relativ
schnell laufen.

Bild 8. Hier sind die Wellen noch gut ein Drittel so lang wie in
Bild 7, und die Phasengeschwindigkeit ist um einen Faktor 1,6

abgesunken. (Vergleiche die Lage der Pfeile, die das Fortschreiten

eines «Nulldurchganges» hervorheben)

aber den vorgegebenen Rahmen
gesprengt.

Beobachtungen am Modell

Die Bilder 6, 7 und 8 zeigen je acht
Momentaufnahmen mit zeitlichen Abständen

von Vi, s. Das Modell ist jeweils über
den obersten Pendelstab auslenkungs-
gesteuert sinusoidal angeregt worden,
und zwar mit den Frequenzen 0,68 Hz
(Bild 6), 0,87 Hz (Bild 7) und 1,5 Hz
(Bild 8).

Die Cutoff-Frequenz des Modelles liegt
bei fc 0,75 Hz. Wird nun der oberste

Literatur
[1] H. Kolsky: «Stress Waves in Solids»,

Dover Publications, Inc., New York
(1963)

[2] K.F. Graff: «Wave Motion in Elastic
Solids», Ohio State University Press

(1975)

Pendelstab sinusoidal angeregt - mit
langsam steigender Frequenz, startend
bei etwa 0,5 Hz, sowie mit ausgeschalteter

Dämpfung im unteren Lager, solange

/ < fc ist -, so kann folgendes
beobachtet werden:

Nach dem Abwandern anfänglicher
höherfrequenter Anteile (Einschwingvorgang)

schwingen alle Pendelstäbe in
Phase. Ihre Amplituden hingegen werden

von Stab zu Stab exponentiell kleiner

(Bild 6). Mit steigender Frequenz
schwächt sich das örtliche Abfallen der
Schwingungsamplituden zusehends ab.

Für/-* f~ erwartet man, dass alle
Pendelstäbe mit gleicher Amplitude in Phase

schwingen. Nun ist aber einerseits
immer etwas Reibung im unteren Lager
vorhanden, und anderseits klingt eine
Störung knapp unterhalb von fc, wie ja
gerade gezeigt werden soll, örtlich
kaum mehr ab. Es erstaunt daher nicht,
dass sich das erwartete ideale Verhalten
nur etwa in der oberen Hälfte des

Modelles befriedigend einstellt. (Noch wenig

unterhalb der Cutoff-Frequenz

wirkt sich die Lagerreibung wegen des

exponentiellen Amplitudenabfalls
kaum störend aus).

Überschreitet man die Cutoff-Frequenz,

so entsteht erstmals eine
fortschreitende Welle (Bild 7). Mit weiter
anwachsender Frequenz kann schliesslich

ein deutliches Absinken der
Phasengeschwindigkeit c beobachtet werden

(Bild 8). Bei 0,78 Hz beträgt cetwa
2,5 m/s, bei 0,87 Hz (Bild 7) schon nur
noch 1,6 m/s und bei 1,5 Hz (Bild 8)
noch 1,0 m/s. Der Grenzwert c= c0 für
hohe Frequenzen schliesslich läge bei
0,9 m/s.

Regt man den obersten Pendelstab
stossartig an, so kann die Dispersion,
d.h. die Gestaltänderung der
voranschreitenden Störung, auch unmittelbar

gesehen werden.
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Dr. M.G. Koller. Institut
ETH-Zentrum, 8092 Zürich.

K. Häusler und
für Mechanik,

119


	Ein Demonstrationsmodell für Cutoff-Frequenzen

