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Ein Demonstrationsmodell fur
Cutoff-Frequenzen

Am Institut fir Mechanik der ETH Zurich ist ein diskretisiertes Modell
einer sogenannten elastisch gebetteten Saite gebaut worden. Seine
Aufgabe ist es, das physikalische Phédnomen der Cutoff-Frequenzen zu
veranschaulichen. Im vorliegenden Artikel wird dieses Phdnomen
erldutert und das Modell kurz vorgestelit.

Auf Cutoff-Frequenzen stdsst man
beim Studium fortschreitender harmo-
nischer Wellen in Wellenleitern (Stédbe,

VON KLAUS HAUSLER UND
MARTIN GEORG KOLLER,
ZURICH

Platten usw.). Fast alle auftretenden
Wellenarten («Modes») in solchen Lei-
tern besitzen eine Cutoff-Frequenz.
Eine Ausnahme bildet jedoch meist die
einfachste Wellenart (z.B. einfache Tor-
sionswelle, Biegewelle usw.). Da diese
in praktischen Féllen hdufig - aber
nicht immer - die wichtigste ist, wird
das Phdnomen der Cutoff-Frequenzen
oft kaum beachtet.

Cutoff-Frequenzen beim
Torsionssstab

Das Wesen der Cutoff-Frequenzen soll
am einfachen Beispiel harmonischer
Torsionswellen in einem kreisrunden,
prismatischen, linear-elastischen Stab
erldutert werden.

Als Torsionswellen werden Wellen be-
zeichnet, die eine rein tangentiale, vom
Winkel unabhidngige Verteilung der
Verschiebung bzw. der Partikelge-
schwindigkeit aufweisen (Bild la). Es
ist moglich, mit Hilfe der exakten Be-
wegungsgleichungen des dreidimensio-
nalen linear-elastischen Kontinuums
zu zeigen [1], dass verschiedene Arten
(Modes) solcher Wellen auftreten kon-
nen (siehe «Pochammer-Chree-Glei-
chungen»).

Beim ersten - und einfachsten - Mode
ist die Partikelgeschwindigkeit propor-
tional zum Radius r; der Querschnitt
bewegt sich als Ganzes wie ein starrer
Kérper um seine Achse (Bild 1b). Un-
abhingig von der Frequenz ist die Wel-
lengeschwindigkeit ¢, =
Schubmodul, p: Dichte); eine Cutoff-
Frequenz existiert nicht. Ein solches
Verhalten nennt man dispersionsfrei.

Es gibt unendlich viele weitere, soge-
nannte «héhere» Modes mit frequenz-
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abhingiger Wellengeschwindigkeit,
d.h. mit dispersivem Verhalten. Als
Beispiele sind die Verteilungen der Par-
tikelgeschwindigkeiten im Querschnitt
fir den 2. und 3. Mode in den Bildern
lc und 1d skizziert. Im Gegensatz zum
1. Mode werden hier auch die Quer-
schnitte selbst deformiert. Alle diese
héheren Modes weisen je eine Cutoff-
Frequenz f, auf.

Fortschreitende Wellen eines bestimm-
ten Modes konnen nur existieren, falls
die Frequenz foberhalb der Cutoff-Fre-
quenz liegt (f > f.). Nur in gewissen
komplizierten Sonderfillen koénnen
auch fortschreitende Wellen mit Fre-
quenzen leicht unterhalb der Cutoff-
Frequenz existieren. Notwendigerweise
treten dann auch negative Gruppenge-
schwindigkeiten auf (siehe «Rayleigh-
Lamb-Spektrum»).

Im Grenzfall f— f7 strebt die Wellen-
lange immer gegen Unendlich; jegliche
Ortsabhiingigkeit lings des Wellenlei-
ters entféllt. f. kann daher als Eigenfre-
quenz des Wellenleiters fiir eine reine
Schwingung des Querschnitts im ent-
sprechenden Mode interpretiert wer-
den. Fiir f < f. entsteht eine lings des
Leiters Ortlich exponentiell abklingen-
de, iiberall in Phase schwingende
«Grenzschicht» mit gegentiber f X f,
unverinderter Geschwindigkeitsvertei-
lung im Querschnitt. Wird ein langer
Stab an einem freien Ende torsionsartig
mit < f? (f?:Cutoff-Frequenz des 2.
Modes) angeregt mit einer Geschwin-
digkeitsverteilung im Querschnitt, die
nicht dem 1. Mode entspricht, so liuft
trotzdem nur eine Welle im 1. Mode
durch den Stab. Eine Linearkombina-
tion der hoheren Modes sorgt dafiir,
dass sich die vorgegebene Verteilung im
Anregungsquerschnitt einstellen kann.
Diese hoheren Modes klingen aber alle
ortlich ab, je kleiner das jeweilige Ver-
hiltnis //f, desto stirker.

In der Praxis wird normalerweise nur
mit dem 1. Mode gearbeitet, was auch
meist geniigt. Tatsichlich liegt bei-
spielsweise die Cutoff-Frequenz des 2.
Modes fiir einen Stahlstab mit Radius
a= 10 mm bei [® = 260 kHz! Unter-

halb dieser Frequenz gilt fiir die héhe-
ren Modes gewissermassen noch das St-
Venantsche Prinzip, da sie nur zur Er-
fiillung der Randbedingungen, d.h. nur
lokal von Bedeutung sind!

Die elastisch gebettete Saite

Die elastisch gebettete Saite diirfte, was
die mathematische Behandlung anbe-
langt, der einfachste denkbare Wellen-
leiter sein, bei welchem eine Cutoff-
Frequenz existiert. Eine solche Saite ist
nichts anderes als eine klassische
«Schulbeispiel-Saite», ergdnzt mit einer
Riickstellkraft pro Léngeneinheit, die
an jeder Stelle proportional zur mo-
mentanen (transversalen) Auslenkung
yaus der Ruhelage ist (Bild 2).

Mit Hilfe des Impulssatzes, angewendet
auf ein infinitesimal langes Stiick der
Saite, kann die Bewegungsgleichung
der elastisch gebetteten Saite fiir kleine
Auslenkungen y elementar hergeleitet
werden [2]. Die partielle Differential-
gleichung lautet (., : partielle Ableitung
nach der Ortsvariablen, : partielle Ab-
leitung nach der Zeit):

ko1 . . _ I_T
1y ¥ Y= 3 ¥ mit c,= \ o

Hierin bedeuten T die Spannkraft der
Saite, k die Federkonstante der elasti-
schen Bettung pro Lingeneinheit und @
die Masse pro Lidnge. Wie man sich
leicht tberzeugen kann, erfiillt die
d’Alembertsche Losung der klassischen
Wellengleichung, y = f(x £ ¢,t), Glei-
chung (1) nicht. Das System ist somit
dispersiv, d.h. eine Stérung beliebiger
Form kann sich nicht ohne Gestaltdn-
derung ausbreiten.

Ein harmonischer Ansatz der Form

(2) y= vy, g ilyx-0)

(yo: Amplitude,
y= 2—;: Wellenzahl, A: Wellenlinge,

o = 2 7 f: Kreisfrequenz) hingegen er-
fiillt Gleichung (1), falls gilt:

? k
3) v(w= 2T

Der verwendete Losungsansatz hat den
Charakter einer fortschreitenden sinu-
soidalen Welle, solange y reell bleibt,
d.h. solange
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Bild3. Erzwungene Bewegung einer halbunendlichen, ela-
stisch gebetteten Saite, (a) unterhalb und (b) oberhalb der

(c)

(b)
¥

N Y

Cutoff-Frequenz

N3/
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Bild 1.

3. Torsionsmode

a = Querschnitt eines Torsionsstabes; b, c und d = ra-
diale Verteilung der Partikelgeschwindigkeit im 1., im 2. und

T
k)/dx X+ax

(b)

ImT

RCT

Bild 2.

Folglich hat der betrachtete und der
hier einzige mogliche Mode die Cutoff-
Frequenz

K ogp e L [E
—Tc,,,d.h.fc— I ’

(4) oi= 0

Diese ist offensichtlich identisch mit
der Eigenfrequenz der Schwingung der
erstarrt gedachten Saite auf ihrer elasti-
schen Bettung, die Saitenenden frei vor-
ausgesetzt.

Wird eine «halbunendliche» Saite (x> 0)
am Endquerschnitt x = 0 mit der Fre-
quenz

o
2n
angeregt, so folgt fiir die Bewegung fuir
(5) w<w:y(xt)=y,elre!
mit y2 = —y2(y: reell)

bzw. fiir

a = Elastisch gebettete Saite in der Ruhelage; b = Kréf-
te am infinitesimalen Element in allgemeiner Lage

6) o>osy(xt)=y, eilyx—on
(v: reell).

Im ersten Fall ergibt sich eine ortlich
exponentiell abklingende Schwingung;
alle Teilchen der Saite schwingen dabei
in Phase (Bild 3a). Im zweiten Fall
kann eine fortschreitende harmonische
Welle beobachtet werden (Bild 3b).
Einen Uberblick iiber das Verhalten
der Saite verschafft man sich am be-
quemsten anhand eines Frequenzen-
spektrums, d.h. anhand der Gleichung
(3) in der Darstellung o (y) (Bild 4).

Betrachtet man einen Punkt (y,/o,) auf
o (y) mit ® > ., so entspricht die Stei-
gung der Verbindungsgeraden vom Ur-
sprung zu diesem Punkt gerade der
Phasengeschwindigkeit ¢ (®,). Dies ist
die Geschwindigkeit, mit der die Null-
durchginge von y (x,7) in Bild 3b wan-
dern. Anderseits liefert die Steigung der
Tangente an o (y) im betrachteten
Punkt per defintionem die Gruppenge-
schwindigkeit ¢, (®,). Diese ist in Wel-
len, wie sie hier besprochen werden, die

Bild 4. Frequenzenspektrum ® (y) der elastisch gebetteten
Saite. Phasengeschwindigkeit ¢ und Gruppengeschwindigkeit c,
sind unmittelbar ablesbar

Geschwindigkeit, mit der Energie

transportiert wird.

Wie Bild 4 entnommen werden kann,
strebt fiir @ — . c¢nach Unendlich, ¢,
hingegen nach Null. Fiir wachsende
Frequenz fillt ¢ ab und erreicht im
Grenzfall y— gerade c,, die Wellen-
geschwindigkeit einer ungebetteten, im
iibrigen aber identischen Saite. Fiir kiir-
zer werdende Wellenlingen geht also
der Einfluss der Bettung verloren; die
aus der Saitenkrimmung resultieren-
den Riickstellkrifte, Ty, (.dx, iberwie-
gen dann mehr und mehr diejenigen
der elastischen Bettung.

Das diskrete Modell

Die «Wellenmaschine» (Bild 5) ist im
wesentlichen ein diskretes Modell einer
elastisch gebetteten Saite. 37 hantelfor-
mige Pendelstibe sind in Abstinden
von 50 mm zueinander an einem diin-
nen Stahlband befestigt (ein Pendel-
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Bild 6. Das Verhalten

der Pendelstdbe unterhalb der Cutoff-

) @ )-QO)“.QQ..’C

Frequenz. Alle Pendelstébe schwingen in Phase, mit értlich ab-
klingenden Amplituden. (Die Pfeile markieren hier die Nullage.)

Bild 5. Das Modell der elastisch gebetteten Saite, mit Steuer-

stab:zwei Massen a je 55 g, in je 150 mm
Abstand von der vertikalen Achse.
Stahlband: Querschnitt 0,4x10 mm,
Lénge 1,8 m). Im Gegensatz zu dhnlich
aussehenden Modellen einer klassi-
schen, d.h. ungebetteten Saite wird je-
der Pendelstab von vier symmetrisch
angeordneten Federn zusitzlich gehal-
ten (Konstante einer Einzelfeder: 0,325
N/m). Fiir kleine Auslenkungen aus
der Ruhelage wirkt daher an jedem
Pendelstab ein zum Auslenkungswin-
kel proportionales riickstellendes Krif-
tepaar (Moment).

Die Steifigkeit des Bandes in bezug auf
eine Verdrehung zwischen zwei Pendel-
staben, die resultierende Torsionssstei-
figkeit der vier Federn, die an einem
Pendelstab angreifen, sowie das Trig-
heitsmoment eines solchen entspre-
chen, wenn man sie sich «verschmiert»
denkt, den Parametern T, k sowie @
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gerdt

einer kontinuierlichen, elastisch gebet-
teten Saite.

Mit Hilfe eines Schrittmotors kann
dem obersten Pendelstab eine sinusoi-
dale Verdrehung aufgezwungen wer-
den.

Der unterste Pendelstab ist durch eine
Kupferplatte gleichen Trigheitsmo-
mentes ersetzt. Diese bildet zusammen
mit einem verschiebbar gelagerten Per-
manentmagneten eine Wirbelstrom-
bremse, welche ein zur Winkelge-
schwindigkeit proportionales Brems-
moment erzeugt. Der zeitliche Verlauf
des Energieentzuges aus dem System
entspricht damit fiir harmonische Wel-
len gerade dem Energieabfluss, der sich
einstellen wiirde, wenn sich die Saite
nach unten bis ins Unendliche erstreck-
te («Impedanzanpassung»).

Die erforderliche Dimpfungskonstante
ist allerdings frequenzabhiingig, folg-

lich misste die Stellung des Magneten
fir jede Frequenz neu justiert werden.
Fir f < f. sollte die Dampfung Null
sein, da dann im stationidren Fall theo-
retisch keine Energie durch die Saite
fliesst. Fir f> f. wichst die erforderli-
che Dimpfung mit zunehmender Fre-
quenz an und muss im Grenzfall f—oo
den konstanten Wert fiir ein entspre-
chendes ungebettetes System erreichen.

Praktisch wird fiir f > f. bei mittlerer
Abstimmung der Dampfung ein klei-
ner Anteil einer im unteren Lager ein-
fallenden fortschreitenden Welle reflek-
tiert. Die daraus resultierende Stérung
beeintrichtigt aber das zu demonstrie-
rende Wellenbild nur unwesentlich.
Eine Impedanzanpassung selbst fiir
transiente Storungen wire denkbar mit
Hilfe eines Elektromagneten mit gere-
geltem Stromdurchfluss. Die Realisie-
rung einer solchen Didmpfung hiitte
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Bild 7. Das Verhalten der Pendelstébe leicht oberhalb der Cut-
off-Frequenz. Es sind sehr lange Wellen sichtbar, die relativ
schnell laufen.

e o

Bild 8. Hier sind die Wellen noch gut ein Drittel so lang wie in
Bild 7, und die Phasengeschwindigkeit ist um einen Faktor 1,6
abgesunken. (Vergleiche die Lage der Pfeile, die das Fortschrei-
ten eines «Nulldurchganges» hervorheben)

aber den vorgegebenen Rahmen ge-
sprengt.

Beobachtungen am Modell

Die Bilder 6, 7 und 8 zeigen je acht Mo-
mentaufnahmen mit zeitlichen Abstdn-
den von % s. Das Modell ist jeweils liber
den obersten Pendelstab auslenkungs-
gesteuert sinusoidal angeregt worden,
und zwar mit den Frequenzen 0,68 Hz
(Bild 6), 0,87 Hz (Bild 7) und 1,5 Hz
(Bild 8).

Die Cutoff-Frequenz des Modelles liegt
bei f, = 0,75 Hz. Wird nun der oberste
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Pendelstab sinusoidal angeregt - mit
langsam steigender Frequenz, startend
bei etwa 0,5 Hz, sowie mit ausgeschalte-
ter Dimpfung im unteren Lager, solan-
ge [ < f.ist -, so kann folgendes beob-
achtet werden:

Nach dem Abwandern anfinglicher
hoherfrequenter Anteile (Einschwing-
vorgang) schwingen alle Pendelstibe in
Phase. Ihre Amplituden hingegen wer-
den von Stab zu Stab exponentiell klei-
ner (Bild 6). Mit steigender Frequenz
schwiicht sich das ortliche Abfallen der
Schwingungsamplituden zusehends ab.

Fiir f— f~ erwartet man, dass alle Pen-
delstibe mit gleicher Amplitude in Pha-
se schwingen. Nun ist aber einerseits
immer etwas Reibung im unteren Lager
vorhanden, und anderseits klingt eine
Stérung knapp unterhalb von f, wie ja
gerade gezeigt werden soll, Ortlich
kaum mehr ab. Es erstaunt daher nicht,
dass sich das erwartete ideale Verhalten
nur etwa in der oberen Hilfte des Mo-
delles befriedigend einstellt. (Noch we-
nig unterhalb der Cutoff-Frequenz

wirkt sich die Lagerreibung wegen des
exponentiellen Amplitudenabfalls
kaum stdrend aus).

Uberschreitet man die Cutoff-Fre-
quenz, so entsteht erstmals eine fort-
schreitende Welle (Bild 7). Mit weiter
anwachsender Frequenz kann schliess-
lich ein deutliches Absinken der Pha-
sengeschwindigkeit ¢ beobachtet wer-
den (Bild 8). Bei 0,78 Hz betrigt c etwa
2,5 m/s, bei 0,87 Hz (Bild 7) schon nur
noch 1,6 m/s und bei 1,5 Hz (Bild 8)
noch 1,0 m/s. Der Grenzwert ¢ = ¢, flr
hohe Frequenzen schliesslich lige bei
0,9 m/s.

Regt man den obersten Pendelstab
stossartig an, so kann die Dispersion,
d.h. die Gestaltinderung der voran-
schreitenden Stérung, auch unmittel-
bar gesehen werden.

Adresse der Verfasser: Dr. K. Hdusler und
Dr. M.G. Koller, Institut fiir Mechanik,
ETH-Zentrum, 8092 Ziirich.
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